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1. Introduction

Every graph considered in our paper is undirected, finite, and simple that has no multiple edges
and loops. Also, a digraph means a finite and directed graph with no loops or multiple arcs. If Λ is a
graph (resp. digraph), then denote by V(Λ) and E(Λ) the vertex set and the edge set (resp. the arc set)
of Λ, respectively. A sequence of vertices [x1, x2, . . . , xt] in a digraph is called a cycle if the sequence
satisfies (xt, x1) is an arc of this digraph and for every index i ∈ {2, . . . , t}, there exists an arc (xi−1, xi). If
a digraph has no cycles, then this digraph is called acyclic. We follow book [28] for undefined notation
and terminology.

The study of the subgroups of a group was a main impetus for the development of lattice theory.
Since every subgroup of a cyclic group is cyclic, the cyclic subgroups of a group form a downset,
and hence a meet subsemilattice, in the lattice of all subgroups. This paper is concerned with an
expansion the comparability graph of this semilattice. Also, graph associated with a group has valuable
applications (see [22, 18]) and is related to automata theory (see [19, 20]). Let G be a group. The power
graph of G, denoted by P(G), is a graph whose vertex set is G and two distinct vertices are connected
by an edge between if and only if one is a power of the other. In 2000, Kelarev and Quinn [21] first

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2021319


5411

introduced the concept of a directed power graph. In 2009, Chakrabarty et al. [10] first introduced the
concept of an undirected power graph. In the last decade, the study on directed and undirected power
graphs has been growing (see [7, 8, 13, 24]). More results and some open problems on power graphs
can be found in [2]. In recent years, many authors generalized the definition of a power graph, see, for
example the proper power graph [25], the enhanced power graph [1], and the quotient power graph [6].

In a power graph, in order to avoid the complexity in all edges, Rajkumar and Anitha [26] first
introduced the reduced power graph of G, which is denoted by PR(G) and is the graph whose vertex
set is G, where two distinct elements x and y are connected by an edge between if and only if either
〈x〉 ⊂ 〈y〉 or 〈y〉 ⊂ 〈x〉. Actually, it is easy to see that PR(G) can be obtained by deleting the edges
{x, y}, where x, y ∈ G with 〈x〉 = 〈y〉. In [26], the authors studied the interplay between a reduced power
graph and a power graph. In 2019, Anitha and Rajkumar [4] classified the finite groups whose reduced
power graphs are toroidal and projective-planar. Recently, Ma [23] investigated the perfect codes and
total perfect codes in proper reduced power graph over a finite group, where the proper reduced power
graph of a group is obtained by deleting the identity in the reduced power graph of this group. More
results on reduced power graphs can be found in [3, 27].

A number of important graph classes, including perfect graphs, cographs, chordal graphs, split
graphs, and threshold graphs, can be defined either structurally or in terms of forbidden induced
subgraphs. Forbidden subgraphs of power graphs of groups have been studied by Doostabadi et
al. [12] and Cameron et al. [9]. In this paper, we show that PR(G) is perfect for each finite group G,
and characterize the finite groups G such that PR(G) is a split graph, a cograph, a chordal graph, and a
threshold graph. We also give complete classifications in the case of abelian groups, dihedral groups,
and generalized quaternion groups.

2. Preliminaries

In this section, we introduce some notation, terminology, and results in group theory.
Every group considered in our paper is finite. In this paper, G always denotes a finite group, and e

denotes the identity element of G. Let g ∈ G. The order of g in G, denoted by o(g), is the size of the
cyclic subgroup 〈g〉 generated by g. Denote by πe(G) the set of the orders of all elements of G. A cyclic
subgroup of G is called a maximal cyclic subgroup if the cyclic subgroup is not a proper subgroup of
some cyclic subgroup of G. LetMG denote the set consisting of the maximal cyclic subgroups of G.
Notice that the number of all maximal cyclic subgroups is 1 if and only if G is a cyclic group. Denote
by Zn the cyclic group of order n. A group G is called nilpotent if G has an upper central series that
terminates with G. Notice that a finite nilpotent group is the direct product of its Sylow p-subgroups,
and both p-groups and abelian groups are nilpotent.

