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1. Introduction and main results

In this paper, we are devoted to studying the existence and multiplicity of solutions for the following
Schrödinger equation with a sublinear nonlinearity,

− ∆u + V(x)u = K(x) f (u), ∀x ∈ RN , (1.1)

where N ≥ 3, V is sign-changing, K is positive and f ∈ C(R).We remove the coercive condition usually
imposed on V(x) and obtain the existence of at least one or infinitely many small energy solutions to
(1.1) for sublinear nonlinearities K(x) f (u).

As mentioned in [1, 10, 12], this type of equations is essentially related to seeking for the standing
waves ψ(t, x) = e−iωtu(x) for the time-dependent Schrödinger equation,

i~∂tΨ = −∆Ψ + U(x)Ψ − g(x,Ψ), x ∈ RN , t ∈ R, (1.2)

where the potential V is given by V(x) = U(x) − ω. Hence V may be indefinite in sign for large
ω(see [1, 23]).
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Much attention has been paid on the following equation,

− ∆u + V(x)u = f (x, u), x ∈ RN , N ≥ 3, (1.3)

involving a continuous term V(x). We refer, for instance, to [2–8, 11, 14, 15, 17–20, 22, 23] and the
references therein. It is known to all that the main difficulty in dealing with problem (1.3) arises from
the lack of the compactness of Sobolev embeddings, which prevents from checking directly that the
energy functional associated with (1.3) satisfies the PS-condition.

To obtain the compactness in RN , some feasible methods are provided in the existing papers. For
example, Bartsch, Pankov and Wang [6] have studied a class of Schrödinger equations, where V(x) is
continuous function verifying the following conditions,
(v1) ess inf V(x) > 0;
(v2) for any M > 0, there exists x0 such that lim|y|→∞meas({x ∈ RN : |x − y| ≤ x0, V(x) ≤ M}) = 0,
where meas devotes the Lebesgue measure on RN . Under conditions (v1) and (v2), the compactness
of Sobolev embedding can be recovered. With the assumptions (v1) and (v2), equation (1.3) has been
investigated by the variational methods by [6] and some other authors.

In [22], the authors studied a class of sublinear Schrödinger equations, where f (x, u) = ξ(x)|u|µ−2u
with 1 < µ < 2 and ξ(x) : RN → R being a positive continuous function. Under conditions (v1) and
(v2), they established a theorem on the existence of infinitely many small energy solutions.

The results of [22] were improved in the recent paper [7], where they improved the results of [22]
by removing assumption (v2) and relaxing the assumptions on f (x, t). By using the genus properties in
critical point theory, they established some existence criteria to guarantee that the problem has at least
one or infinitely many nontrivial solutions.

In [8], for problem (1.3), Cheng and Wu studied a sublinear problem and used conditions on V(x)
below:
(V1) V ∈ C(RN) is bounded below;
(V2) for every M > 0, meas {x : V(x) ≤ M} < ∞.
Under some additional conditions of f , two theorems are obtained in [8]. One theorem states that
equation (1.3) possesses at least one nontrivial solution. By using a variant fountain theorem, they
obtained the existence of infinitely many small energy solutions in another theorem.

Bao and Han [4] also considered a nonlinear sublinear Schrödinger equation,

− ∆u + V(x)u = a(x)|u|µ−2u, ∀x ∈ RN , (1.4)

where V(x) ∈ L∞(RN) is sign-changing and a(x) ∈ L∞(RN) with a(x) > 0 a.e. in RN . Under some
conditions on V(x) and by using bounded domain approximation technique, infinitely many small
energy solutions are obtained.

In those above papers, (v2), (V2) or the coercive condition on V plays an important role in obtaining
the compact embedding. In this paper, we remove the coercive condition of V(x) and also weaken the
conditions on f .

We remark that there have been many interesting results for the similar sublinear problems (1.1) but
on bounded domains Ω ⊂ RN . We refer to [13] for some results for p−Laplacian equation problems
and the references therein.

