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1. Introduction

The accoplishment of warped product manifolds came into existent after the study of Bishop and
O’Neill [1] on the manifolds of negative curvature. Examining the fact that a Riemannian product of
manifolds can not have negative curvature, they constructed the model of warped product manifolds
for the class of manifolds of negative (or non positive) curvature which is defined as follows:

Let (U1, g1) and (U2, g2) be two Riemannian manifolds with Riemannian metrics g1 and g2

respectively and ψ be a positive differentiable function on U1. If ξ : U1 × U2 → U1 and
η : U1 × U2 → U2 are the projection maps given by ξ(p, q) = p and η(p, q) = q for every
(p, q) ∈ U1 × U2, then the warped product manifold is the product manifold U1 × U2 equipped with
the Riemannian structure such that

g(V1,V2) = g1(ξ∗V1, ξ∗V2) + (ξ ◦ π)2g2(η∗V1, η∗V2),
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for all V1,V2 ∈ TU. The function ψ is called the warping function of the warped product manifold. If
the warping function is constant, then the warped product is trivial i.e., simply Riemannian product.
On the basis of the fact that warped product manifolds admit a number of applications in Physics and
theory of relativity [2], this has been a topic of extensive research. Warped products provide many
fundamental solutions to Einstein field equations [2]. The concept of modelling of space-time near
black holes adopts the idea of warped product manifolds [3]. Schwartzschild space-time is an example
of warped product U ×r K2, where the base U = R × R+ is a half plane r > 0 and the fibre K2 is
the unit sphere. Under certain conditions, the Schwartzchild space-time becomes the black hole. A
cosmological model to represent the universe as a space-time known as Robertson-Walker model is a
warped product [4].

In [1] authors have studied some fundamental features of warped product manifolds. An extrinsic
study on warped product submanifolds of the kaehler manifolds was performed by B. Y. Chen ( [5,6]).
Since then, many geometers have explored warped product manifolds in different settings like almost
complex and almost contact manifolds and various existence results have been investigated (see the
survey article [7]).

In 1999, Chen [8] discovered a relationship between Ricci curvature and squared mean curvature
vector for an arbitrary Riemannian manifold. On the line of Chen a series of articles have been appeared
to formulate the relationship between Ricci curvature and squared mean curvature in the setting of
some important structures on Riemannian manifolds (see [9–14]). Recently, Mustafa et al. [15] proved
a relationship between Ricci curvature and squared mean curvature for warped product submanifolds
of a semi-slant submanifold of Kenmotsu space forms.

In this paper, our aim is to obtain a relationship between Ricci curvature and squared mean curvature
for biwarped product submanifolds in the setting of complex space forms.

2. Preliminaries

Let Ū be an almost Hermitian manifold with an almost complex structure J and a Hermitian metric
g, i.e., J2 = −I and g(JV1, JV2) = g(V1,V2), for all vector fields V1,V2 on Ū. If J is parallel with
respect to the Levi-Civita connection D̄ on Ū, that mean

(D̄V1 J)V2 = 0, (2.1)

for all V1,V2 ∈ TŪ, then (Ū, J, g, D̄) is called a Kaehler manifold. A Kaehler manifold Ū is called a
complex space form if it has constant holomorphic sectional curvature denoted by Ū(c). The curvature
tensor of the complex space form Ū(c) is given by

R̄(V1,V2,V2,V4) =
c
4

[g(V2,V3)g(V1,V4) − g(V1,V3)g(V2,V4) + g(V1, JV3)g(JV2,V4)

− g(V2, JV3)g(JV1,V4) + 2g(V1, JV2)g(JV3,V4)],
(2.2)

for any V1,V2,V3,V4 ∈ TŪ.
Let U be an n−dimensional Riemannian manifold isometrically immersed in a m−dimensional

Riemannian manifold Ū. Then the Gauss and Weingarten formulas are D̄V1V2 = DV1V2 + h(V1,V2)
and D̄V1ξ = −AξV1 + D⊥V1

ξ respectively, for all V1,V2 ∈ TU and ξ ∈ T⊥U. Where D is the induced
Levi-civita connection on U, ξ is a vector field normal to U, h is the second fundamental form of U,
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D⊥ is the normal connection in the normal bundle T⊥U and Aξ is the shape operator of the second
fundamental form. The second fundamental form h and the shape operator are associated by the
following formula

g(h(V1,V2), ξ) = g(AξV1,V2). (2.3)

