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1. Introduction

In this paper, we consider the following parabolic problem with nonlocal nonlinearity:


∂u
∂t
− a

(∫
Ω

|u(x, t)|γdx
)
∆u = f (u), (x, t) in Ω × (0,T ),

u(x, t) = 0, (x, t) on ∂Ω × (0,T ),
u(x, 0) = u0(x), x in Ω,

(1.1)

where Ω ⊆ RN (N ≥ 1) is a sufficiently regular domain, γ ∈ [1,+∞), 0 < T ≤ +∞,
a ∈ C1([0,+∞), [0,+∞)), u0 ∈ C2+α(Ω), f ∈ C1(R,R).

This type of problem was studied initially by Chipot and Lovat in [8], where they proposed the
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equation 
ut − a

(∫
Ω

u(z, t)dz
)
∆u = f (x, t), in Ω × (0,T ),

u(x, t) = 0, (x, t) on ∂Ω × (0,T ),
u(x, 0) = u0(x), x in Ω

(1.2)

for modelling the density of a population, for example, of bacteria, subject to spreading and presented
the existence and uniqueness of a weak solution to this equation. Another interesting result was
obtained in [3] where Almeida, Antontsev and Duque considered the following problem

ut −

(∫
Ω

u2(z, t)dz
)γ

∆u = f (x, t), in Ω × (0,T ),

u(x, t) = 0, (x, t) on ∂Ω × (0,T ),
u(x, 0) = u0(x), x in Ω

(1.3)

and proved the existence, uniqueness and asymptotic behaviour of the weak solutions. Note that f (x, t)
is independent on u in problem (1.2) and if a(t) = tγ, problem (1.1) can be changed into problem (1.3).
Therefore, problem (1.1) is a generalization of problem (1.2) and (1.3).

For f depending on the state u such as f (u) = ru(k − u) or f (u) = ru/(k + u), Ackleh and Ke [1]
studied the problem 

ut −
1

a
(∫

Ω
u(z, t)dz

)∆u = f (u), in Ω × (0,T ),

u(x, t) = 0, on ∂Ω × (0,T ),
u(x, 0) = u0(x), in Ω,

(1.4)

proved the existence-uniqueness of a solution to this problem and gave some conditions for the
extinction in finite time and the persistence respectively. If the coefficient 1/a is an unbounded
function around the origin (e.g., a(u(·, t)) =

∫
Ω

u(x, t)dx), then a diffusion of this type could model a
population that is anxious to move quickly out of zones experiencing a sharp decrease in population
densities. For example, consider a population attempting to leave a spatial region due to a sudden
dangerous situation. The individuals in the population move randomly (due to lack of information) in
an attempt to leave the area. In this case, diffusion out of the region will increase as population
decreases due to a decrease in the interaction between individuals that hinders their movement out.
One can imagine such an occurrence related to an epidemic. The asymptotic behaviour of the
solutions as time tends to infinity was studied for nonlinear parabolic equations with two classes of
nonlocal terms or a non-autonomous sublinear terms also (see [6, 30]).

We point out that there is only one unknown function in (1.1). In fact, there are many types of
species in some areas and then it is interesting to discuss nonlocal coupled systems. For examples,
in [4], Duque et al. presented some results on the existence, uniqueness of weak and strong global
in time solutions, polynomial and exponential decay and vanishing of the solutions in finite time.
In [19], Raposo et al. discussed the existence, uniqueness and asymptotic behavior of the solutions for
a nonlinear coupled system.

In this work, we present some conditions for reaction term f and diffusion coefficient a different
from most previous papers: (1) reaction term f may grow superlinearly or exponentially at +∞ or be
lack of local Lipschiz continuity at 0; (2) diffusion coefficient a is unbounded and even grows
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exponentially at +∞. This work is concerned with the proof of the existence, uniqueness and
asymptotic behavior of the solutions and extend some results in previous literature (see [1, 3, 6, 8, 30]).

The paper is organized as follows. In Section 2, according to the proof in [1], we consider a
generalized problem (2.1) of (1.1), transform (2.1) into (2.2) and show that the existence of solution
to (2.1) is equivalent to the existence of solution to (2.2). In Section 3, we define the sub-supersolution
pair for (3.1) which generalizes (2.2) and present the existence of solutions between the subsolution and
supersolution. Section 4 is devoted to the proof of the existence, uniqueness and long-time behavior
of solutions to (1.1) by using the method of sub-supersolution in Section 3. In Section 5, motivated
by the idea in [1], we develop a finite difference scheme to approximate the solution of some reaction-
diffusion equations. This scheme is then used to numerically study the long time behavior of the some
models. Some ideas in our paper come from [5, 7, 9, 11–16, 20, 21, 23–29] also.

2. Equivalence of some generalized system to (1.1)

Now we generalize (1.1) to the following problem
∂u
∂t
− a

(∫
Ω

|u(x, t)|γdx
)
∆u = F(x, u), (x, t) in Ω × (0,T ),

u(x, t) = 0, (x, t) on ∂Ω × (0,T ),
u(x, 0) = u0(x), x in Ω,

(2.1)

where Ω ⊆ RN is a bounded domain with ∂Ω ∈ C2+α, u0 ∈ C2+α(Ω), α ∈ (0, 1), T ≤ +∞, γ ∈ [1,+∞).
In order to consider (2.1), we consider the following problem

∂u
∂t
− ∆u =

1

a
(∫

Ω

|u(x, t)|γdx
)F(x, u), (x, t) in Ω × (0,T ),

u(x, t) = 0, (x, t) on ∂Ω × (0,T ),
u(x, 0) = u0(x), x in Ω,

(2.2)

where a satisfies
a ∈ C1([0,+∞),R), inf

t∈[0,+∞)
a(t) ≥ a(0)

de f .
= a0 > 0. (2.3)

Theorem 2.1 Suppose that u0 ∈ C2+α(Ω), with u0 , 0 and (2.3) holds. Then (2.1) has a solution
u(x, t) on [0,T max) if and only if that (2.2) has a solution v(x, t) on [0,Tmax), where the relation between
T max and Tmax is

T max =

∫ Tmax

0

1
a(

∫
Ω
|v(x, s)|γdx)

ds, Tmax =

∫ T max

0
a(

∫
Ω

|u(x, s)|γdx)ds.