Before stating our main results, we make some assumptions, where V+(x) = max{V(x), 0}, V−(x) =

max{−V(x), 0}.
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(K1) K(x) > 0, ∀x ∈ RN and K(x) ∈ L∞(RN).
(V1) V = V+ − V−, where V+ ∈ L1(RN ,R), V− ∈ L

N
2 (RN ,R).

Ω = {x ∈ RN | V(x) < 0} , ∅,

measΩ > 0 and there exists a large constant R0 such that V(x) > 0 for a.e. |x| ≥ R0.

(V2) There exists a constant η0 > 1 such that

η1 := inf
u∈H1(RN )\{0}

∫
RN |∇u|2dx +

∫
RN V+u2dx∫

RN V−u2dx
≥ η0.

(KV) K
|V | ∈ L∞(RN).

( f1) f ∈ C(R) and there exist constants τ1, τ2 ∈ (1, 2) with τ1 < τ2 such that

0 ≤ f (u)u ≤ |u|τ1 + |u|τ2 for all u ∈ R.

( f2) F(u) ≥ C|u|τ1 , ∀u ∈ R, where C is some positive constant, F(u) =
∫ u

0
f (τ)dτ.

Remark 1.1. Conditions similar to (V2) can be found in [9] and [16]. By condition (V1) and the
Hölder and Sobolev inequalities,∫

RN |∇u|2 + V+(x)|u|2dx∫
RN V−(x)|u|2dx

≥

∫
RN |∇u|2dx

|V−| N
2
|u|22∗

≥

∫
RN |∇u|2dx

S −1|V−| N
2

∫
RN |∇u|2dx

=
S
|V−| N

2

,

(1.5)

where S is the best constant for the Sobolev embedding of D1,2(RN) ↪→ L2∗(RN) and 2∗ = 2N
N−2 . It

implies that if |V−| N
2
< S , then µ1 ≥

S
|V− | N

2

> 1. Hence, (V2) is satisfied for V(x) with sufficiently small

|V−| N
2
.

By (V2) and a simple calculation,∫
RN
|∇u|2 + V+|u|2dx ≥

∫
RN
|∇u|2 + V |u|2dx ≥

η0 − 1
η0

( ∫
RN
|∇u|2 + V+|u|2dx

)
. (1.6)

More details on condition (V2) can be found in [9].

Theorem 1.2. Assume that conditions (K1), (V1), (V2), (KV), ( f1) and ( f2) hold. Then Eq (1.1)
possesses at least one nontrivial solution.

Theorem 1.3. Assume that conditions (K1), (V1), (V2), (KV), ( f1) and ( f2) hold. Moreover, f (u) =

− f (−u), ∀u ∈ R. Then equation (1.1) possesses infinitely many small energy solutions.
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We emphasize that the conditions on V(x) in this paper are essentially different from those in [8]
and [22]. In fact, we are dealing with the vanishing potentials V(x). As far as we know, for problem
(1.1) with sublinearity, few works in this case seem to have appeared in the literature. Since V(x) is
sign-changing and vanishing, it seems not to be obvious from the literature to obtain the compactness
suitable to deal with the problem. By proving a Hardy-type inequality, which extends the results
in [1], we can obtain the needed compactness. Our theorems also extend the results in [8, 22] and our
hypotheses on nonlinearities are more general.

The paper is organized as follows. In Section 2, we introduce the variational setting and state some
preliminary results which will be needed later. In Section 3, the proofs of our main results are given.

2. Variational setting

In this paper, we define

E =
{
u ∈ D1,2(RN) :

∫
RN

V+(x)|u|2dx < ∞
}
.

We know E is a separable Hilbert space with the inner product

〈u, v〉 =

∫
RN

(
∇u · ∇v + V+(x)u(x)v(x)

)
dx

and the norm ‖u‖ = 〈u, u〉
1
2 . Let Lq

K(RN) be the weighted space of measurable functions u : RN → R

satisfying

|u|K,q =
[ ∫
RN

K(x)|u|qdx
] 1

q
< +∞.

