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Abstract: This article deals with the estimation of the finite population mean under probability
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of the auxiliary variable. We propose a ratio, product and regression type estimators by incorporating
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1. Introduction

In the survey sampling literature, researchers have attempted to obtain estimates for population
quantities such as mean, total, median, etc., that possess maximum statistical properties. For this
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purpose, a representative part of the population is needed. When the population of interest is
homogeneous, then one can use a simple random sampling scheme for selecting units. On the other
hand, when sampling units vary considerably in size, then units may be selected with probability
proportional to size (PPS). Probability proportional to size sampling, usually called as PPS sampling,
is an unequal probability sampling scheme, in which the probability of selection for each sampling
unit in the population is proportional to an auxiliary variable. Let Y be a variable under consideration
and X be a supplementary information. For instance, let us consider that we want to estimate the
population in the villages in a particular district. Then we would select a variable on which we have
information as the auxiliary variable, e.g.,
(a) Size of each village in the district (correlated with one study variable = 0.75, say).
(b) Number of households in each town in the district (correlation with a study variable = 0.95, say).
Based on the above information, we would select the ancillary variable that has the maximum
correlation with the study variable. Thus the variable at (b) may be more useful as auxiliary variable
when selecting a sample using probability proportional to size with replacement sampling.

Similarly, surveys in relation to income of households may differ in sizes; for a medical survey
related to the number of patients, health units may vary in sizes. Similarly, in an agriculture context,
fields may vary in sizes. Villages with larger geographical areas are likely to have large populations
and covered large areas under food crops (see [21]). The number of persons in the previous period may
be taken as a measure of size related to surveys of socio-economic characters, which are likely to be
related to population (see [14]).

The use of auxiliary information can be used either at selection stage or at estimation stage, or at
both stages. [15] proposed alternative estimators in PPS sampling for multiple characteristics. [22]
proposed the regression type estimator with PPS sampling. The readers are also referred to the papers
by [2, 16, 18, 20], and the references cited therein. The use of auxiliary information may increase
the precision of estimators of the unknown population parameters such as population mean, variance,
correlation coefficient, etc. Some common estimators that utilize the information about the auxiliary
variable are highly correlated with the study variable. When the correlation between the study variable
and the auxiliary variable is high, in such situation, the rank of the auxiliary variable is also correlated
with the study variable.

Recently, many authors have proposed ratio type estimators by means of transforming the auxiliary
variables. The readers can explore these research findings by looking [5, 6, 10, 11, 19, 23]. For
estimating the finite population mean using maximum and minimum values, see [1, 3, 4, 7, 8, 9, 12, 13],
among other.

In this article, we propose ratio, product and regression type estimators for estimating the finite
population mean under PPS sampling scheme, using maximum and minimum values. Consider a finite
population U = {1, 2, ...,N}. Let yi and (xi, zi) be the values of the study variable (y) and the auxiliary
variables (x, z), respectively. Let rxi be the rank of the auxiliary variable corresponding to rank of x,
i.e., (Rx).

Let a sample of size n is selected with probability proportional to size zi with replacement (PPSWR),
i.e., Pi = zi∑N

i=1 zi
.

Suppose that ui and vi are the study and auxiliary for the PPS sampling. Let v∗i denote the rank of v,
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that is

ui =
yi

NPi
, vi =

xi

NPi
, v∗i =

r(x)i

NPi
,

ū = λ

n∑
i=1

ui, v̄ = λ

n∑
i=1

vi, v̄∗ = λ

n∑
i=1

v∗i .

Let

e0 =
ū − Ȳ

Ȳ
, e1 =

v̄ − X̄
X̄

, e2 =
v̄∗ − R̄x

R̄x
.

such that

E(eo) = E(e1) = E(e2) = 0.