Proof. Sufficiency. Suppose that v is a solution of (2.2). Let τ(t) be a solution to the following ordinary
differential equation  τ′(t) = a(

∫
Ω

|v(x, τ(t))|γdx), t > 0,

τ(0) = 0.
(2.4)
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Separating variables and integrating in t we get the following equation:∫ τ(t)

0

1
a(

∫
Ω
|v(x, s)|γdx)

ds = t, t ∈ [0,T max).

Set

G(ξ) =

∫ ξ

0

1
a(

∫
Ω
|v(x, s)|γdx)

ds, ξ ∈ [0,Tmax).

It can be easily shown that G is a C1 diffeomorphism from [0,Tmax) onto [0,T max) and (2.3) implies
that (2.4) has a unique solution given by τ(t) = G−1(t) on [0,T max).

Now let
u(x, t) = v(x, τ(t)), x ∈ Ω × [0,T max).

Then clearly u satisfies the following: u(x, 0) = v(x, τ(0)) = u0(x) and u(x, t) is continuous for t ≥ 0,
continuously differentiable for t > 0. Furthermore, we have that

u(x, t)
∂t

=
v(x, r)
∂r
|r=τ(t)τ

′(t)

= [−∆v(x, τ(t)) +
1

a(
∫

Ω
|v(x, τ(t))|γdx)

F(x, v(x, τ(t)))]a(
∫

Ω

|v(x, τ(t))|γ)dx

= −a(
∫

Ω

|v(x, τ(t))|γdx)∆v(x, τ(t)) + F(x, v(x, τ(t)))

= −a(
∫

Ω

|u(x, t)|γdx)∆u(x, t) + F(x, u(x, t)), (x, t) ∈ Ω × (0,T max).

Hence, u is a local solution of Eq (2.1).
Necessity. Let u(x, t) be a solution to (2.1) and let G be the solution to the differential equation G′(s) =

1
a(

∫
Ω
|u(x,G(s))|γdx)

, t > 0,

G(0) = 0.
(2.5)

Separating variables and integrating in t we get the following equation:∫ G(t)

0
a(

∫
Ω

|u(x, s)|γdx)ds = t, t ∈ [0,Tmax).

Set

τ(ξ) =

∫ ξ

0
a(

∫
Ω

|u(x, s)|γdx)ds, t ∈ [0,T max).

It can be easily shown that τ is a C1 diffeomorphism from [0,T max) onto [0,Tmax) and (2.3) implies
that (2.5) has a unique solution given by G(t) = τ−1(t) on [0,Tmax).

Set
v(x, t) = u(x,G(t)), (x, t) ∈ Ω × [0,Tmax).
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We have that v(x, 0) = u(x, 0) = u0(x), v(x, t) is continuous for t ≥ 0, continuously differentiable for
t > 0. Moreover,

v(x, t)
∂t

=
u(x, r)
∂r
|r=G(t)G′(t)

= [−a(
∫

Ω

|u(x,G(t))|γdx)∆u(x,G(t)) + F(x, u(x,G(t))]
1

a(
∫

Ω
|u(x,G(t))|γdx)

= (−∆v(x, t) +
1

a(
∫

Ω
|v(x, t)|γdx)

F(x, v(x, t)), t > 0.

The proof is complete. �

Remark 2.1 Under the uniform Lipschitz continuity requirement on the functions F, condition (2.2)
on a and γ ≥ 1, Eq (2.2) has a unique mild solution (see [17, 22]).

Remark 2.2 The idea of our theorem comes from Theorem 2.1 in [1]. But in our proof, it is not
necessary that F satisfies uniform Lipschitz continuity condition.

3. Sub-supersolution method

Let k ≥ 0 be an integer, Ck(Ω) = {u : Ω→ R|Dlu ∈ C(Ω), ∀ |l| ≤ k} with the norm

‖u‖(k)
Ω

=
∑
|s|≤k

max
x∈Ω
|Dsu(x)|,

Ck+α(Ω) = {u : Ω→ R|u ∈ C(k)(Ω),Hα(Dsu) < +∞ ∀ |s| = k} with the norm

‖u‖(k+α)
Ω

=
∑
|s|≤k

max
x∈Ω
|Dsu(x)| +

∑
|s|=k

Hα(Dsu),

where
Hα(u) = sup

x,y∈Ω,x,y

|u(x) − u(y)|
|x − y|α

,

C(QT ) = {u : QT → R|u is continuous on QT } with the norm

‖u‖QT
= max

(x,t)∈QT

|u(x, t)|,

Cα, α2 (QT ) = {u : QT → R|u ∈ C(QT ),Hα, α2
(u) < +∞} with the norm

‖u‖(α)
QT

= max
(x,t)∈QT

|u(x, t)| + Hα, α2
(u),

and C2k+α,k+ α
2 (QT ) = {u : QT → R|u ∈ C2k,k(QT ),Hα, α2

(Dr
t D

s
xu) < +∞ ∀2r + |s| = 2k} with the norm

‖u‖(2k+α)
QT

=
∑

0≤2r+|s|≤2k

max
(x,t)∈QT

|Dr
t D

s
xu(x, t)| +

∑
2r+|s|=2k

Hα, α2
(Dr

t D
s
xu),

where
Hα, α2

(u) = sup
x,y∈Ω,x,y,s,t∈[0,T ],s,t

|u(x, s) − u(y, t)|
|x − y|α + |s − t|

α
2
.
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For p > 1, let Lp(Ω) = {u : Ω→ R|u is measurable on Ω and
∫

Q
|u|pdx < +∞} with norm

‖u‖p =

(∫
Ω

|u(x)pdx
) 1

p

,

Wk
p(Ω) = {u : Ω→ R|u ∈ Lp(Ω),Dlu ∈ Lp(Ω), |l| ≤ k} with the norm

‖u‖k,p =
∑
|l|≤2

(∫
Ω

|Dlu|pdx
) 1

p

.

Let QT = Ω× (0,T ] and Lp(QT ) = {u : Q→ R|u is measurable on QT and
∫

QT
|u|pdxdt < +∞} with the

norm
‖u‖p,QT = (

∫
QT

|u(x)pdxdt)
1
p ,

W2k,k
p (QT ) = {u : QT → R|u ∈ Lp(QT ),Ds

t Dl
xu ∈ Lp(QT ), 2s + |l| ≤ 2k} with the norm

‖u‖(2k)
p,QT

=
∑

0≤2s+|l|≤2k

(∫
QT

|Ds
t Dl

xu|
pdxdt

) 1
p

.