Denote Lq(RN) with

|u|q =
[ ∫
RN
|u|qdx

] 1
q
< +∞,

where 1 ≤ q < +∞. And set
‖u‖∞ = ess sup

x∈RN
|u(x)|, u ∈ L∞(RN).

It is well known that the embedding E ⊂ Ls(RN)(2 ≤ s ≤ 2∗) is continuous.
Now we give a Hardy-type inequality which extends the one in [1] and is suitable for dealing with

our sublinear problems. Before stating the result, we recall condition (A),
(A) if {An} ⊂ R

N is a sequence of Borel sets such that |An| ≤ R for some R > 0 and all n, then

lim
r→∞

∫
An∩Bc

r (0)
K(x)dx = 0, uniformly in n ∈ N. (2.1)

As stated in [1], if K ∈ L1(RN\Bρ(0)) for some ρ > 0, we know that K satisfies condition (A).

Lemma 2.1. Suppose that (K1), (V1) and (KV) hold. Then E is compactly embedded in Lr
K(RN) for

r ∈ (1, 2].
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Proof. By (V1) and noticing that V+ ∈ L1, for any ε > 0, we can choose Rε > R0 such that∫
RN\BRε

V(x)dx =

∫
RN\BRε

V+(x)dx < ε2. (2.2)

Fixed 1 < r ≤ 2. For given ε, there are 0 < T 0
ε < Tε and Cε > 0 such that, for a.e. |x| ≥ Rε,

K(x)|s|r ≤ Cε(V(x)|s| + |s|2
∗

) + CεK(x)χ(T 0
ε ,Tε)|s|

2∗ , ∀s ∈ RN . (2.3)

Hence, ∫
Bc

Rε
(0)

K(x)|u|rdx

≤Cε
( ∫

Bc
Rε

(0)
V(x)|u|dx +

∫
Bc

Rε
(0)
|u|2

∗

dx
)

+ CεT 2∗
ε

∫
A∩Bc

Rε
(0)

K(x)dx, ∀u ∈ E,
(2.4)

where
A = {x ∈ RN : T 0

ε ≤ |u(x)| ≤ Tε}.

If {vn} is a sequence such that vn ⇀ v in E, then there is M > 0 such that∫
RN

(|∇vn|
2 + V+(x)|vn|

2)dx ≤ M2 (2.5)

and ∫
RN
|vn|

2∗dx ≤ M2, ∀n ∈ N. (2.6)

It follows that ∫
Bc

Rε

|vn|
2∗dx < M2 (2.7)

and ∫
Bc

Rε
(0)

V+(x)|vn|dx ≤
[ ∫
RN

V+(x)|vn|
2dx

] 1
2
[ ∫

Bc
Rε

(0)
V+(x)

] 1
2
≤ Mε. (2.8)

Thus, by (V1), (2.7) and (2.8), we obtain that∫
Bc

Rε
(0)

V(x)|vn|dx +

∫
Bc

Rε
(0)
|vn|

2∗dx

=

∫
Bc

Rε
(0)

V+(x)|vn|dx +

∫
Bc

Rε
(0)
|vn|

2∗dx ≤ Mε + M2.

(2.9)

By (2.2) and (KV), we have∫
RN\BRε

K(x)dx =

∫
RN\BRε

K(x)
V(x)

V(x)dx ≤ C
∫
RN\BRε

V(x)dx < Cε. (2.10)
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Furthermore, set

An = {x ∈ RN : T 0
ε ≤ |vn(x)| ≤ Tε}. (2.11)

By (2.6),

(T 0
ε )2∗ |An| ≤

∫
An
|vn|

2∗dx ≤ M2, ∀n ∈ N, (2.12)

that is,

sup
n∈N
|An| < +∞. (2.13)

Therefore, by (2.1), (2.10) and (2.13), there is a constant R̄ε > 0 such that∫
An∩Bc

R̄ε
(0)

K(x)dx <
ε

CεT 2∗
ε

, for all n ∈ N. (2.14)

Hence, for R̂ε = max{R̄ε,Rε}, (2.4), (2.9) and (2.14) lead to∫
Bc

R̂ε
(0)