Also

E(e2
0) = λC2

u, E(e2
1) = λC2

v , E(e2
2) = λC2

v∗ , E(e0e1) = λρuvCuCv,

E(e0e2) = λρuv∗CuC∗v , E(e1e2) = λρvv∗CvCv∗ , C2
u =

S 2
u

Ȳ2
, C2

v =
S 2

v

X̄2
, C2

v∗ =
S 2

v∗

R̄2
x
,

where

λ =
1
n
, S 2

u =

N∑
i=1

Pi(ui − Ȳ)2, S 2
v =

N∑
i=1

Pi(vi − X̄)2, S 2
v∗ =

N∑
i=1

Pi(v∗i − R̄x)2

S uv =

N∑
i=1

Pi(ui − Ȳ)(vi − X̄), S uv∗ =

N∑
i=1

Pi(ui − Ȳ)(v∗i − R̄x),

S vv∗ =

N∑
i=1

Pi(vi − X̄)(v∗i − R̄x),

ρuv =

∑N
i=1 Pi(ui − Ȳ)(vi − X̄)

S uS v
, ρuv∗ =

∑N
i=1 Pi(ui − Ȳ)(v∗i − R̄x)

S uS v∗
,

ρvv∗ =

∑N
i=1 Pi(vi − X̄)(v∗i − R̄x)

S vS v∗
.

Many real data sets carry unexpected large (ymax) or small (ymin) values. In estimation of finite
population mean, the results will be sensitive when such types of values occur. Under these
circumstances, when there exist ymax and ymin, then the results will be either overestimated or
underestimated. To handle such type of situation, [17] suggested the following unbiased estimator for
the estimation of finite population mean using maximum and minimum values:

ȳs =


ȳ + c, if samples contain ymin but not ymax

ȳ − c, if samples contain ymax but not ymin

ȳ, for all other samples.
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The variance of ȳs is given by

V(ȳs) = λS 2
y −

2λnc
N − 1

(ymax − ymin − nc), (1.1)

where S 2
y is the population variance, and c is a constant. The optimum value of c is

copt =
(ymax − ymin)2

2n
.

The minimum variance of ȳs is specified by

V(ȳs)min = V(ȳ) −
λ(ymax − ymin)2

2(N − 1)
,

which is always smaller than the variance of ȳ. The usual ratio estimator under probability proportional
to size (PPS) is

ȳR(pps) = ū
(

X̄
v̄

) (
R̄x

v̄∗

)
. (1.2)

The bias and MSE of ȳR(pps) up to the first order of approximation are given by

Bias(ȳR(pps)) � λ
(
S 2

v + S 2
v∗ + ρvv∗S vS v∗ − ρuv∗S uS v∗ − ρuvS uS v

)
(1.3)

and
MS E(ȳR(pps)) � λ

[
S 2

u + R2
1S 2

v + R2
2S 2

v∗ + 2R1R2S vv∗ − 2R1S uv − 2R2S uv∗
]
, (1.4)

respectively, where R1 = Ȳ
X̄ and R2 = Ȳ

R̄x
. The usual product estimator under PPS is given by

ȳP(pps) = ū
( v̄
X̄

) ( v̄∗

R̄x

)
. (1.5)

The bias and MSE of ȳP(pps) up to first order of approximation are given by

Bias(ȳP(pps)) � λ
(
S 2

v + S 2
v∗ + ρvv∗S vS v∗ + ρuv∗S uS v∗ + ρuvS uS v

)
(1.6)

and
MS E(ȳP(pps)) � λ

[
S 2

u + R2
1S 2

v + R2
2S 2

v∗ + 2R1R2S vv∗ + 2R2S uv∗ + 2R1S uv

]
, (1.7)

respectively. The usual regression estimator for estimating the unknown population mean under PPS
sampling scheme is

ȳlr(pps) = ū + b1(X̄ − v̄) + b2(R̄x − v̄∗), (1.8)

where b1 = suv
s2

v
, and b2 =

suv∗

s2
v∗
, are the sample regression coefficients.

The MS E of ȳlr(pps) up to first order of approximation is obtained as

MS E(ȳlr(pps)) = λS 2
u

(
1 − ρ2

uv − ρ
2
uv∗ + 2ρuvρuv∗ρvv∗

)
. (1.9)
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2. Suggested estimators

Following the lines of [17], we propose a ratio, product and regression type estimators under PPS
sampling utilizing the auxiliary variable along with rank of the auxiliary variable having stronger
correlation with the study variable. We also incorporate the minimum and maximum values of the
study and the auxiliary variables.