For a positive integer n at least 3, the dihedral group of order 2n is denote by D2n. A presentation
of D2n is

D2n = 〈a, b : an = e, b2 = e, a−1 = b−1ab〉. (2.1)

For a positive integer m at least 2, in [17], Johnson gave the definition of a generalized quaternion
group that is denoted by Q4m and has order 4m. Namely,

Q4m = 〈x, y : xm = y2, y4 = x2m = e, x−1 = y−1xy〉. (2.2)
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Remark that
o(xm) = 2, o(xiy) = 4 for any i ≤ 1 ≤ m (2.3)

and
MQ4m = {〈xy〉, . . . , 〈xmy〉, 〈x〉}, xm ∈

⋂
M∈MQ4m

M. (2.4)

A P-group [11] is a group whose every non-trivial element is of prime order. For example, for every
odd prime q, D2q is a P-group. A CP-group [16] is a group whose every non-trivial element is of prime
power order. For example, a P-group is also a CP-group. Moreover, for an odd prime q and a positive
integer n, the dihedral group D2qn is a CP-group.

The following result will be used in our proofs of main results.

Lemma 2.1. ([15, Theorem 5.4.10 (ii)]) Suppose that p is prime. A p-group has a unique subgroup of
order p if and only if the p-group is either a cyclic group or a generalized quaternion group.

3. Perfect graphs

It is similar to the definition of a directed power graph, one can define the directed reduced power
graph of a group (cf. [26]). The directed reduced power graph of G, denoted by

−→
PR(G), is a digraph

with vertex set G, and for two distinct x, y ∈ G, there is an arc from x to y if 〈y〉 ⊂ 〈x〉.
Let Γ be a graph. If O is a digraph such that V(Γ) = V(O) and for every edge {x, y} ∈ E(Γ), either

(x, y) ∈ E(O) or (y, x) ∈ E(O), then O is called an orientation of Γ. A orientation O of Γ is called
transitive if (x, y), (y, z) ∈ E(O) implies (x, z) ∈ E(O). A graph is a comparability graph if its edges can
be oriented in such a way, that the resulting digraph is transitive and acyclic. In this section we show
that PR(G) is a perfect graph.

Theorem 3.1. PR(G) is perfect.

Proof. By the definitions of PR(G) and
−→
PR(G), it is easy to see that

−→
PR(G) is a transitive orientation of

PR(G). In the following, we claim that
−→
PR(G) is acyclic. In fact, if [x1, x2, . . . , xt] is a cycle of

−→
PR(G),

then (x1, xt), (xt, x1) ∈ E(
−→
PR(G)), this contradicts the definition of

−→
PR(G). Thus, our claim is valid. It

follows that PR(G) is a comparability graph. Also, since it was noted in [5, Chapter V, Theorem 17]
that every comparability graph is perfect, the desired result follows. �

4. Split graphs

A graph is called split if its vertex set is the disjoint union of two subsets A and B so that A induces
a complete graph and B induces an empty graph. In this section we characterize the groups whose
reduced power graphs are split (see Theorem 4.4). In particular, we completely classify abelian groups,
dihedral groups, and generalized quaternion groups for which their reduced power graphs are split.

We first prove some lemmas required for the proofs of our main results.
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Lemma 4.1. PR(G) is C5-free.

Proof. Since the clique number of C5 is not equal to the chromatic number of C5, it follows that a
perfect graph has no induced subgraph isomorphic to C5. Now Theorem 3.1 implies that PR(G) is
C5-free. �

Lemma 4.2. PR(G) is C4-free if and only if, for any non-trivial element g ∈ G, o(g) is equal to 4 or a
prime.

Proof. We will use proof by contradiction to obtain the direct implication. Suppose o(g) is either 4 or a
prime for every g different from the identity. Also suppose x− a− y− b is an induced 4-cycle. Without
loss of generality, we may assume 〈a〉 ⊂ 〈y〉. Then we must also have 〈b〉 ⊂ 〈y〉. If o(y) = 4, then a and
b must both have order 2. Since a cyclic group has at most one element of order 2, this forces a = b,
a contradiction. Thus o(y) , 4, so o(y) is prime. This forces both a and b to be the identity, again a
contradiction. Hence there is no induced C4.