K(x)|vn|
rdx

≤Cε
( ∫

Bc
R̂ε

(0)
V(x)|vn|dx +

∫
Bc

R̂ε
(0)
|vn|

2∗
)

+ CεT 2∗
ε

∫
An∩Bc

R̂ε
(0)

K(x)dx

≤Cε
( ∫

Bc
Rε

(0)
V(x)|vn|dx +

∫
Bc

Rε
(0)
|vn|

2∗
)

+ CεT 2∗
ε

∫
An∩Bc

R̄ε
(0)

K(x)dx

≤Cε(Mε + M2) + ε ≤ Ĉε, ∀n ∈ N.

(2.15)

Furthermore, for that ε > 0 and large n, it is easy to obtain that∫
BR̂ε (0)

K(x)(|vn|
r − |v|r)dx < ε. (2.16)

Therefore, from (2.15) and (2.16), we obtain that∣∣∣∣ ∫
RN

K(x)(|vn|
r − |v|r)dx

∣∣∣∣
=
∣∣∣∣ ∫

BR̂ε (0)
K(x)(|vn|

r − |v|r)dx
∣∣∣∣ +

∣∣∣∣ ∫
Bc

R̂ε
(0)

K(x)(|vn|
r − |v|r)dx

∣∣∣∣
≤

∫
BR̂ε (0)

K(x)||vn|
r − |v|r|dx +

∫
Bc

R̂ε
(0)

K(x)|vn|
rdx ≤ C̄ε,

(2.17)

which completes the proof. �

Lemma 2.2. (Lemma 2.13 [21]) Let V(x) ∈ L
N
2 (Ω) and suppose that un ⇀ u in E. Then∫

Ω

V−(x)|un|
2dx→

∫
Ω

V−(x)|u|2dx. (2.18)
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Lemma 2.3. Suppose that (K1), (V1) and (KV) hold. Then the functional J : E → R defined by

J(u) =
1
2
‖u‖2 −

1
2

∫
RN

V−(x)|u|2dx −
∫
RN

K(x)F(u)dx (2.19)

is well defined and belongs to C1(E,R). Moreover,

〈J ′(u), v〉 = 〈u, v〉 −
∫
RN

V−(x)uvdx −
∫
RN

K(x) f (u)vdx. (2.20)

Proof. By (V1) and Lemma 2.13 in [21], we know
∫
RN V−(x)|u|2dx is well defined for u ∈ E. By virtue

of ( f1),

|F(u)| ≤ C|u|τ1 + C|u|τ2 . (2.21)

Hence, by Lemma 2.1, we get∫
RN

K(x)|F(u)|dx ≤ C
∫
RN

(K(x)|u|τ1 + K(x)|u|τ2)dx ≤ C‖u‖τ1 + C‖u‖τ2 , (2.22)

which means that J is well defined for u ∈ E.
By a direct computation, it is not difficult to prove that (2.20) holds. Furthermore, by a standard

argument, we obtain that the critical points of J in E are solutions of problem (1.1).
Finally, we will show that J ′(u) is weakly continuous, that is, if un ⇀ u in E, then

〈J ′(un) − J ′(u), v〉 → 0, ∀v ∈ E. (2.23)

Arguing directly, by un ⇀ u in E, choose a subsequence {unk} of {un} such that
unk(x)→ u(x) a.e. in RN and Q1(x) ∈ L2

K(RN), where

Q1(x) =
(
Σ∞k=1|unk(x) − u(x)|2

) 1
2
.

It is clear that

K(x)| f (unk) − f (u)|2 ≤2K(x)
(
| f (unk)|

2 + | f (u)|2
)

≤4
2∑

i=1

(
K(x)|unk |

2(τi−1) + K(x)|u|2(τi−1)
)

=4
2∑

i=1

(
K(x)|unk − u + u|2(τi−1) + K(x)|u|2(τi−1)

)
≤

2∑
i=1

C(τi)
(
K(x)|unk − u|2(τi−1) + K(x)|u|2(τi−1)

)
≤

2∑
i=1

C(τi)
[
K(x)Q2(τi−1)

1 (x) + K(x)|u|2(τi−1)
]
.