The equation of Gauss is given by

R(V1,V2,V3,V4) = R̄(V1,V2,V3,V4) + g(h(V1,V4), h(V2,V3)) − g(h(V1,V3), h(V2,V4)), (2.4)

for all V1,V2,V3,V4 ∈ TU. Where, R̄ and R are the curvature tensors of Ū and U respectively.
For any V ∈ TU and N ∈ T⊥U, JV1 and JN can be decomposed as follows

JV1 = PV1 + FV1 (2.5)

and
JN = tN + f N, (2.6)

where PV1 (resp. tN) is the tangential and FV1 (resp. f N) is the normal component of JV1 ( resp. JN).
For any orthonormal basis {e1, e2, . . . , ek} of the tangent space TxU, the mean curvature vector H(x)

and its squared norm are defined as follows

H(x) =
1
n

k∑
i=1

h(ei, ei), ‖H‖2 =
1
k2

k∑
i, j=1

g(h(ei, ei), h(e j, e j)), (2.7)

where k is the dimension of U. If h = 0 then the submanifold is said to be totally geodesic and minimal
if H = 0. If h(V1,V2) = g(V1,V2)H for all V1,V2 ∈ TU, then U is called totally umbilical.

The scalar curvature of Ū is denoted by τ̄(Ū) and is defined as

τ̄(Ū) =
∑

1≤p<q≤m

κ̄pq, (2.8)

where κ̄pq = κ̄(ep ∧ eq) and m is the dimension of the Riemannian manifold M̄. Throughout this study,
we shall use the equivalent version of the above equation, which is given by

2τ̄(Ū) =
∑

1≤p<q≤m

κ̄pq. (2.9)

In a similar way, the scalar curvature τ̄(Lx) of a L−plane is given by

τ̄(Lx) =
∑

1≤p<q≤m

κ̄pq. (2.10)

Let {e1, . . . , ek} be an orthonormal basis of the tangent space TxU and if er belongs to the orthonormal
basis {ek+1, . . . em} of the normal space T⊥U, then we have

hr
pq = g(h(ep, eq), er) (2.11)

and

‖h‖2 =

n∑
p,q=1

g(h(ep, eq), h(ep, eq)). (2.12)
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Let κpq and κ̄pq be the sectional curvatures of the plane sections spanned by ep and eq at x in the
submanifold Uk and in the Riemannian space form Ūm(c), respectively. Thus by Gauss equation, we
have

κpq = κ̄pq +

m∑
r=k+1

(hr
pphr

qq − (hr
pq)2). (2.13)

The global tensor field for orthonormal frame of vector field {e1, . . . , ek} on Uk is defined as

T̄ (V1,V2) =

k∑
i=1

{g(R̄(ei,V1)V2, ei)}, (2.14)

for all V1,V2 ∈ TxUk. The above tensor is called the Ricci tensor. If we fix a distinct vector eu from
{e1, . . . , ek} on Uk, which is governed by χ. Then the Ricci curvature is defined by

R(χ) =

k∑
p=1
p,u

κ(ep ∧ eu). (2.15)

For a smooth function ψ on a Riemannian manifold U with Riemannian metric g, the gradient of ψ is
denoted by ∇ψ and is defined as

g(∇ψ,U1) = U1ψ, (2.16)

for all U1 ∈ TU.
Let the dimension of U is k and {e1, e2, . . . , ek} be a basis of TU. Then as a result of (2.16), we get

‖∇ψ‖2 =

k∑
i=1

(ei(ψ))2. (2.17)

The Laplacian of ψ is defined by

∆ψ =

k∑
i=1

{(∇eiei)ψ − eieiψ}. (2.18)

3. Biwarped product submanifolds of a Kaehler manifold

B. Y. Chen and F. Dillen [16] generalize the definition of warped product submanifold to multiply
warped product manifolds as follows.

Let {Ui}, i = 1, 2, . . . , k be Riemannian manifolds with respective Riemannian metrics {gi}i=1,2,...,k

and {ψ}i=2,3,...,k are positive valued functions on U1. Then the product manifold U = U1 ×U2 × · · · ×Uk

endowed with the Riemannian metric g given by

g = h∗1(g1) +

k∑
i=2

(ψi ◦ h1)2h∗i (gi)

is called multiply warped product manifold and denoted by U = U1 × f2 U2 × · · · × fk Uk where
hi(i = 1, 2, . . . , k) are the projection maps of U onto Ui respectively. The functions fi are known as the
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warping functions [16]. If the warping functions are constants, the warped product is simply
Riemannian product of manifolds. As a paricular case of multiply warped product manifolds, we can
define biwarped product manifolds for i = 3. For i = 2, multiply warped product manifold reduces to
single warped product manifold. Consider the biwarped product manifold U = U0 × f1 U1 × f2 U2 with
the Levi-civita connection of Ui for i = 0, 1, 2. Now, we have the following result for biwarped
product submanifold.