In this section, we generalize (2.2) to the following problem:
∂u
∂t
− ∆u(x, t) =

1
a(

∫
Ω
|u(x, t)|γdx)

F(x, t, u(x, t)), (x, t) in QT,

u(x, t) = 0, (x, t) on ∂Ω × (0,T ],
u(x, 0) = u0(x), x in Ω,

(3.1)

where Ω ⊆ RN is a bounded domain with ∂Ω ∈ C2+α, u0 ∈ C2+α(Ω), α ∈ (0, 1), T < +∞, QT =

Ω × (0,T ], γ ∈ (0,+∞) and a : [0,+∞)→ (0,+∞) is continuous with

inf
t∈[0,+∞)

a(t) ≥ a(0)
de f .
= a0 > 0. (3.2)

Definition 3.1 The pair functions α and β with α, β ∈ C(QT ) ∩ C2(QT ) are subsolution and
supersolution of (3.1) if α(x, t) ≤ β(x, t) for (x, t) ∈ QT and

∂α

∂t
− ∆α(x, t) ≤ min{

1
a0

F(x, t, α(x, t)),
1

b0(t)
F(x, t, α(x, t))}, (x, t) in QT,

α(x, t) ≤ 0, (x, t) on ∂Ω × (0,T ],
α(x, 0) ≤ u0(x), x in Ω,

and 
∂β

∂t
− ∆β(x, t) ≥ max{

1
a0

F(x, t, β(x, t)),
1

b0(t)
F(x, t, β(x, t))}, (x, t) in QT,

β(x, t) ≥ 0, (x, t) on ∂Ω × (0,T],
β(x, 0) ≥ u0(x), x in Ω,
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where a0 = a(0) and b0(t) = sup
s∈[0,

∫
Ω

max{|α(x,t)|,|β(x,t)|}γdx]
a(s).

For fixed λ > 0, we list the following problem
∂u
∂t
− ∆u + λu(x) = h(x, t), (x, t) in QT ,

u(x, t) = 0, x on ∂Ω, t ∈ (0,T ],
u(x, 0) = φ(x),

(3.3)

where Ω ⊆ RN is a smooth bounded domain and give the deformation of Agmon-Douglas-Nirenberg
theorem for (3.3).

Lemma 3.1 (see [2], Agmon-Douglas-Nirenberg) If p > 1 and h ∈ Lp(QT ), φ ∈ W2
p(Ω), then (3.3)

has a unique solution u ∈ W2,1
p (QT ) such that

‖u‖(2)
p,QT
≤ C1(‖h‖p,QT + ‖φ‖2,p),

where C1, C2 are independent from u, h.

We define the unique solution u = (
∂

∂t
− ∆ + λ)−1h of (3.3) and obviously (

∂

∂t
− ∆ + λ)−1 is a linear

operator. In order to prove our theorem, we list the Embedding theorem.
Lemma 3.2 ( See [10, 18])Suppose QT ⊆ RN+1 is a bounded domain with smooth boundary and

2p > N + 2. Then there exists a C(N + 2, p,QT ) > 0 such that

|u|(α)
QT
≤ C(N + 2, p,QT )‖u‖(2)

p,QT
, ∀ u ∈ W2,1

p (QT ),

where 0 < α < 1 − N+2
2p .

Then we have the following main theorem.
Theorem 3.1 Suppose that F : QT × R → R is a continuous function. Assume α and β are

the subsolution and supersolution of (3.1) respectively. Then problem (3.1) has at least one solution
u ∈ C2(QT ) ∩C(QT ) such that, for all (x, t) ∈ QT ,

α(x, t) ≤ u(x, t) ≤ β(x, t).

Proof. For u ∈ C(QT ), define

χ(x, t, u(x, t)) = α(x, t) + (u(x, t) − α(x, t))+ − (u(x, t) − β(x, t))+.

We will study the modified problem (λ > 0)
∂u(x, t)
∂t

− ∆u(x, t) + λu(x, t) =
F(x, t, χ(x, t, u(x, t)))

a(
∫

Ω
|χ(x, t, u(x, t))|γdx)

+ λχ(x, t, u(x, t)), (x, t) ∈ QT ,

u(x, t) = 0, (x, t) on ∂Ω × (0,T ],
u(x, 0) = u0(x), x in Ω.

(3.4)

Step 1. Every solution u(x, t) of (3.4) satisfies α(x, t) ≤ u(x, t) ≤ β(x, t), x ∈ QT .
We prove that α(x, t) ≤ u(x, t) on QT . Obviously, |χ(x, t, u(x, t))| ≤ max{|α(x, t)|, |β(x, t)|}, which

implies that

a0 ≤ a(
∫

Ω

|χ(x, t, u(x, t))|γdx) ≤ b0(t).
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By contradiction, assume that α(x0, t0) − u(x0, t0) = maxx∈Q̄T (α(x, t) − u(x, t)) = M > 0. Note that:
α(x, 0) − u(x, 0) ≤ 0 on Ω, α(x, t) − u(x, t) ≤ 0, (x, t) ∈ ∂Ω × (0,T ], there are two cases: (1) (x0, t0) ∈
Ω × (0,T ); (2) x0 ∈ Ω, t0 = T .

For the case (1), we have 0 ≤ −∆(α(x0, t0) − u(x0, t0)) and
∂(α(x0, t) − u(x0, t))

∂t
|t=t0 = 0, which

together with the definition of subsolution α(x, t) implies

0 ≤ −∆(α(x0, t0) − u(x0, t0))

≤ min{
1
a0

F(x, t, α(x, t)),
1

b0(t)
F(x, t, α(x, t))} −

∂α(x0, t)
∂t

|t=t0

−
F(x0, t0, χ(x0, t0, u(x0, t0))
a(

∫
Ω
|χ(x, t, u(x, t))|γdx)

+
∂u(x0, t)
∂t

|t=t0 − λχ(x0, t0, u(x0, t0)) + λu(x0, t0)

= min{
1
a0

F(x, t, α(x, t)),
1

b0(t)
F(x, t, α(x, t))} −

∂α(x0, t)
∂t

|t=t0

−
F(x0, t0, α(x0, t0))

a(
∫

Ω
|χ(x, t, u(x, t))|γdx)

+
∂u(x0, t)
∂t

|t=t0 − λχ(x0, t0, u(x0, t0)) + λu(x0, t0)

≤ −λ(α(x0, t0) − u(x0, t0))
< 0.