(2.24)
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Write Q2(x) =
∑2

i=1 C(τi)
[
K(x)Q2(τi−1)

1 (x)+K(x)|u|2(τi−1)
]
. By (V1) and (KV), we obtain that K ∈ L1(RN).

By 1
τi−1 > 1 and 1

2−τi
> 1, one has∫

RN
Q2(x)dx

=

2∑
i=1

C(τi)
∫
RN

[
K(x)Q2(τi−1)

1 (x) + K(x)|u|2(τi−1)
]
dx

=

2∑
i=1

C(τi)
∫
RN

K(τi−1)+(2−τi)(x)Q2(τi−1)
1 dx +

2∑
i=1

C(τi)
∫
RN

K(τi−1)+(2−τi)(x)|u|2(τi−1)dx

≤

2∑
i=1

C(τi)
( ∫
RN

K(x)Q2
1dx

)τi−1( ∫
RN

K(x)dx
)2−τi

+

2∑
i=1

C(τi)
( ∫
RN

K(x)u2dx
)τi−1( ∫

RN
K(x)dx

)2−τi

≤

2∑
i=1

C(τi)
[
|Q1|

2(τi−1)
K,2

( ∫
RN

K(x)dx
)2−τi

+ |u|2(τi−1)
K,2

( ∫
RN

K(x)dx
)2−τi]

< ∞.

(2.25)

This together with Lebesgue’s Dominated Convergence Theorem implies that

lim
n→∞

∫
RN

K(x)| f (un) − f (u)|2dx = 0. (2.26)

Therefore, for any v ∈ E,

〈J ′(un) − J ′(u), v〉

=
∣∣∣∣〈un − u, v〉 −

∫
RN

V−(x)(un − u)vdx −
∫
RN

K(x)| f (unk) − f (u)|vdx
∣∣∣∣

≤|〈un − u, v〉| +
∫
RN

V−(x)|(un − u)v|dx + C
( ∫
RN

K(x)| f (unk) − f (u)|2dx
) 1

2
‖v‖

→0, as n→ ∞.

Hence, J ′(u) is weakly continuous in E. The proof is complete. �

Definition 2.4. (PS condition) Let E be a Banach space, c ∈ R and J ∈ C1(E,R). The function J is
said to satisfy the (PS)c-condition on E if any (PS)c-sequence {un} such that

J(un)→ c and J ′(un)→ 0, as n→ ∞

has a strongly convergent subsequence in E.

Let {e j} be an orthonormal basis of the Hilbert space E and define X j = Re j, Yk =
k
⊕
j=1

X j, Zk =
∞

⊕
j=k

X j.

For the statement of Dual Fountain Theorem, we need the following condition. More details can be
found in [21].

(A1) A compact group G acts isometrically on the Hilbert space E =
⊕

j∈N X j, the spaces X j are
invariant and there exists a finite dimensional space V such that, for every j ∈ N, X j ' V and the action
of G on V is admissible.
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Lemma 2.5. (Theorem 3.18 in [21] Dual Fountain Theorem, Bartsch-Willem, 1995) Assume that
condition (A1) holds and let J ∈ C1(E,R) be an invariant functional. If, there exist two sequences
0 < rk < ρk → 0 as k → ∞ and the following conditions (D1)−(D4) hold, then J has a sequence of
negative critical values converging to 0, where
(D1) ak := inf

u∈Zk ,‖u‖=ρk
J(u) ≥ 0;

(D2) bk := max
u∈Yk ,‖u‖=rk

J(u) < 0;

(D3) dk := inf
u∈Zk ,‖u‖≤ρk

J(u)→ 0 as k → ∞;

(D4) for every c ∈ [dk, 0), J satisfies the (PS )∗c condition, that is, every sequence un j ∈ E satisfying

un j ∈ Yn j ,J(un j)→ c, J|
′

Yn j
(un j)→ 0, n j → ∞

contains a subsequence converging to a critical point of J .