For the converse, suppose there is an element of composite order other than 4. Then there is an
element g of order pq > 4 where both p and q are prime. Therefore 〈g〉 = 〈g−1〉 and g , g−1. Thus g
and g−1 are not adjacent in PR(G). Moreover, 〈gp〉 and 〈gq〉 are properly contained in 〈g〉, so gp and gq

are adjacent to g and g−1.
If p , q, then gp and gq are distinct and non-adjacent, so g − gp − g−1 − gq is an induced C4. If

p = q, then since pq , 4, we must have p = q ≥ 3. Thus g−p , gp with 〈g−p〉 = 〈gp〉, so g−p and gp are
distinct and non-adjacent. Hence g − gp − g−1 − g−p is an induced C4. �

Lemma 4.3. Let 〈a〉 and 〈b〉 be two distinct cyclic subgroups of G with 〈a′〉 ⊂ 〈a〉 and 〈b′〉 ⊂ 〈b〉, where
e , a′, e , a′, and a′ , b′. Then the induced subgraph of PR(G) by the set {a, a′, b, b′} is isomorphic
to 2K2 if and only if a′ < 〈b〉 and b′ < 〈a〉.

Proof. The necessity is clear so we just need to prove the sufficiency. Suppose that a′ < 〈b〉 and
b′ < 〈a〉. If 〈a〉 ⊂ 〈b〉 or 〈b〉 ⊂ 〈a〉, then a′ ∈ 〈b〉 or b′ ∈ 〈a〉, a contradiction. As a result, a and b
are non-adjacent in PR(G). If a′ and b′ are adjacent in PR(G), then 〈a′〉 ⊂ 〈b′〉 or 〈b′〉 ⊂ 〈a′〉, which
implies that a′ ∈ 〈b〉 or b′ ∈ 〈a〉, a contradiction. We conclude that a′ and b′ are non-adjacent in PR(G).
Moreover, if a′ and b are adjacent in PR(G), then 〈a′〉 ⊂ 〈b〉 or 〈b〉 ⊂ 〈a′〉, which implies that a′ ∈ 〈b〉
or b′ ∈ 〈a〉, also a contradiction. Therefore, a′ and b are non-adjacent in PR(G). Similarly, we also
have that a and b′ are non-adjacent in PR(G). It follows that the induced subgraph of PR(G) by the set
{a, a′, b, b′} is isomorphic to 2K2, as desired. �

In [14], the authors proved that a graph is a split graph if and only if the graph contains no an
induced subgraph isomorphic to C4, C5 and 2K2. Thus, by Lemmas 4.1–4.3, we have the following
result which characterizes the groups whose reduced power graphs are split.

Theorem 4.4. PR(G) is split if and only if G satisfies the following two conditions:
(a) πe(G) ⊆ {1, 4} ∪ P, where P is the set of all primes;
(b) If {x1, x2, . . . , xn} is the set of all elements of order 4 in G, then | ∩n

i=1 〈xi〉| ≥ 2.

Example 4.5. PR(G) is split for each P-group G.
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For a prime p, the elementary abelian p-group of order pn is denoted by Zn
p, that is,

Zn
p = Zp × Zp × · · · × Zp︸                 ︷︷                 ︸

n

.

Theorem 4.6. Let A be an abelian group. Then PR(A) is split if and only if A is isomorphic to one of
the following groups:
(a) Zn

p, where p is a prime and n is a positive integer;
(b) Zn

2 × Z4, where n is a positive integer;
(c) Z4.

Proof. Clearly, if A is isomorphic to one of (a) and (c), then PR(A) is split by Theorem 4.4. Now let
A = Zn

2 × Z4 for some positive integer n. Then πe(A) = {1, 2, 4} and for every element g ∈ A of order 4,
g is either (g1, g2, . . . , gn, 1) or (g′1, g

′
2, . . . , g

′
n, 3), where gi, g′i ∈ {0, 1} for each 1 ≤ i ≤ n. It follows that

2g = (0, 0, . . . , 0, 2), which implies the intersection of all cyclic subgroups of order 4 in A has size 2.
As a result, Theorem 4.4 implies that PR(A) is split.