This is a contradiction.
For the case (2), we have 0 ≤ −∆(α(x0, t0) − u(x0, t0)) and

∂(α(x0, t) − u(x0, t))
∂t

|t=t0 ≥ 0, which
together with the definition of subsolution α(x, t) implies that

0 ≤ −∆(α(x0, t0) − u(x0, t0))

≤ min{
1
a0

F(x, t, α(x, t)),
1

b0(t)
F(x, t, α(x, t))} −

∂α(x0, t)
∂t

|t=t0

−
1

a(
∫

Ω
|χ(x, t, u(x, t))|γdx)

F(x0, χ(x0, t0, u(x0, t0))

+
∂u(x0, t)
∂t

|t=t0 − λχ(x0, t0, u(x0)) + λu(x0, t0)

= min{
1
a0

F(x, t, α(x, t)),
1

b0(t)
F(x, t, α(x, t))} −

∂α(x0, t)
∂t

|t=t0

−
1

a(
∫

Ω
|χ(x, t, u(x, t))|γdx)

F(x0, α(x0, t0))

+
∂u(x0, t)
∂t

|t=t0 − λχ(x0, t0, u(x0)) + λu(x0, t0, t0)

≤ −λ(α(x0, t0) − u(x0, t0))
< 0.

This is a contradiction also.
Consequently, α(x, t) ≤ u(x, t) for (t, x) ∈ QT .
A similar argument shows that β(x, t) ≥ u(x, t) for (t, x) ∈ QT and we omit the proof.
Hence,

α(x, t) ≤ u(x, t) ≤ β(x, t), (t, x) ∈ QT .

Step 2. Every solution of (3.4) is a solution of (3.1). From step 1, every solution of (3.4) is such
that: α(x, t) ≤ u(x, t) ≤ β(x, t), which implies that

χ(x, t, u(x, t)) = u(x, t), F(x, t, χ(x, t, u(x, t)) = F(x, t, u(x, t)), (x, t) ∈ QT ,
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and u(x, t) is a solution of (3.1).
Step 3. The problem (3.4) has at least one solution.
Choose 2p > N + 2 and 0 < α < 1 − N+2

2p and define an operator

N : C(QT )→ C(QT ) ⊆ Lp(QT ); u→ F(·, ·, χ(·, ·, ·)).

Since F is continuous, N : C(QT ) → C(QT ) is well defined, continuous and maps bounded sets to

bounded sets. Since (3.2) is true, a is continuous and
1

a(
∫

Ω
|χ(x, t, u(x, t))|γdx)

≤
1
a0

, the operator N1u =

1
a(

∫
Ω
|χ(x,t,u(x,t))|γdx)

Nu is continuous, and maps bounded sets of C(QT ) into bounded sets of C(QT ) ⊆

Lp(QT ).
Now, for u ∈ C(QT ), we define an operator A : C(QT )→ C(QT ) by

A(u) = (
∂

∂t
− ∆ + λ)−1(N1u + λχ(·, ·, u)).

Now we show that A : C(QT )→ C(QT ) is completely continuous.
(1) By the construction of χ, we have, for every u ∈ C(QT ),∣∣∣∣∣∣∣ F(x, t, χ(x, t, u(x, t))

a(
∫

Ω
|χ(x, t, u(x, t))|γdx)

+ λχ(x, t, u(x))

∣∣∣∣∣∣∣
≤

1
a0

max
(x,t)∈QT ,α(x,t)≤u≤β(x,t)

|F(x, t, u)| + λmax{‖α‖QT
, ‖β‖QT

},∀(x, t) ∈ QT ,

which guarantees that there exists a K > 0 big enough such that N1u + λχ(·, ·, u) ∈ BLp(0,K) for all
u ∈ C(QT ), where

BLp(0,R) = {u ∈ Lp(QT )|‖u‖p,QT ≤ K}.

By Lemma 3.1, we have

‖A(u)‖(2)
p,QT

= ‖(
∂

∂t
− ∆ + λ)−1(N1u + λχ(·, ·, u))‖(2)

p,QT
≤ C1(K + ‖u0‖2,p), ∀u ∈ C(QT ), (3.5)

which implies that A(C(QT )) is bounded in W2,1
p (QT ). Now Lemma 3.2 guarantees that A(C(QT )) is

bounded in Cα, α2 (QT ). Therefore, A(C(QT )) is relatively compact in C(QT ).
(2) For u1, u2 ∈ C(QT ), by Lemma 3.1, one has

‖A(u1) − A(u2)‖(2)
p,QT
≤ C1‖N1u1 + λχ(·, ·, u1) − (N1u2 + λχ(·, ·, u2))‖p,QT ,

which together the continuity of the operator N1+λχ guarantees that A : C(QT )→ C(QT ) is continuous.
Consequently, A : C(QT )→ C(QT ) is completely continuous.
By (3.5) and Lemma 3.2, there exists a K1 > 0 big enough such that

A(C(QT )) ⊆ BC(0,K1),

where BC(0,K1) = {u ∈ C(QT )|‖u‖ ≤ K1}, which implies that

A(BC(0,K1)) ⊆ BC(0,K1).
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The Schauder fixed point theorem guarantees that there exists a u ∈ BC(0,K1) such that

u = Au,

i.e., u is a solution of (3.4).
Consequently, the step 1 and step 2 guarantees that u in the step 3 is a solution of (3.1).
The proof is complete. �

Corollary 3.1 Assume that the conditions of Theorem 3.1 hold and F satisfies local lipschitz
condition. Then (3.1) has a unique solution u with

α(x, t) ≤ u(x, t) ≤ β(x, t), (x, t) ∈ Ω × [0,T ].

Proof. Assume that there is another solution u1 with u1(x, t) . u(x, t). Then there is a t1 > 0 with
u1(x, t1) , u(x, t1). Let t∗ = inf{t < t1|u1(x, s) , u(x, s) for all s ∈ [t, t1)}. Since
u(x, 0) = u1(x, 0) = u0(x), we have t∗ ≥ 0, u1(x, t∗) = u(x, t∗) and u1(x, t) , u(x, t) for all t ∈ (t∗, t1].
Since 1

a(
∫
Ω
|u(x,t)|γdx)

F(x, t, u) is locally Lipschitz continuous,


∂u
∂t
− ∆u =

1
a(

∫
Ω
|u(x, t)|γdx)

F(x, t, u), t > t∗,

u = 0, x on ∂Ω, t > t∗;
u(x, t∗) = u1(x, t∗),

has a unique solution. This is a contradiction. The proof is complete. �

4. Results

In this section, using the method of sub-supersolution in above section, we consider the existence,
uniqueness and long time behavior of the solution for (1.1).