2.1. First situation

When the correlation between the study variable and the auxiliary variable is positive, then, for
the selection of larger value of the auxiliary variable, a larger value of the study variable is to be
selected. And, for the selection of the smaller value of the auxiliary variable, a smaller value of the
study variable is to be selected. To utilize such type of information, we suggest the ratio type estimator
using the auxiliary variable and rank of the auxiliary variable as

ˆ̄YR(pps) = ū
(

X̄
v̄c21

) (
R̄x

v̄∗c31

)
(2.1)

or

ˆ̄YR(pps) =


(ū + c1)

(
X̄

v̄+c2

) (
R̄x

v̄∗+c3

)
, if samples contain umin and vmin, v∗min

(ū − c1)
(

X̄
v̄−c2

) (
R̄x

v̄∗−c3

)
, if samples contain umax and vmax, v∗max

ū
(

X̄
v̄

) (
R̄x
v̄∗

)
, for all other samples

(2.2)

The regression type estimator is

ˆ̄Ylr1(pps) = ūc11 + b1(X̄ − v̄c21) + b2(R̄x − v̄∗c31
), (2.3)

where b1 = suv
s2

v
, b2 =

suv∗

s2
v∗
, ūc11 = ū + c1, v̄c21 = v̄ + c2, v̄∗c31 = v̄∗ + c3. If the sample contains umin and

(vmin, v∗min), then ūc21 = ū− c1, v̄c22 = v̄− c2, v̄∗c32
= v̄∗ − c3. If the samples contain umax and (vmax, v∗max),

then ūc11 = ū, v̄c21 = v̄, v̄∗c31
= v̄∗, for all other samples (here, we mean that, if we can take any value

of sample, the ratio estimator gives us good result in term of MSEs as compared to the usual ratio and
product estimators using two auxiliary variables.)

2.2. Second situation

While in this situation, when the correlation between the study variable and the auxiliary variable is
negative, then, for the selection of larger value of the auxiliary variable, the smaller value of the study
variable is to be selected. And for the selection of the smaller value of the auxiliary variable, the larger
value of the study variable is to be selected. In such situation the proposed product type estimator using
the auxiliary variable and rank of the auxiliary variable (x) is given by

ˆ̄YP(pps) = ūc12

( v̄c22

X̄

) ( v̄∗c32

R̄x

)
(2.4)

or

ˆ̄YP(pps) =


(ū + c1)

(
v̄+c2

X̄

) (
v̄∗+c3

R̄x

)
, if samples contain umin and vmax v∗max

(ū − c1)
(

v̄+c2
X̄

) (
v̄∗+c3

R̄x

)
, if samples contain umax and vmin, v∗min

ū
(

v̄
X̄

) (
v̄∗

R̄x

)
, for all other samples

(2.5)
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The regression type estimator is

ˆ̄Ylr2(pps) = ūc11 + b1(X̄ − v̄c22) + b2(R̄x − v̄∗c32
), (2.6)

where (ūc12 = ū + c1, v̄c22 = v̄ − c2, v̄∗c32
= v̄∗ + c3).

If the samples contain umin and (vmax, v∗max), then (ūc11 = ū − c1, v̄c21 = v̄ + c2 v̄∗c32
= v̄∗ + c3).

If the samples contain umax and (vmin, v∗min), then (ūc12 = ū, v̄c22 = v̄, v̄∗c32
= v̄∗) for all types of samples.

Also c1, c2, c3 are unknown constants. To obtain the biases and mean squared errors, we use the
following relative errors terms and their expectations:

e0 =
ūc1 − Ȳ

Ȳ
, e1 =

ūc2 − X̄
X̄

, e2 =
v̄∗c3 − R̄x

R̄x
,

such that E(e0) = E(e1) = E(e2) = 0,

E(e2
0) =

λ

Ȳ2

[
S 2

u −
2nc1

N − 1
(umax − umin − nc1)

]
,

E(e2
1) =

λ

X̄2

[
S 2

v −
2nc2

N − 1
(vmax − vmin − nc2)

]
,

E(e2
2) =

λ

R̄2
x

[
S 2

v∗ −
2nc3

N − 1
(
v∗max − v∗min − nc3

)]
,

E(e0e1) =
λ

Ȳ X̄

[
S uv −

n
N − 1

{c2 (umax − umin) + c1 (vmax − vmin) − 2nc1c2}

]
,

E(e0e2) =
λ

ȲR̄x

[
S uv∗ −

n
N − 1

{
c3 (umax − umin) + c1

(
v∗max − v∗min

)
− 2nc1c3

}]
,

E(e1e2) =
λ

X̄R̄x

[
S uv∗ −

n
N − 1

{
c3 (vmax − vmin) + c2

(
v∗max − v∗min

)
− 2nc2c3

}]
.