For the converse, suppose that PR(A) is split. Notice that if A has an element x of order p and an
element y of order q where p, q are distinct primes, then xy has order pq. Since πe(G) ⊆ {1, 4} ∪ P by
Theorem 4.4, we conclude that A is a p-group. If A has no elements of order 4, then A is elementary
abelian, and so A is isomorphic to Zn

p, as desired. In the following, we assume that A has elements of
order 4. Then A is isomorphic to one of Zn

2×Z
m
4 and Zm

4 , where m, n are two positive integers. It suffices
to show that A � Zm

4 and A � Zn
2 × Z

m
4 for some m ≥ 2. We first prove that A � Zm

4 for some m ≥ 2.
Suppose for a contradiction that A � Zm

4 for some m ≥ 2. Then in A, both g1 = (0, 0, . . . , 0, 1) and
g2 = (1, 0, 0, . . . , 0) are elements of order 4, but 2g1 , 2g2. It follows that |〈g1〉 ∩ 〈g2〉| = 1, contrary to
(b) of Theorem 4.4. Similarly, we also can conclude that A � Zn

2 × Z
m
4 for some m ≥ 2. �

Combining (2.3), (2.4) and Theorem 4.4, we have the following corollary.

Corollary 4.7. Let D2n and Q4m be the dihedral group and the generalized quaternion group as
presented in (2.1) and (2.2), respectively. Then PR(D2n) is split if and only if n is either a prime or 4,
and PR(Q4m) is split if and only if m = 2.

5. Chordal graphs

A graph is called chordal if this graph contains no induced cycles of length greater than 3. In other
words, a chordal graph is a graph in which every cycle of length at least 4 has a chord. Namely, if a
chordal graph has an induced cycle, then the induced cycle is isomorphic to C3.

In this section we characterize the groups whose reduced power graphs are chordal (see
Theorem 5.1). In particular, we also classify abelian groups, dihedral groups, and generalized
quaternion groups for which their reduced power graphs are chordal.

Theorem 5.1. The following are equivalent for a group G:
(I) PR(G) is chordal;
(II) PR(G) is C4-free;
(III) πe(G) ⊆ {1, 4} ∪ P.

Proof. By Lemma 4.2, (II) and (III) are equivalent. Thus, we only need to show that (I) and (II)
are equivalent. Notice that it is obvious that (I) implies (II). It suffices to show that (II) implies (I).
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Suppose now that PR(G) is C4-free. Then πe(G) ⊆ {1, 4} ∪ P. Suppose for a contradiction that PR(G)
has an induced cycle of length greater than 4. It follows that PR(G) has a four-vertex induced path,
say, (x, y, z,w), where {x, y}, {y, z}, {z,w} ∈ E(PR(G)). As a result, we have that 〈y〉 ⊂ 〈z〉 or 〈z〉 ⊂
〈y〉. Notice that every vertex of (x, y, z,w) is non-identity. Since πe(G) ⊆ {1, 4} ∪ P, we deduce that
{o(y), o(z)} = {2, 4}. Without loss of generality, we may set o(y) = 2 and o(z) = 4. Then 〈w〉 ⊂ 〈z〉, and
so w, y ∈ 〈z〉 with o(w) = o(y) = 2. It means y = w, a contradiction. We conclude that PR(G) has no
induced cycles of length greater than 4. Also, since PR(G) is C4-free, we deduce that PR(G) is chordal,
as required. �

The next corollary is obtained by applying Theorem 5.1 to P-groups and abelian groups.

Corollary 5.2. (1) PR(G) is chordal for each P-group G.
(2) Let A be an abelian group. Then PR(A) is chordal if and only if A is isomorphic to one of the
following:

Zm
p , Z

m
4 , Z

m
2 × Z

n
4,

where p is a prime and m, n ≥ 1.

By (2.3), (2.4) and Theorem 5.1, we end this section by determining all chordal reduced power
graphs for dihedral groups and generalized quaternion groups.

Corollary 5.3. Let D2n and Q4m be the dihedral group and the generalized quaternion group as
presented in (2.1) and (2.2), respectively. Then PR(D2n) is chordal if and only if n is either a prime or
4, and PR(Q4m) is chordal if and only if m = 2.

6. Cographs

A graph is called a cograph if this graph has no induced subgraph isomorphic to the four-vertex
path P4. In this section we characterize the groups whose reduced power graphs are cographs (see
Theorem 6.1). In particular, we also classify nilpotent groups, dihedral groups, and generalized
quaternion groups for which their reduced power graphs are cographs.