Now we list some results for a parabolic equation (see [18]) which will be used later. Assume that
u and u are the super-subsolutions to the following equation{

−∆u = f (x, u), x in Ω,

u(x) = g(x), x on ∂Ω.

If u(x) ≤ φ(x) ≤ u(x), x ∈ Ω, then uu and uu are the super-subsolutions to the following equation
∂u
∂t
− ∆u = f (x, u), x in Ω,

u(x, t) = g(x), (x, t) on ∂Ω × [0,+∞),
u(x, 0) = φ(x), x ∈ Ω.

(4.1)

If f ∈ C1(Ω × R), then (4.1) has a unique solution u(x, t) with

u(x) ≤ V(x, t) ≤ u(x, t) ≤ U(x, t) ≤ u(x),
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where V(x, t) = uu(x, t) satisfies
∂u
∂t
− ∆u = f (x, u), x in Ω,

u(x, t) = g(x), (x, t) on ∂Ω × [0,+∞),
u(x, 0) = u(x), x ∈ Ω

and U(x, t) = uu(x, t) satisfies 
∂u
∂t
− ∆u = f (x, u), x in Ω,

u(x, t) = g(x), (x, t) on ∂Ω × [0,+∞),
u(x, 0) = u(x), x ∈ Ω.

Lemma 4.1 (see, [27]) V(x, t) is nondecreasing on [0,+∞) and U(x, t) is nonincreasing on [0,+∞).
Lemma 4.2 (see, [18, 27]) Suppose u, v ∈ C2,1(QT ) ∩C(QT ) satisfying

∂u
∂t
− ∆u − F(x, u) ≥

∂v
∂t
− ∆v − F(x, v), x in Ω, t ∈ (0,T]

u(x, t) ≥ v(x, t), (x, t) on ST = ∂Ω × (0, t],
u(x, 0) ≥ v(x, 0), x in Ω.

If (x, t) ∈ QT , u, v ∈ [m,M] and ∂F
∂u ∈ C(Ω × [m,M]), then

u(x, t) ≥ v(x, t), ∀(x, t) ∈ QT .

Moreover, if u(x, 0) . v(x, 0), x ∈ Ω, we have

u(x, t) > v(x, t), ∀(x, t) ∈ QT .

Let Φ1 be the eigenfunction corresponding to the principle eigenvalue λ1 of{
−∆u = λu, x ∈ Ω

u|∂Ω = 0.
(4.2)

It is found that λ1 > 0,
Φ1(x) > 0, |∇Φ1(x)| > 0, ∀x ∈ ∂Ω. (4.3)

According to Theorem 2.1, in order to study system (1.1), we only consider the following problem

∂u
∂t
− ∆u =

1

a
(∫

Ω

|u(x, t)|γdx
) f (u), (x, t) in Ω × (0,+∞),

u(x, t) = 0, (x, t) on ∂Ω × (0,+∞),
u(x, 0) = u0(x), x in Ω,

(4.4)

where a satisfies (2.3) and u0 ∈ C2+α(Ω) with u0 , 0.
Theorem 4.1 Suppose f ∈ C1(R,R) with f (0) = f (1) = 0 and f (u) > 0 for all u ∈ (0, 1) and

f (u) < 0 for u > 1. Then, for any u0(x) ≥. 0 with u0 ∈ C2+α(Ω), (1.1) has a unique nonnegative
solution u ∈ C2(Q+∞) ∩C(Q+∞).
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Proof. Since f ∈ C1(R,R), (4.4) has a unique local solution v.
Step 1. We show that for any l > 0, z0 > 0, the ordinary differential equation

dz
dt

=
1
l

f (z), t > 0,

z(0) = z0

(4.5)

has a unique positive solution z(t, z0) with

lim
t→+∞

z(t, z0) = 1. (4.6)

In fact, since f ∈ C1, (4.5) has a unique solution z(t, z0). Since f (1) = 0 and f ∈ C1, z(t) ≡ 1 is the
unique solution of dz

dt = 1
l f (z) across any (t0, 1). If 1 > z0 > 0, since f (u) > 0 for all u ∈ (0, 1) and

f (u) < 0 for all u > 1, then z(t, z0) is increasing and z(t, z0) < 1, which implies that there is a 1 ≥ c > 0
such that

lim
t→+∞

z(t, z0) = c.

Therefore, there is a {tn} with lim
n→+∞

tn = +∞ such that

lim
n→+∞

z′(tn, z0) = 0.

By z′(tn, z0) = f (z(tn, z0)), one has

0 = lim
n→+∞

z′(tn, z0) = lim
n→+∞

f (z(tn, z0)) = f (c).

Hence, c = 1, i.e.
lim

t→+∞
z(t, z0) = 1,

which guarantees that (4.6) is true. By a same proof, we get if z0 ≥ 1,

lim
t→+∞

z(t, z0) = 1

also.
Step 2. We establish the sub-supersolution pair for (4.4).
Choose M = max{2,max

x∈Ω
u0(x)}. (4.5) and (4.6) imply that


dz
dt

=
1

a(Mγ|Ω|)
f (z), t > 0,

z(0) = M
(4.7)

has a unique positive nonincreasing solution z(t,M) with

M ≥ z(t,M) > 1,∀t > 0 and lim
t→+∞

z(t,M) = 1. (4.8)

Let β(x, t) = z(t,M) and α(x, t) = 0. Set

b0(t) = sup
s∈[0,

∫
Ω

max{|α(x,t)|,|β(x,t)|}γdx]
a(s) = sup

s∈[0,
∫
Ω

max{0,|z(t,M)|}γdx]
a(s) ≤ a(Mγ|Ω|),
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which together with f (β(x, t)) < 0 implies that

1
a(Mγ|Ω|)

f (β(x, t)) ≥ max{
1
a0

f (β(x, t)),
1

b0(t)
f (β(x, t))}. (4.9)

By (4.7)–(4.9) and the definitions of α(x, t) and β(x, t), we have
(1) α(x, t) < β(x, t), ∀(x, t) ∈ Ω × (0,+∞);
(2) 

∂α

∂t
− ∆α(x, t) = 0 = min{

1
a0

f (α(x, t)),
1

b0(t)
f (α(x, t))}, (x, t) in Ω × (0,+∞),

α(x, t) = 0, (x, t) on ∂Ω × (0,+∞),
α(x, 0) ≤ u0(x), x in Ω

and 
∂β

∂t
− ∆β(x, t) ≥ max{

1
a0

f (β(x, t)),
1

b0(t)
f (β(x, t))}, (x, t) in Ω × (0,+∞),

β(x, t) = z(t,M) > 0, (x, t) on ∂Ω × (0,+∞),
β(x, 0) = M > u0(x), x in Ω,

which imply that α and β are subsolution and supersolution to (4.4).
Hence, Theorem 3.1 together with f ∈ C1 implies that (4.4) has a unique positive solution v such

that
0 = α(x, t) ≤ v(x, t) ≤ β(x, t) = z(t,M), ∀(x, t) ∈ Ω × [0,+∞).