Expressing (2.1) in terms of e0, e1 and e2, we have

ˆ̄YRpps = Ȳ(1 + e0)(1 + e1)−1(1 + e2)−1. (2.7)

Expressing (2.7) up to first order of approximation, we have

ˆ̄YR(pps) − Ȳ � Ȳ
(
e0 − e1 − e2 + e2

2 + e2
1 + e1e2 − e0e2 − e0e1

)
. (2.8)

Taking expectation on both sides of (2.8), we have

Bias( ˆ̄YR(pps)) � λ
[ R1

X̄R̄x

{
S 2

v −
2nc2

N − 1
(vmax − vmin − nc2)

}
+ R2

{
S 2

v∗

−
2nc3

N − 1
(
v∗max − v∗min − nc3

) }
− R1R2

{
S uv∗ −

n
N − 1

{
c3(vmax

− vmin) + c2(v∗max − v∗min) − 2nc2c3
}}
− R1

{
S uv −

n
N − 1

{
c2(umax

− umin) + c1(vmax − vmin) − 2nc1c2
}}
− R2

{
S uv∗ −

n
N − 1

{
c3(umax
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− umin) + c2(v∗max − v∗min) − 2nc2c3
}}]
.

Squaring (2.8), and then taking expectations, we have

MS E
( ˆ̄YR(pps)

)
�

[
λ
(
S 2

u + R2
1S 2

v + R2
2S 2

v∗ + 2R1R2S uv − 2R2S uv∗
)

−
2nλ (c1R2c3 − R1c2)

N − 1

{
(umax − umin) − R1 (vmax − vmin)

−R2
(
v∗max − v∗min

)
− n (c1 − R2c3 − R1c2)

}]
. (2.9)

Differentiating (2.9) with respect to c1, c2, and c3, we have

c1opt. =
umax − umin

2n
,

c2opt. =
vmax − vmin

2n
,

c3opt. =
v∗max − v∗min

2n
.

Substituting the optimum value of c1, c2 and c3 in (2.9), we get the minimum MS E of ( ˆ̄YR(pps)) given
by

MS E
( ˆ̄YR(pps)

)
min
� MS E

(
ȳR(pps)

)
−

λ

2(N − 1)
[
(umax − umin) − R1 (vmax − vmin)

−R2
(
v∗max − v∗min

) ]2
, (2.10)

where
MS E

(
ȳR(pps)

)
= λ

[
S 2

u + R2
1S 2

v + R2
2S 2

v∗ + 2R1R2S vv∗ − 2R2S uv∗ − 2R1S uv

]
.

Similarly, the bias and minimum MS E of product estimator in PPS sampling scheme is given by

Bias( ˆ̄YP(pps)) � λ
[ R1

X̄R̄x

{
S 2

v −
2nc2

N − 1
(vmax − vmin − nc2)

}
+ R2

{
S 2

v∗

−
2nc3

N − 1
(
v∗max − v∗min − nc3

) }
+ R1R2

{
S uv∗ −

n
N − 1

{
c3(vmax

− vmin) + c2(v∗max − v∗min) − 2nc2c3
}}

+ R1

{
S uv −

n
N − 1

{
c2(umax

− umin) + c1(vmax − vmin) − 2nc1c2
}}

+ R2

{
S uv∗ −

n
N − 1

{
c3(umax

− umin) + c2(v∗max − v∗min) − 2nc2c3

}}]
and

MS E
( ˆ̄YP(pps)

)
min
� MS E

(
ȳP(pps)

)
−

λ

2(N − 1)
[
(umax − umin) + R1 (vmax − vmin)

+R2
(
v∗max − v∗min

) ]2
, (2.11)
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where
MS E

(
ȳP(pps)

)
= λ

[
S 2

u + R2
1S 2

v + R2
2S 2

v∗ + 2R1R2S vv∗ + 2R2S uv∗ + 2R1S uv

]
.