For group G, let
S(G) = {g ∈ G : o(g) = pq,where p, q are primes}.

Theorem 6.1. PR(G) is a cograph if and only if G satisfies the following:
(a) For any non-trivial element g ∈ G, o(g) is either a prime power or a product of two distinct primes;
(b) Let a ∈ S(G), and let b ∈ G be an element whose order is a product of two distinct primes. If
〈a〉 , 〈b〉, then |〈a〉 ∩ 〈b〉| = 1.

Proof. We first prove the sufficiency. Suppose that both (a) and (b) hold for a given group G. It suffices
to show that PR(G) has no induced subgraph isomorphic to P4. Assume, to the contrary, that PR(G)
has an induced subgraph isomorphic to P4, say, (x, y, z,w) where {x, y}, {y, z}, {z,w} ∈ E(PR(G)). Notice
that every of {x, y, z,w} is not the identity of G. We first claim that one of y and z must have order pq,
where p, q are two distinct primes. In fact, if both y and z are prime powers, without loss of generality,
we say that 〈y〉 ⊂ 〈z〉 and o(z) = pt for some prime p and positive integer t at least 2, then it follows
that 〈w〉 ⊂ 〈z〉. Therefore 〈w〉 = 〈y〉 since {w, y} < E(PR(G)). This means that w and x are adjacent in
PR(G), which is impossible. Thus, our claim is valid.
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Now, without loss of generality, we say that y has order pq, where p, q are two distinct primes.
Then {o(x), o(z)} = {p, q}. In fact, without loss of generality, we may let o(x) = p and o(z) = q. Since
{z,w} ∈ E(PR(G)), we have 〈z〉 ⊂ 〈w〉. It follows that o(w) = ql or qr, where l is a positive integer at
least 2 and r is a prime. If o(w) = ql, then taking w′ ∈ 〈w〉 with o(w′) = q2, we have w′ ∈ S(G) and so
|〈y〉 ∩ 〈w′〉| = q, contrary to (b). We conclude that o(w) = qr, and so w ∈ S(G). If 〈y〉 = 〈w〉, then x is
adjacent to w, which is impossible. As a result, we have 〈y〉 , 〈w〉, which implies that |〈y〉 ∩ 〈w〉| = q,
contrary to (b). This contradiction implies that PR(G) has no induced subgraph isomorphic to P4, and
so PR(G) is a cograph.

We next prove the necessity. Suppose that PR(G) is a cograph. If G has an element a of order p2q
where p, q are two distinct primes, then the subgraph of PR(G) induced by the vertices aq, apq, ap, ap2

is
isomorphic to P4, which is impossible. If G has an element b of order pqr where p, q, r are three distinct
primes, then the subgraph of PR(G) induced by the four vertices bqr, br, bpr, and ap is isomorphic to P4,
also a contradiction. We conclude that (a) holds. In the following, we prove (b). Let u ∈ S(G), and
let v ∈ G be an element whose order is a product of two distinct primes. Also, let 〈u〉 , 〈v〉. Suppose
for a contradiction that |〈u〉 ∩ 〈v〉| > 1. Let 〈u〉 ∩ 〈v〉 = 〈w〉. Then o(w) is a prime. Now set w′ ∈ 〈v〉
with o(w′)o(w) = o(v). Since 〈w〉〈w′〉 = 〈v〉, it follows that w′ < 〈u〉 as 〈u〉 , 〈v〉. It follows that the
subgraph of PR(G) induced by the four vertices w′, v,w, and u is isomorphic to P4, a contradiction.
Therefore, (b) holds. �

The next corollary is obtained by applying Theorem 6.1 to CP-groups.

Corollary 6.2. PR(G) is a cograph for each CP-group G.

Applying Theorem 6.1 to nilpotent groups, we next classify all nilpotent groups whose reduced
power graphs are cographs. Note that a finite nilpotent group is the direct product of its Sylow p-
subgroups.

Theorem 6.3. Let G be a nilpotent group. Then PR(G) is a cograph if and only if G is either a p-group
or Zpq.