Step 3. We show that (1.1) has a unique solution u, (x, t) ∈ Ω × [0,+∞).
Since 0 ≤ v(x, t) ≤ M, one has a0 ≤ a(

∫
Ω
|v(x, t)|γdx) ≤ a(Mγ|Ω|). Since Tmax = +∞ in Theorem 2.1,

one has

T max =

∫ Tmax

0

1
a(

∫
Ω
|v(x, t)|γdx)

dt = +∞.

Let

G(ξ) =

∫ ξ

0

1
a(

∫
Ω
|v(x, t)|γdx)

dt, t ∈ [0,+∞)

and τ(t) = G−1(t), t ∈ [0,+∞). Then u(x, t) = v(x, τ(t)) is a unique nonnegative solution to (1.1) on
[0,+∞).

The proof is complete. �

Corollary 4.1 Suppose the conditions of Theorem 4.1 hold. If there is a ε0 > 0 with u0(x) ≥
ε0φ1(x) for all x ∈ Ω and f ′(0) > a(Mγ|Ω|)λ1(M = max{1,max

x∈Ω
u0(x)}), then the unique solution

u ∈ C2(Q+∞) ∩C(Q+∞) of (1.1) satisfies

lim
t→+∞

u(x, t) = 1.

Proof. Choose a ε : 0 < ε < min{1, ε0} small enough such that

f (s)
s
≥
λ1a(Mγ|Ω|) + f ′(0)

2
> λ1a(Mγ|Ω|), ∀s ∈ (0, ε],
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which implies
1

a(Mγ|Ω|)
f (s) > λ1s, ∀s ∈ (0, ε].

Let α1(x) = εφ1(x). Then

1
a(Mγ|Ω|)

f (α1(x)) ≥ λ1α1(x), ∀x ∈ Ω.

Hence,  −∆α1 = λ1α1(x) ≤
1

a(Mγ|Ω|)
f (α1(x)), x in Ω,

α1(x) = 0, x on ∂Ω.

Step 1. Problem 
∂u
∂t
− ∆u =

1
a(Mγ|Ω|)

f (u), (x, t) in Ω × (0,+∞),

u = 0, (x, t) on ∂Ω × (0,+∞),
u(x, 0) = εφ1(x), x in Ω

(4.10)

has a unique solution V(x, t) such that
lim

t→+∞
V(x, t) = 1.

Let α1(x, t) = α1(x) and β1(x, t) = 1, ∀(x, t) ∈ Ω × [0,+∞). Then
(1) α1(x) ≤ β1(x, t), ∀(x, t) ∈ Ω × [0,+∞);
(2) 

∂α1

∂t
− ∆α1(x, t) ≤

1
a(Mγ|Ω|)

f (α1(x, t)), (x, t) in Ω × (0,+∞),

α1(x, t) = 0, (x, t) on ∂Ω × (0,+∞),
α1(x, 0) = εφ1(x), x in Ω

and 
∂β1

∂t
− ∆β1(x, t) = 0 =

1
a(Mγ|Ω|)

f (β1(x, t)), (x, t) in Ω × (0,+∞),

β1(x, t) = 1 > 0, (x, t) on ∂Ω × (0,+∞),
β1(x, 0) = 1 > εφ1(x), x in Ω,

which imply that α1 and β1 are subsolution and supersolution to (4.10) also. Thus, (4.10) has a unique
positive solution V(x, t) such that

α1(x, t) ≤ V(x, t) ≤ 1, ∀(x, t) ∈ Ω × [0,+∞).

Choose an arbitrary x0 ∈ Ω. Then there exists a B(x0, δ) = {x ∈ Ω||x − x0| ≤ δ} ⊆ Ω and t1 > 0 such
that

V(x, t1) > 0, ∀x ∈ B(x0, δ).

Set δ0 = minx∈B(x0,δ) V(x, t1). Lemma 4.1 implies that V(x, t) in nondecreasing on [0,+∞), which
guarantees that that V(x, t) ≥ δ0 for all (x, t) ∈ ∂B(x0, δ) × [t1,+∞).

Let z0 = δ0 and z(t, δ0) is the unique solution of the ordinary differential equation
dz
dt

=
1

a(Mγ|Ω|)
f (z), t > 0,

z(0) = δ0.
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(4.5) and (4.6) guarantee that
lim

t→+∞
z(t, δ0) = 1.

Let V1(x, t) = V(x, t + t1), t ≥ 0. We have

∂V1

∂t
− ∆V1 −

1
a(Mγ|Ω|)

f (V1) = 0

=
∂z(t, δ0)
∂t

− ∆z(t, δ0) −
1

a(Mγ|Ω|)
f (z(t, δ0)), (x, t) in B(x0, δ0) × (0,+∞),

V1(x, t) ≥ z(0, δ0) = δ0, (x, t) on ∂B(x0, δ0) × (0,+∞),
V1(x, 0) ≥ z(0, δ0), x in Ω.

Lemma 4.2 implies that
V1(x, t) = V(x, t + t1) ≥ z(t, δ0), t ≥ 0,

which together with V(x, t) ≤ 1 guarantees that

lim
t→+∞

V(x, t) = 1.

Step 2. The unique solution v(x, t) of problem (4.4) satisfies that

lim
t→+∞

v(x, t) = 1.

Let α2(x, t) = V(x, t) and β2(x, t) = β(x, t), (x, t) ∈ Ω × [0,+∞), where β(x, t) is the unique positive
solution of (4.7). Let

b2(t) = sup
s∈[0,

∫
Ω

max{|α2(x,t)|,|β2(x,t)|}γdx]
a(s).