3. Proof of theorems

Lemma 3.1. Assume that conditions (K1), (V1), (V2), (KV) and ( f1) hold. Then the functional J is
coercive and bounded below on E.

Proof. It is obvious to obtain that

J(u) =
1
2
‖u‖2 −

1
2

∫
RN

V−(x)|u|2dx −
∫
RN

K(x)F(u)dx

≥
η0 − 1

2η0
‖u‖2 − c‖u‖τ1 − c‖u‖τ2 .

(3.1)

Since τ1, τ2 ∈ (1, 2), the above inequality implies that J is coercive and bounded below on E. �

By Lemma 3.1 and Ekeland’s variational method, there exists a minimizing sequence {un} such that

J(un)→ inf
E
J and J ′(un)→ 0, as n→ ∞.

By Lemma 3.1, it is clear that the minimizing sequence {un} is bounded in E.

Lemma 3.2. Assume that conditions (K1), (V1), (V2), (KV) and ( f1) hold. Then there exists a strong
convergent subsequence of the minimizing sequence {un}.

Proof. By Lemma 3.1, the minimizing sequence {un} is bounded. Passing to a subsequence, one has
un ⇀ u in E,
un → u in L2

K(RN),
un(x)→ u(x) a.e. in RN .

(3.2)

By a direct computation, we derive that

‖un − u‖2 =〈J ′(un) − J ′(u), un − u〉 +
∫
RN

V−(x)|un − u|2dx

+

∫
RN

K(x)( f (un) − f (u))(un − u)dx.
(3.3)
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By Lemma 2.2,
∫
RN V−(x)|un − u|2dx → 0. It is obvious that 〈J ′(un) − J ′(u), un − u〉 → 0. Thus, it is

enough to show ∫
RN

K(x)( f (un) − f (u))(un − u)dx→ 0, as n→ ∞.

We can see that ∣∣∣∣ ∫
RN

K(x)( f (un) − f (u))(un − u)dx
∣∣∣∣

≤

∣∣∣∣ ∫
RN

K(x) f (un)(un − u) + K(x) f (u)(un − u)dx
∣∣∣∣

≤

∫
RN

(
K(x)| f (un)(un − u)| + K(x)| f (u)(un − u)|

)
dx.

(3.4)

Since 2−τi
2 + 1

2 + τi−1
2 = 1, i = 1, 2, we have∫

RN
K(x)| f (un)(un − u)|dx

=

∫
RN

K(x)|(|un|
τ1−1 + |un|

τ2−1)(un − u)|dx ≤
2∑

i=1

( ∫
RN

K(x)dx
) 2−τi

2
|un|

τi−1
K,2 |un − u|K,2.

(3.5)

This together with (3.2), for large n, we obtain that
∫
RN K(x)| f (un)(un − u)| < Cε. Similarly, for that ε

and large n,
∫
RN K(x)| f (u)(un − u)|dx ≤ ε . The proof is complete. �

Proof of Theorem 1.2. Assume that conditions (K1), (V1), (V2), (KV), ( f1) and ( f2) hold. Then the
limit u0 of the minimizing sequence {un} is nontrivial.

Proof. We will argue directly. First, we take a subspace Ê of E with dimÊ < ∞. By Lemma 2.1 and a
similar discussion to the proof of Lemma 2.4 in Zhang and Wang [22](see (5) of Lemma 3.1 in [20]),
there exists a constant κ > 0 such that

meas{x : K(x)|u(x)|τ1 ≥ κ‖u‖τ1 , ∀ u ∈ Ê} ≥ κ. (3.6)

We consider the sets Λ = {x : K(x)F(u) ≥ κ‖u‖τ1 , u ∈ Ê} and Ω = {x : K(x)|u(x)|τ1 ≥ κ‖u‖τ1 , u ∈ Ê}.
By (f2), we obtain that Ω ⊂ Λ. Hence, meas(Λ) ≥ meas(Ω) ≥ κ. Then for any fixed u ∈ Ê\{0} and
s > 0, it follows from ( f2) that

J(su) ≤
1
2
‖su‖2 −

∫
RN

K(x)F(su)dx

≤
1
2
‖su‖2 −

∫
Λ

κ‖su‖τ1dx

≤
1
2
‖su‖2 − κ‖su‖τ1meas(Λ)

≤
1
2

s2 ‖u‖2 − κ2sτ1‖u‖τ1 .