Proof. By Corollary 6.2, PR(G) is a cograph for a p-group G. Also, by Theorem 6.1, it is
straightforward that PR(Zpq) is a cograph. Thus, we only need to prove the necessity. Suppose that
PR(G) is a cograph. Note that if x, y ∈ G with o(x) = pm and o(y) = qn where p, q are distinct primes,
then xy has order pmqn. Applying Theorem 6.1 to nilpotent groups, we conclude that |G| has at most
two distinct prime divisors. If |G| has a prime divisor, then G is a p-group, as desired. In the
following, we assume that |G| has precisely two distinct prime divisors, say, p and q. It follows that

πe(G) = {1, p, q, pq}. (6.1)

Let P and Q be Sylow p-subgroup and Sylow q-subgroup of G, respectively. Let 〈c〉 be a subgroup
of order q in Q. We now claim that P has a unique subgroup of order p. In fact, if P has two distinct
subgroups of order p, say, 〈a〉 and 〈b〉, since 〈a, c〉 = 〈ac〉, 〈b, c〉 = 〈bc〉, and o(ac) = o(bc) = pq, it
follows that the subgraph of PR(G) induced by the four vertices a, ac, c, and bc is isomorphic to P4,
this contradicts that PR(G) is a cograph. Thus, our claim is valid, that is, P has a unique subgroup of
order p. Combining Lemma 2.1, (2.3) and (6.1), we conclude that P is isomorphic to Zp. Similarly, we
also can obtain that Q is isomorphic to Zq. It follows that G is isomorphic to Zpq, as desired. �

Combining Theorem 6.1 and Corollary 6.2, we can obtain easily the following result.
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Corollary 6.4. Let D2n be the dihedral group as presented in (2.1). Then PR(D2n) is a cograph if and
only if n is either a prime power or a product of two distinct primes.

We conclude the section by the following corollary to classify all generalized quaternion groups
whose reduced power graphs are cographs.

Corollary 6.5. Let Q4m be the generalized quaternion group as presented in (2.2). Then PR(Q4m) is a
cograph if and only if m is a power of 2.

Proof. Clearly, if m is a power of 2, then Q4m is a 2-group by (2.3), and it follows from Corollary 6.2
that PR(Q4m) is a cograph, as desired.

Conversely, suppose that PR(Q4m) is a cograph. By (2.3) and Theorem 6.1, we have that 2m is either
a prime power or a product of two distinct primes. Now suppose for a contradiction that 2m is a product
of two distinct primes. Then m = q for some odd prime q. We conclude that o(x) = 2q, o(y) = 4, and
〈x〉 ∩ 〈y〉 = 〈xq〉 by (2.3) and (2.4), contrary to the condition (b) of Theorem 6.1. Thus, we deduce that
2m is a prime power, that is, m is a power of 2, as required. �

7. Threshold graphs

A graph is called a threshold graph if the graph has no induced subgraph isomorphic to P4, K4, or
2K2. In this section we characterize the groups whose reduced power graphs are threshold (see
Theorem 7.3). In particular, we also classify abelian groups, dihedral groups, and generalized
quaternion groups for which their reduced power graphs are threshold.

Clearly, every threshold graph is also a cograph. Thus, by Theorem 6.1, we first have the
following result.

Lemma 7.1. If PR(G) is a threshold graph, then the following hold:
(a) For any non-trivial element g ∈ G, o(g) is either a prime power or a product of two distinct primes;
(b) Let a ∈ S(G), and let b ∈ G be an element whose order is a product of two distinct primes. If
〈a〉 , 〈b〉, then |〈a〉 ∩ 〈b〉| = 1.

Given a positive integer n, let Ω(n) denote the number of all prime divisors of n counted with
multiplicity. For example, Ω(23) = Ω(30) = 3.

Lemma 7.2. ([27, Corollary 2.1]) Let n ∈ πe(G) be such that Ω(n) is maximum. Then the clique number
of PR(G) is Ω(n) + 1.

Theorem 7.3. PR(G) is a threshold graph if and only if G is isomorphic to one of the following groups:
(I) a P-group;
(II) a group G which has a unique cyclic subgroup of order pq and satisfies πe(G) ⊆ {1, pq} ∪P, where
p, q are two distinct primes;
(III) a group G with {p2} ⊆ πe(G) ⊆ {1, p2} ∪ P where p is a prime, and the intersection of each two
distinct cyclic subgroups of p2 has size p.