Then
(1) α2(x, t) < β2(x, t), ∀(x, t) ∈ Ω × (0,+∞);
(2) 

∂α2

∂t
− ∆α2(x, t) =

1
a(Mγ|Ω|)

f (α2(x, t))

≤ min{
1
a0

f (α2(x, t)),
1

b2(t)
f (α2(x, t))}, (x, t) in Ω × (0,+∞),

α2(x, t) = 0, (x, t) on ∂Ω × (0,+∞),
α2(x, 0) ≤ u0(x), x in Ω

and 

∂β2

∂t
− ∆β2(x, t) =

1
a(Mγ|Ω|)

f (β2(x, t))

≥ max{
1
a0

f (β2(x, t)),
1

b0(t)
f (β2(x, t))}, (x, t) in Ω × (0,+∞),

β2(x, t) = z(t,M) > 0, (x, t) on ∂Ω × (0,+∞),
β2(x, 0) = M > u0(x), x in Ω,

which imply that α and β are subsolution and supersolution to (4.4) also. The corollary 3.1 implies that

α2(x, t) ≤ v(x, t) ≤ β2(x, t), (x, t) ∈ Ω × [0,+∞).
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And so
lim

t→+∞
v(x, t) = 1.

Step 3. We show that
lim

t→+∞
u(x, t) = 1.

According to the step 3 in the proof of Theorem 4.1, one knows that τ(t) = G−1(t) exists on [0,+∞)
and

lim
t→+∞

τ(t) = +∞.

Hence
lim

t→+∞
u(x, t) = lim

t→+∞
v(x, τ(t)) = 1.

The proof is complete. �

Theorem 4.2 Suppose f ∈ C1(R,R) with f (0) = 0, f ′(0) < a0λ1 and f (u) ≥ 0 for u ∈ [0,+∞).
Then, there exists a ε > 0 such that for all 0 ≤ u0 ≤ εφ1(x) with u0 ∈ C2+α(Ω), (1.1) has a unique
nonnegative solution u ∈ C2(Q+∞) ∩C(Q+∞) such that

lim
t→+∞

u(x, t) = 0.

Proof. Since f (0) = 0 and f ′(0) < a0λ1, there is a λ1 > r > 0 and ε > 0 such that

f (η)
η
≤ a0(λ1 − r), ∀0 < η ≤ ε,

which guarantees that
1
a0

f (η) ≤ (λ1 − r)η, ∀0 < η ≤ ε. (4.11)

Let 0 ≤ u0(x) ≤ εφ1(x), α(x, t) = 0, β(x, t) = εe−rtφ1(x) and

b0(t) = sup
s∈[0,

∫
Ω

max{|α(x,t)|,|β(x,t)|}γdx]
a(s).

Then, from (4.11), one has
(1) α(x, t) < β(x, t), ∀(x, t) ∈ Ω × (0,+∞);
(2) 

∂α

∂t
− ∆α(x, t) = 0 = min{

1
a0

f (α(x, t)),
1

b0(t)
f (α(x, t))}, (x, t) in Ω × (0,+∞),

α(x, t) = 0, (x, t) on ∂Ω × (0,+∞),
α(x, 0) = 0 ≤ u0(x), x in Ω

and 
∂β

∂t
− ∆β(x, t) = (λ1 − r)β(x, t) ≥ max{

1
a0

f (β(x, t)),
1

b0(t)
f (β(x, t))}, (x, t) in Ω × (0,+∞),

β(x, t) = 0, (x, t) on ∂Ω × (0,+∞),
β(x, 0) ≥ u0(x), x in Ω,
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which imply that α and β are subsolution and supersolution to (4.5).
Now Theorem 3.1 guarantees that (4.5) has a unique solution v(x, t) such that

α(x, t) ≤ v(x, t) ≤ β(x, t), ∀(x, t) ∈ Ω × [0,+∞).

It is easy to see that
lim

t→+∞
v(x, t) = 0.

Since 0 ≤ v(x, t) ≤ ε, one has a0 ≤ a(
∫

Ω
|v(x, t)|γdx) ≤ a(|Ω|εγ). Since Tmax = +∞ in Theorem 2.1, one

has

T max =

∫ Tmax

0

1
a(

∫
Ω
|v(x, t)|γdx)

dt = +∞.

Let

G(ξ) =

∫ ξ

0

1
a(

∫
Ω
|v(x, t)|γdx)

dt, t ∈ [0,+∞)

and τ(t) = G−1(t), t ∈ [0,+∞). Then u(x, t) = v(x, τ(t)) is a unique nonnegative solution to (1.1) on
[0,+∞) and

lim
t→+∞

u(x, t) = lim
t→+∞

v(x, τ(t)) = 0.

The proof is complete. �

Next we consider another the special case of (1.1) for reaction function f = (λus − up), s ∈ (0, 1)
and p > 1. According to theorem 2.1, we only consider the following system

∂u
∂t
− ∆u =

1

a
(∫

Ω

|u(x, t)|γdx
) (λus − up), (x, t) in Ω × (0,+∞),

u(x, t) = 0, (x, t) on ∂Ω × (0,+∞),
u(x, 0) = u0(x), x in Ω,

(4.12)

where s ∈ (0, 1) and p > 1.
Theorem 4.3 Suppose there exists a ε0 > 0 such that u0(x) ≥ ε0φ1(x). Then, for any λ > 0, (1.1)

has at least one positive solution u ∈ C2(Q+∞) ∩C(Q+∞).

Proof. For λ > 0, choose M > 1 + 1
λ

+ max
x∈Ω

u0(x) such that

λMs − Mp < 0.

Since s ∈ (0, 1) and p > 1, we choose ε0 > ε > 0 small enough such that

λ1 <
1

a(Mγ|Ω|)
[λεs−1φs−1

1 (x) − εp−1φ
p−1
1 (x)], x ∈ Ω. (4.13)

Let u(x, t) = εφ1(x) and u(x, t) = M for all (x, t) ∈ Ω × [0,+∞). Set

b0(t) = sup
s∈[0,

∫
Ω

max{|u(x,t)|,|(x,t)|}γdx]

a(s) = a(Mγ|Ω|),
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which together (4.13) implies that
max{

1
a0

[λus
− up],

1
b0(t)

[λus
− up]} < 0,

min{
1
a0

[λus − up],
1

b0(t)
[λus − up]} > λ1εφ1(x).