(3.7)

Since 1 < τ1 < 2, J(su) < 0 for s sufficient small and u ∈ E\{0}. Since J is coercive and by Lemma
3.2, we obtain that

J(u0) = inf
E
J(u) < 0,

which implies that u0 , 0. �
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Now, we show that the energy functional J has the geometric properties in Lemma 2.5 under the
conditions of Theorem 1.3.

Lemma 3.3. Assume that conditions (K1), (V1), (V2), (KV), ( f1) and ( f2) hold. Moreover, f (u) =

− f (−u),∀u ∈ R. Then there exists a sequence 0 < ρk (ρk → 0 as k → ∞) such that

ak := inf
u∈Zk ,‖u‖=ρk

J(u) ≥ 0.

Proof. By (V2) and ( f1), we obtain that

J(u) =
1
2
‖u‖2 −

1
2

∫
RN

V−(x)|u|2dx −
∫
RN

K(x)F(u)dx

≥
η0 − 1

2η0
‖u‖2 − c|u|τ1

K,τ1
− c|u|τ2

K,τ2
.

(3.8)

Let
βk,τi := sup

u∈Zk ,‖u‖=1
|u|K,τi , i = 1, 2, ∀k ∈ N.

Based on Lemma 3.8 in [21] and Lemmas 2.1, βk,τi → 0, i = 1, 2, as k → ∞. We have that

J(u) ≥
η0 − 1

2η0
‖u‖2 − cβτ1

k,τ1
‖u‖τ1 − cβτ2

k,τ2
‖u‖τ2 = ‖u‖2

(η0 − 1
2η0

− cβτ1
k,τ1
‖u‖τ1−2 − cβτ2

k,τ2
‖u‖τ2−2

)
. (3.9)

Choose ‖u‖ = ρk :=
(

η0
η0−1

) 1
2−τ1

[
8cβτ1

k,τ1
+

(
η0
η0−1

) 2−τ1
2−τ2
−1(

8cβτ2
k,τ2

) 2−τ1
2−τ2

] 1
2−τ1 . By the definition of ρk, a direct

computation implies

cβτ1
k,τ1
ρτ1−2

k =
cβτ1

k,τ1

η0
η0−1

[
8cβτ1

k,τ1
+

(
η0
η0−1

) 2−τ1
2−τ2
−1(

8cβτ2
k,τ2

) 2−τ1
2−τ2

] ≤η0 − 1
8η0

(3.10)

and

cβτ2
k,τ2
ρτ2−2

k =
cβτ2

k,τ2(
η0
η0−1

) 2−τ2
2−τ1

[
8cβτ1

k,τ1
+

(
η0
η0−1

) 2−τ1
2−τ2
−1(

8cβτ2
k,τ2

) 2−τ1
2−τ2

] 2−τ2
2−τ1

≤
η0 − 1

8η0
. (3.11)

Then, we get

J(u) ≥ ρ2
k

(η0 − 1
2η0

− cβτ1
k,τ1
ρτ1−2

k − cβτ2
k,τ2
ρτ2−2

k

)
≥ ρ2

k
η0 − 1
η0

(1
2
−

1
4

)
=
η0 − 1

4η0
ρ2

k > 0. (3.12)

Thus, for every k, u ∈ Zk and ‖u‖ = ρk, we have ak ≥ 0. Since βk,τ1 , βk,τ2 → 0 as k → ∞, it follows that
ρk → 0 as k → ∞. �

Lemma 3.4. Assume that conditions (K1), (V1), (V2), (KV), ( f1) and ( f2) hold. Moreover, f (u) =