Proof. Clearly, PR(G) is a star if G is a P-group. Thus, it is easy to see that if G is a P-group, then
PR(G) is a threshold graph. Now let G be a group satisfying (II). Then from Theorem 6.1, it follows
that PR(G) is P4-free. Also, Lemma 7.2 implies that the clique number of PR(G) is 3, and so PR(G) is
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K4-free. Finally, it is easy to see that PR(G) is 2K2-free from Lemma 4.3. We conclude that PR(G) is a
threshold graph. Similarly, we can obtain thatPR(G) is a threshold graph if G is a group satisfying (III).

For the converse, suppose that PR(G) is a threshold graph. Then G satisfies the two conditions (a)
and (b) of Lemma 7.1. Since PR(G) is K4-free, the clique number of PR(G) is at most 3. It follows
from Lemma 7.2 that for any non-trivial element g ∈ G, if o(g) is not a prime, then o(g) is either a
square of some prime or a product of two distinct primes. If every element of G has prime order, then
G is a P-group, as desired.

Suppose now that G has an element x of order pq, where p, q are distinct primes. Let y ∈ G\{x} such
that o(y) is either a square of some prime or a product of two distinct primes. Assume, to the contrary,
that 〈x〉 , 〈y〉. By (b) of Lemma 7.1, we have |〈x〉 ∩ 〈y〉| = 1. Let y′ ∈ 〈y〉 such that o(y′) is a prime.
Then Lemma 4.3 implies that the induced subgraph of PR(G) by the set {x, xp, y, y′} is isomorphic to
2K2, a contradiction. We conclude that 〈x〉 = 〈y〉, and so G has a unique cyclic subgroup 〈x〉 of order
pq and has no element whose order is a square of some prime. Therefore, G belongs to a group in (II),
as desired.

Suppose that G has no element whose order is a product of two distinct primes, and has an element
x with o(x) = p2 where p is a prime. If G has an element y with o(y) = q2 where q , p is a prime, then
it follows from Lemma 4.3 that the induced subgraph of PR(G) by {x, xp, y, yq} is isomorphic to 2K2,
which is impossible. Thus, if z ∈ G \ {x} such that o(z) is not a prime, then o(z) = p2. Assume, to the
contrary, that |〈x〉 ∩ 〈z〉| = 1. Then by Lemma 4.3, the induced subgraph of PR(G) by {x, xp, z, zp} is
isomorphic to 2K2, a contradiction. It follows that |〈x〉 ∩ 〈z〉| ≥ p, which implies that G is a group in
(III), as desired. �

Applying Theorem 7.3 to abelian groups, we have the following result which classifies all threshold
reduced power graphs for abelian groups.

Corollary 7.4. Let A be an abelian group. Then PR(A) is a threshold graph if and only if A is
isomorphic to one of the following groups:
(a) Zn

p, where p is a prime and n is a positive integer;
(b) Zn

p × Zp2 , where p is a prime and n is a positive integer;
(c) Zp2 , where p is a prime;
(d) Zpq, where p, q are distinct primes.

We conclude this paper by determining all threshold reduced power graphs for dihedral groups and
generalized quaternion groups, which can be obtained easily from (2.3), (2.4) and Theorem 7.3.

Corollary 7.5. Let D2n and Q4m be the dihedral group and the generalized quaternion group as
presented in (2.1) and (2.2), respectively. Then PR(D2n) is threshold if and only if n = p, p2, or pq,
where p, q are distinct primes. Moreover, PR(Q4m) is threshold if and only if m = 2.

8. Conclusions

In this paper we showed that the reduced power graph of a finite group is perfect and characterized
all finite groups whose reduced power graphs are split graphs, cographs, chordal graphs, and threshold
graphs. We also gave complete classifications in the case of abelian groups, dihedral groups, and
generalized quaternion groups.

AIMS Mathematics Volume 6, Issue 5, 5410–5420.



5419

Acknowledgments

We are grateful to the anonymous referees for their careful reading and helpful comments. This
work is supported by National Natural Science Foundation of China under grant 11801441 and and the
Young Talent fund of University Association for Science and Technology in Shaanxi 20190507.

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

References

1. G. Aalipour, S. Akbari, P. J. Cameron, R. Nikandish, F. Shaveisi, On the structure of the power
graph and the enhanced power graph of a group, Electron. J. Combin., 24 (2017), 3–16.