(4.14)

From (4.14), one has
(1) u(x, t) < u(x, t) = M for all (x, t) ∈ Ω × [0,+∞);
(2)


∂u(x, t)
∂t

− ∆u(x, t) = 0 > max{
1
a0

[λus
− up],

1
b0(t)

[λus
− up)]}, (x, t) in Ω × (0,+∞),

u(x, t) > 0, (x, t) on ∂Ω × (0,+∞),
u(x, 0) > φ(x), x in Ω

and 
∂u(x, t)
∂t

− ∆u(x, t) = λ1εφ1(x) ≤ min{
1
a0

[λus − up],
1

b0(t)
[λus − up]}, (x, t) in Ω × (0,+∞),

u(x, t) = 0, (x, t) on ∂Ω × (0,+∞),
u(x, 0) ≤ φ(x), x in Ω,

which imply that u(x, t) and u(x, t) are sub-super solutions to (4.12).
Theorem 3.1 guarantees that (4.12) has at least one positive solution v(x, t) such that

u(x, t) ≤ v(x, t) ≤ u(x, t), ∀(x, t) ∈ Ω × [0,+∞).

Since 0 ≤ v(x, t) ≤ M, one has a0 ≤ a(
∫

Ω
|v(x, t)|γdx) ≤ a(Mγ|Ω|). Since Tmax = +∞ in Theorem 2.1,

one has

T max =

∫ Tmax

0

1
a(

∫
Ω
|v(x, t)|γdx)

dt = +∞.

Let

G(ξ) =

∫ ξ

0

1
a(

∫
Ω
|v(x, t)|γdx)

dt, t ∈ [0,+∞)

and τ(t) = G−1(t), t ∈ [0,+∞). Then u(x, t) = v(x, τ(t)) is a nonnegative solution to (1.1) on [0,+∞).
The proof is complete. �

Remark. The function f in the above theorem does not satisfy Lipschitz condition.

5. Some one-dimensional numerical experiments

In this section we consider the following case of Eq (1.1):
ut − a

(∫ 1

0
uγ(x, t)dx

)
uxx = λ f (u), (x, t) in (0, 1) × (0,+∞),

u(0, t) = u(1, t) = 0, t ∈ (0,T ),
u(x, 0) = u0(x), x in [0, 1].

(5.1)
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To numerically solve this equation the following implicit backward finite difference approximation was
employed:



ui+1
j − ui

j

∆t
− a(

N∑
j=1

(ui
j)
γ∆x)

ui+1
j+1 − 2ui+1

j + ui+1
j−1

∆x2 = λ f (ui
j), j = 1, · · · ,N − 1,

i = 1, · · · ,K,
ui+1

0 = ui+1
1 = 0, i = 1, · · · ,K,

u0
j = u0(x j), j = 0, · · · ,N,

(5.1)′

where ∆t = T max/K = 0.0002, ∆x = 1/N = 0.02, x j = j∆x, j = 0, 1, · · · , N, and ti = i∆t, i = 0, 1, · · · ,
M. In (5.1)′, ui

j denotes the difference approximations of u(ti, x j). Using above scheme, we simulate
the solution of (5.1) under different f , a and λ.

According to section 4, it is necessary to analyse the first eigenvalue and corresponding
eigenfunction of

{
−φ′′ = λφ, x ∈ (0, 1),
φ(0) = φ(1) = 0.

(5.2)

Obviously, λ1 = π2 and φ1(x) = sin(πx), x ∈ [0, 1].

First, for Eq (5.1), let a(t) = 1 + t, γ = 1, λ = 500, f (u) = u − u3. If the initial condition is given
by u0(x) = 2 sin(πx), which satisfies that max

x∈[0,1]
u0(x) = 2 > 1 and 1

a(Mγ |Ω|) f ′(0) = 500
1+4/π > π2, in our

numerical simulations, we present the result in Figure 1. If u0(x) = 0.5 sin(πx) which satisfies that
max
x∈[0,1]

u0(x) = 0.5 < 1 and 1
a(Mγ |Ω|) f ′(0) = 500

1+1/π > π2, in our numerical simulations, we present the

result in Figure 2. The simulations indicate Corollary 4.1 is in agreement with the numerical results
presented in Figure 1. Note f is independent on u in problem (1.2) and (1.3) and f (u) = u − u3 in this
example, which illustrates that our results improve these ones in [3, 8].

Second, for Eq (5.1), let a(t) = 1 + t, γ = 1, λ = 7. If f (u) = eu − 1 and the initial condition is given
by u0(x) = 0.5 sin(πx), which satisfies that 1

a0
f ′(0) = 7 < π2, in our numerical simulations, we present

the result in Figure 3. If f (u) = u + u3 and u0(x) = 0.2 sin(πx) which satisfies that 1
a0

f ′(0) = 7 < π2, in
our numerical simulations, we present the result in Figure 4.

The simulations indicate Theorem 4.2 is in agreement with the numerical results presented in
Figure 2. In these examples, f (u) = eu − 1 or f (u) = u + u3, which are different from f (u) = ru(k − u)
or f (u) = ru/(k + u) in [1].
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Figure 1. Solution to (5.1) with a(t) = 1 + t, γ = 1, λ = 500, f (u) = u−u3, u0(x) = 2 sin(πx).

Figure 2. Solution to (5.1) with a(t) = 1+t, γ = 1, λ = 500, f (u) = u−u3, u0(x) = 0.5 sin(πx).
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Figure 3. Solution to (5.1) with a(t) = 1 + t, γ = 1, λ = 7, u0(x) = 0.5 sin(πx) and
f (u) = eu − 1.

Figure 4. Solution to (5.1) with a(t) = 1 + t, γ = 1, λ = 7, u0(x) = 0.2 sin(πx) and
f (u) = u + u3.

Finally, for Eq (5.1), let a(t) = 1 + t, γ = 1, s = 1
2 , p = 3, f (u) = us − up and u0(x) = 1.5 sin(πx). If

λ1 = 50, in our numerical simulations, we present the results in Figure 5. If λ1 = 100, in our numerical
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simulations, we present the results in Figure 6. The simulations indicate Theorem 4.5 is in agreement
with the numerical results presented in Figure 3.

Figure 5. Solution to (5.1) for a(t) = 1 + t, γ = 1, s = 1
2 , p = 3, f (u) = us − up and

u0(x) = 1.5 sin(πx), λ1 = 50.

Figure 6. Solution to (5.1) for a(t) = 1 + t, γ = 1, s = 1
2 , p = 3, f (u) = us − up and

u0(x) = 1.5 sin(πx), λ2 = 100.
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6. Conclusions

This paper studies on a parabolic equation with nonlocal diffusion. Using the sub-supersolution
method, we prove the existence, uniqueness and long-time behavior of positive solutions. Under the
suitable cases for one-dimensional equations, we plotted 3D simulations of the the solutions. From
these Figures 1–6, it may be observed that solutions to the studied nonlinear model show the estimated
solution propagations.
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