Lemma 3.1. [17] Let U = U0 × f1 U1 × f2 U2 be a biwarped product manifold. Then we have

DV1V2 = DV2V1 = V1(ln fi)V2 (3.1)

for V1 ∈ TU0 and V2 ∈ TUi, for i = 1, 2.

Recently, H. M. Tastan [18] studied biwarped submanifolds in the Kaehler manifolds and this was
followed by M. A. Khan and K. Khan [19]. Basically, M. A. Khan and K. Khan explored biwarped
product submnaifolds of the type U = UT × f1 U⊥ × f2 Uθ in the setting of complex space forms. Where
UT , U⊥ and Uθ are the invarianat, totally real and pointwise slant submanifolds respectively.
Throughout this study we consider k−dimensional biwarped product submanifold
Uk = Uk1

T × f2 Uk2
⊥ × f3 Uk3

θ of a complex space form, where k1, k2, k3 are the dimensions of the invariant,
totally real and pointwise slant submanifolds. If Uk3

θ = {0} then the biwarped product submanifold
becomes the CR-warped product submanifold. Similarly, if Uk2

⊥ = {0} then the biwarped product
submanifold reduced to pointwise semi-slant warped product submanifold.

For a biwarped product submanifold Uk = Uk1
T × f2 Uk2

⊥ × f3 Uk3
θ of a Riemannian manifold from Eq

(3.5) of [16] one can conclude the following result

∆ f2

f2
+

∆ f3

f3
=

k1∑
i=1

k2∑
j=1

κ(ei, e j) +

k1∑
i=1

k3∑
k=1

κ(ei, ek). (3.2)

Now, we have the following initial result.

Lemma 3.2. Let Uk = Uk1
T × f2 Uk2

⊥ × f3 Uk3
θ be a biwarped product submanifold isometrically immersed

in a Kaehler manifold Ū. Then

(i) g(h(V1,V2), FV3) = 0,
(ii) g(h(V1,V2), JV4) = 0,

(iii) g(h(JV1, JV1),N) = −g(h(V1,V1),N),

for any V1,V2 ∈ TUk1
T , V4 ∈ TUk2

⊥ , V3 ∈ TUk3
θ and N belongs to invariant subbundle of T⊥U.

Proof. By using Gauss and Weingarten formulae in Eq (2.1), we have

DV1 PV3 + h(V1, PV3) − AFV3V1 + D⊥V1
FV3 + JDV1V3 + DV3 JV1 + Jh(V1,V3) = 0,

taking inner product with V2 and using 3.1, we get the required result. In a similar way, we can prove
the part (ii).
To prove (iii), for any V1 ∈ TUT we have

D̄V1 JV1 = JD̄V1V1,
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using Gauss formula and (2.1), we get

DV1 JV1 + h(JV1,V1) = JDV1V1 + Jh(V1,V1),

taking inner product with JN, above equation yields

g(h(JV1,V1), JN) = g(h(V1,V1),N), (3.3)

interchanging V1 by JV1 the above equation gives

g(h(JV1,V1), JN) = −g(h(JV1, JV1),N). (3.4)

From (3.3) and (3.4), we get the required result. �

Definition 3.1. The warped product U1× f2 U2× f3 U3 isometrically immersed in a Riemannian manifold
Ū is called Ui totally geodesic if the partial second fundamental form hi vanishes identically. It is called
Ui-minimal if the partial mean curvature vector Hi becomes zero for i = 1, 2, 3.