2. J. Abawajy, A. Kelarev, M. Chowdhury, Power graphs: A survey, Electron. J. Graph Theory Appl.,
1 (2013), 125–147.

3. T. Anitha, R. Rajkumar, On the power graph and the reduced power graph of a finite group,
Commun. Algebra, 47 (2019), 3329–3339.

4. T. Anitha, R. Rajkumar, Characterization of groups with planar, toroidal or projective planar
(proper) reduced power graphs, J. Algebra Appl., 19 (2020), 2050099.

5. B. Bollobás, Mordern graph theory, New York: Springer, 1998.

6. D. Bubboloni, M. A. Iranmanesh, S. M. Shaker, Quotient graphs for power graphs, Rend. Semin.
Mat. Univ. Padova, 138 (2017), 61–89.

7. P. J. Cameron, The power graph of a finite group, II, J. Group Theory, 13 (2010), 779–783.

8. P. J. Cameron, S. Ghosh, The power graph of a finite group, Discrete Math., 311 (2011), 1220–
1222.

9. P. J. Cameron, P. Manna, R. Mehatari, Forbidden subgraphs of power graphs, Preprint, 2020.
Available from: arXiv:2010.05198v2.

10. I. Chakrabarty, S. Ghosh, M. K. Sen, Undirected power graphs of semigroups, Semigroup Forum,
78 (2009), 410–426.

11. M. Deaconescu, Classification of finite groups with all elements of prime order, Proc. Am. Math.
Soc., 106 (1989), 625–629.

12. A. Doostabadi, A. Erfanian, D. G. M. Farrokhi, On power graphs of finite groups with forbidden
induced subgraphs, Indagat. Math. (NS), 25 (2014), 525–533.

13. M. Feng, X. Ma, K. Wang, The structure and metric dimension of the power graph of a finite group,
Eur. J. Combin., 43 (2015), 82–97.

14. S. Foldes, P. L. Hammer, Split graphs, In: Proceedings of the 8th South-Eastern Conference on
Combinatorics, Graph Theory and Computing, (1977), 311–315.

15. D. Gorenstein, Finite groups, New York: Chelsea Publishing Co., 1980.

AIMS Mathematics Volume 6, Issue 5, 5410–5420.



5420

16. G. Higman, Finite groups in which every element has prime power order, J. London Math. Soc.,
s1-32 (1957), 335–342.

17. D. L. Johnson, Topics in the theory of group presentations, London Math. Soc. Lecture Note Ser.,
Cambridge University Press, 1980.

18. A. V. Kelarev, Ring constructions and applications, World Scientific, 2002.

19. A. V. Kelarev, Graph algebras and automata, New York: Marcel Dekker, 2003.

20. A. V. Kelarev, Labelled Cayley graphs and minimal automata, Australas. J. Combin., 30 (2004),
95–101.

21. A. V. Kelarev, S. J. Quinn, A combinatorial property and power graphs of groups, Contrib. General
Algebra, 12 (2000), 229–235.

22. A. V. Kelarev, J. Ryan, J. Yearwood, Cayley graphs as classifiers for data mining: The influence of
asymmetries, Discrete Math., 309 (2009), 5360–5369.

23. X. Ma, Perfect codes in proper reduced power graphs of finite groups, Commun. Algebra, 48
(2020), 3881–3890.

24. X. Ma, G. L. Walls, K. Wang, Power graphs of (non) orientable genus two, Commun. Algebra, 47
(2019), 276–288.

25. A. R. Moghaddamfar, S. Rahbariyan, W. J. Shi, Certain properties of the power graph associated
with a finite group, J. Algebra Appl., 13 (2014), 1450040.

26. R. Rajkumar, T. Anitha, Reduced power graph of a group, Electron. Notes Discrete Math., 63
(2017), 69–76.

27. R. Rajkumar, T. Anitha, Some results on the reduced power graph of a group, Southeast Asian Bull.
Math., 2018. Available from: arXiv:1804.00728v2.

28. D. B. West, Introduction to graph theory, 2 Eds., Englewood Cliffs, NJ: Prentice Hall, 2001.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 5, 5410–5420.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Perfect graphs
	Split graphs
	Chordal graphs
	Cographs
	Threshold graphs
	Conclusions