The minimum MS E of regression estimator in case of positive correlation is given by

MS E
( ˆ̄Ylr1P(pps)

)
min
� MS E(ȳlr(pps)) −

λ

2(N − 1)

[
(umax − umin) − β1 (vmax − vmin)

−β2
(
v∗max − v∗min

) ]2

, (2.12)

where
MS E(ȳlr(pps)) = λS 2

u

(
1 − ρ2

uv − ρ
2
uv∗ + 2ρuvρuv∗ρvv∗

)
and β1 and β2 are the population regression coefficients.

Similarly, the minimum MS E of ˆ̄Ylr1P(pps) in case of negative correlation is

MS E
( ˆ̄Ylr1(pps)

)
min
� MS E(ȳlr(pps)) −

λ

2(N − 1)

[
(umax − umin) + β1 (vmax − vmin)

+β2
(
v∗max − v∗min

) ]2

. (2.13)

A general form for the MS E for the situation of both positive and negative correlation between the
study and the auxiliary variable is given by

MS E
( ˆ̄Ylr(g)pps

)
min
� MS E(ȳlr(pps)) −

λ

2(N − 1)

[
(umax − umin) − |β1| (vmax − vmin)

−|β2|
(
v∗max − v∗min

) ]2

. (2.14)

3. Comparison of estimators

In this section, we compare the proposed estimators with usual ratio, product and regression
estimators under PPS sampling scheme.

3.1. Condition (i)

By (1.4) and (2.10), we get [
MS E(ȳR(pps)) − MS E

( ˆ̄YR(pps)

)
min

]
≥ 0,

if [
(umax − umin) − R1 (vmax − vmin) − R2

(
v∗max − v∗min

) ]2
≥ 0.

3.2. Condition (ii)

By (1.7) and (2.11), we obtain[
MS E(ȳP(pps)) − MS E

( ˆ̄YP(pps)

)
min

]
≥ 0,

if [
(umax − umin) + R1 (vmax − vmin) + R2

(
v∗max − v∗min

) ]2
≥ 0.

AIMS Mathematics Volume 6, Issue 5, 5397–5409.
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3.3. Condition (iii)

By (1.9) and (2.14), it comes[
MS E(ȳlr(pps)) − MS E

( ˆ̄Ylr(g)pps

)
min

]
≥ 0,

if [
(umax − umin) − |β1| (vmax − vmin) − |β2|

(
v∗max − v∗min

) ]2
≥ 0.

We observe that the proposed estimators perform better than the existing estimators if above conditions
(i)–(iii) are satisfied.

4. Empirical study

We consider four real data sets for numerical comparisons which are described below.
Population 1: [Source: [14]]
y=Cultivation wheat in the region during 1964.
x=Cultivation wheat in the region during 1963.
z=Cultivated area in 1961.
Rx=Rank of the auxiliary variable (x).
N = 34, n = 6
Ȳ = 199.4412, X̄ = 208.8824, Z̄ = 747.5882, R̄x = 17.47059,
Cu = 0.3630288, Cv = 0.3401158, C∗v = 0.3598615,
C2

u = 0.1317899, C2
v = 0.1156788, C2

v∗ = 0.1295003,
ρuv = 0.7014932, ρuv∗ = 0.4524924, ρvv∗ = 0.5274431,
S uv = 3387.898, S uv∗ = 233.6354, S vv∗ = 202.4327,
S 2

u = 3825.127, S 2
v = 3689.709, S 2

v∗ = 27.96725,
β1 = 0.918202, β2 = 7.238203,
umax = 315.2996, umin = 46.72426,
vmax = 352.3937, vmin = 38.93689,
v∗max = 32.81399, v∗min = 7.457239.

Population 2: [Source: Abreu-Lima and Joao(2009) Hospital, Faculty of Medicine, Porto University,
Portugal].
VCG(vectocardiograms) data set:
http : //archive.ics.uci.edu/ml/datasets/vcg.
y=The electrical axis corresponds to the half-area vector in the horizontal QRS Loop.
x=The electrical axis is determined by the amplitudes of the wave peaks (x, y) in the horizontal QRS
Loop.
z=The electrical axis is determined by the time integrals ratio along x and y in the horizontal QRS
Loop.
Rx=Rank of the auxiliary variable (x).
N = 120, n = 15
Ȳ = 149.2458, X̄ = 151.0833, Z̄ = 154.3958, R̄x = 60.44167,
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Cu = 0.7646985, Cv = 0.3704849, C∗v = 0.5443165,
C2