− f (−u),∀u ∈ R. Then there exists a sequence rk , 0 < rk < ρk, rk → 0 as k → ∞ such that

bk := max
u∈Yk ,‖u‖=rk

J(u) < 0.
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Proof. Noticing that Yk is of finite dimension for each k ∈ N. By a similar discussion to the proof of
Theorem 1.2, it follows from ( f1) and ( f2) that

J(u) ≤
1
2
‖u‖2 −

∫
RN

K(x)F(u)dx

≤
1
2
‖u‖2 −

∫
Λ

κ‖u‖τ1dx

≤
1
2
‖u‖2 − κ2‖u‖τ1

= ‖u‖τ1
(1
2
‖u‖2−τ1 − κ2

)
.

(3.13)

Choosing ‖u‖ := rk = min{(κ2)
1

2−τ1 , 1
2ρk}, we obtain 0 < rk < ρk and 1

2 ‖u‖
2−τ1 − κ2 = −1

2κ
2 < 0 for

‖un‖ = rk. Hence, for each k, we have bk < 0. This completes the proof. �

Lemma 3.5. Assume that conditions (K1), (V1), (V2), (KV), ( f1) and ( f2) hold. Moreover, f (u) =

− f (−u),∀u ∈ R. Then it holds that

dk := inf
u∈Zk ,‖u‖≤ρk

J(u)→ 0 as k → ∞.

Proof. For u ∈ Zk, ‖u‖ ≤ ρk, we derive that

J(u) ≤
1
2
‖u‖2 −

∫
RN

K(x)F(u)dx ≤
1
2
‖u‖2 ≤

1
2
ρ2

k . (3.14)

On the other hand, by (3.9), we obtain that

J(u) =
1
2
‖u‖2 −

1
2

∫
RN

V−u2dx −
∫
RN

K(x)F(u)dx

≥
η0 − 1

2η0
‖u‖2 − cβτ1

k,τ1
‖u‖τ1 − cβτ2

k,τ2
‖u‖τ2

≥ − cβτ1
k,τ1
ρτ1

k − cβτ2
k,τ2
ρτ2

k .

(3.15)

Since βk,τ1 → 0, βk,τ2 → 0 and ρk → 0 as k → ∞, it follows from (3.14) and (3.15) that

dk := inf
u∈Zk ,‖u‖≤ρk

J(u)→ 0 as k → ∞.

This proof is complete. �

Proof of Theorem 1.3. We just need to prove the (PS )∗c condition. Consider a sequence {un j} such
that

n j → ∞, un j ∈ Yn j ,

J(un j)→ c, J ′|Yn j
(un j)→ 0.

For the proof of boundedness of {un j}, arguing indirectly, ‖un j‖ → +∞, as n j → +∞. It follows that
J ′|Yn j

(un j)→ 0, that is,

η0 − 1
η0

∥∥∥un j

∥∥∥2
≤

∫
RN
|∇un j |

2 + V(x)|un j |
2dx =

∫
RN

K(x) f (un j)un jdx (3.16)
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and for 1 < τ1 < τ2 < 2, we derive that

η0 − 1
η0

≤

∫
RN K(x) f (un j)un jdx∥∥∥un j

∥∥∥2 ≤
|un j |

τ1
K,τ1

+ |un j |
τ2
K,τ2∥∥∥un j

∥∥∥2

≤
C‖u‖τ1 + C‖u‖τ2∥∥∥un j

∥∥∥2 =
C∥∥∥un j

∥∥∥2−τ1
+

C∥∥∥un j

∥∥∥2−τ2
→ 0,

(3.17)

as j→ ∞, which is contradiction. Therefore, we derive that {un j} is bounded in E.
Since {un j} is bounded in E, by Lemma 2.1, we get that the sequence {un j} has strong convergent

subsequence in E. Passing to a sequence, we suppose that un j → uk in E. Thus, by Lemma 2.5, for
each k, {uk} is a critical point of J and J(uk) → 0, as k → ∞. Hence, (1.1) possesses infinitely many
small energy solutions. The proof of Theorem 1.3 is complete. �
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