u = 0.5847638, C2
v = 0.1372591, C2

v∗ = 0.2962804,
ρuv = 0.2013749, ρuv∗ = 0.06761159, ρvv∗ = 0.1100916,
S uv = 1327.191, S uv∗ = 325.0099, S vv∗ = 240.8604,
S 2

u = 1918.083, S 2
v = 1593.75, S 2

v∗ = 284.4695,
β1 = 0.8327473, β2 = 1.142512,
umax = 1389.562, umin = 0.441131,
vmax = 0.441131, vmin = 1.317745,
v∗max = 463.1875, v∗min = 0.4392485.

Population 3: [Source: Herbert(2009), DEQ, Faculty of Engineering, Porto University, Portugal].
Wines dataset
http : //archive.ics.uci.edu/ml/datasets/wine.
y=Aspartame.
x=Leucine.
z=Isoleucine.
Rx=Rank of the Leucine.
N = 67, n = 8
Ȳ = 23.63433, X̄ = 20.59851 Z̄ = 9.792537, R̄x = 34,
Cu = 0.53356861, Cv = 0.6869816, C∗v = 0.7242662,
C2

u = 0.2869596, C2
v = 0.4719437, C2

v∗ = 0.5245616,
ρuv = 0.3171296, ρuv∗ = 0.4236072, ρvv∗ = 0.4236072,
S uv = 71.13702, S uv∗ = 128.748, S vv∗ = 180.1726,
S 2

u = 93.83272, S 2
v = 107.6524, S 2

v∗ = 336.2949,
β1 = 0.6608032, β2 = 0.3828427,
umax = 122.2254, umin = 5.092119,
vmax = 131.6552, vmin = 0,
v∗max = 213.9851, v∗min = 1.052961.
Population 4: [Source: [18]].
y=Number of tube wells.
x=Irrigated area (in hectares) for 69 villages of Doraha development block of Punjab, India.
z=Number of tractors.
Rx=Rank of the auxiliary variable (x).
N = 69, n = 8,
Ȳ = 135.2609, X̄ = 345.7536, Z̄ = 21.23188, R̄x = 34.95652,
Cu = 0.6701015, Cv = 0.481404, C∗v = 0.6560908,
C2

u = 0.449036, C2
v = 0.2317498, C2

v∗ = 0.3076422,
ρuv = 0.1814586, ρuv∗ = 0.1015504, ρvv∗ = 0.4086618,
S uv = 3442.406, S uv∗ = 1740.037, S vv∗ = 237.9886,
S 2

u = 2529.325, S 2
v = 17050.9, S 2

v∗ = 329.5376,
β1 = 0.20189, β2 = 0.7221896,
umax = 859.8913, umin = 57.45098,
vmax = 1167.754, vmin = 121.0217,
v∗max = 115.5958, v∗min = 4.246377.
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The results are given in Table 1.

Table 1. MS E values of all the considered estimators.

Estimator Population 1 Population 2 Population 3 Population 4
ȳR(pps) 805.8873 143.7090 42.90262 1080.554
ˆ̄YR(pps) 550.8713 107.0965 11.79146 1079.505
ȳP(pps) 4503.025 707.3308 128.4614 1987.579
ˆ̄YP(pps) 4248.009 670.7184 97.3502 1986.530
ȳlr(pps) 406.7386 122.4856 10.3137 245.8052
ˆ̄Ylr(g)(pps) 304.4522 88.85371 7.832164 55.42954

In Table 1, we observed that (MS Es) of the proposed estimators are smaller than the corresponding
existing estimators, for all four populations. The performance of the regression estimator is the best
among all other estimators.

5. Conclusions

In this paper, we have proposed ratio, product, and regression type estimators in presence of
maximum and minimum values using the auxiliary variable and rank of the auxiliary variable X under
PPS sampling scheme. The bias and mean squared error of the proposed estimators were derived
under the first degree of approximation. Based on the theoretical and numerical investigations, it is
observed that the proposed estimators are more efficient than the corresponding existing estimators
for all populations which are used here. The performance of the suggested regression estimator is the
best than existing estimators in terms of MSEs. Categorically, we recommend the use of our proposed
estimators over the existing estimators considered in this paper for the new survey for estimating the
finite population mean under probability proportional to size.
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