Assumme that the distributions corresponding to the submanifolds Uk1
T , Uk2

⊥ and Uk3
θ are S , S ⊥ and

S θ respectively. From the Lemma 3.2 it is evident that the isometric immersion Uk1
T × f2 Uk2

⊥ × f3 Uk3
θ

into a Kaehler manifold is D− minimal. The S− minimality property provides us a useful relationship
between the biwarped product submanifold Uk1

T × f2 Uk2
⊥ × f3 Uk3

θ and the equation of Gauss.
Let {e1, . . . , ep, ep+1 = Je1, . . . , ek1 = Jep, ek1+1, . . . , ek2 , ek2+1 = e1, . . . , ek2+q = eq, ek2+q+1 = eq+1 =

sec θPe1, . . . e(k3=2q) = ek3 = sec θPeq} be a local orthonormal frame of vector fields on the biwarped
product submanifold Uk1

T × f2 Uk2
⊥ × f3 Uk3

θ such that the set {e1, . . . , ep, ep+1 = Je1, . . . , ek1 = Jep} is
tangent to Uk1

T , the set {ek1+1, . . . , ek2} is tangent to Uk2
⊥ and the set {ek2+1, . . . , ek2+q, . . . ek3} is tangent to

Uk3
θ . Moreover, {ek+1 = Jek1+1, . . . ek+k2 = Jek2 , ek+k2+1 = csc θFe1, . . . , ek+k3 = csc θFeq, ek+k2+k3+1 =

ē1, . . . , em = ēk} is a basis for the normal bundle T⊥U, such that the sets {ek+1 = Jek1+1, . . . ek+k2 = Jek2}

is tangent to JS ⊥, {ek+1 = csc θFe1, . . . , ek+k2 = csc θFeq} is tangent to FS θ and {ē1, . . . , ēl} is tangent
to the complementary invariant subbundle µ with even dimension l.

From Lemma 3.2, it is easy to conclude that

m∑
r=k+1

k1∑
i, j=1

g(h(ei, e j), er) = 0. (3.5)

Thus it follows that the trace of h due to Uk1
T becomes zero. Hence in view of the Definition 3.1, we

obtain the following important result.

Theorem 3.3. Let Uk = Uk1
T × f2 Uk2

⊥ × f3 Uk3
θ be a biwarped product submanifold isometrically immersed

in a Kaehler manifold. Then Uk is S− minimal.

So, it is easy to conclude the following

‖H‖2 =
1
k2

m∑
r=k+1

(hr
k1+1k1+1 + · · · + hr

k2k2
+ · · · + hr

kk)
2, (3.6)

where ‖H‖2 is the squared mean curvature.
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4. Ricci curvature for biwarped product submanifold

In this section, we investigate Ricci curvature in terms of the squared norm of mean curvature and
the warping functions as follows.

Theorem 4.1. Let Uk = Uk1
T × f2 Uk2

⊥ × f3 Uk3
θ be a biwarped product submanifold isometrically immersed

in a complex space form Ū(c). Then for each orthogonal unit vector field χ ∈ TxU, either tangent to
Uk1

T , Uk2
⊥ or Uk3

θ , we have

(1) The Ricci curvature satisfy the following inequalities

(i) If χ is tangent to Uk1
T , then

1
4

k2‖H‖2 ≥ R(χ) +
k2∆ f2

f2
+

k3∆ f3

f3
+

c
4

(k − k1k2 − k2k3 − k1k3 −
1
2

). (4.1)

(ii) If χ is tangent to Uk2
⊥ , then

1
4

k2‖H‖2 ≥ R(χ) +
k2∆ f2

f2
+

k3∆ f3

f3
+

c
4

(k − k1k2 − k2k3 − k1k3 + 1). (4.2)

(iii) χ is tangent to Uk2
θ , then

1
4

k2‖H‖2 ≥ R(χ) +
k2∆ f2

f2
+

k3∆ f3

f3
+

c
4

(k − k1k2 − k2k3 − k1k3

+ 1 −
3
2

cos2 θ).
(4.3)

(2) If H(x) = 0, then each point x ∈ Uk there is a unit vector field χ which satisfies the equality case
of (1) if and only if Uk is mixed totally geodesic and χ lies in the relative null space Nx at x.

(3) For the equality case we have

(a) The equality case of (4.1) holds identically for all unit vector fields tangent to Uk1
T at each

x ∈ Uk if and only if Uk is mixed totally geodesic and S−totally geodesic biwarped product
submanifold in Ūm(c).

(b) The equality case of (4.2) holds identically for all unit vector fields tangent to Uk2
⊥ at each

x ∈ Uk if and only if U is mixed totally geodesic and either Uk is S ⊥- totally geodesic
biwarped product or Uk is a S ⊥ totally umbilical in S̄ m(c) with dim S ⊥ = 2.

(c) The equality case of (4.3) holds identically for all unit vector fields tangent to Uk3
θ at each

x ∈ Uk if and only if U is mixed totally geodesic and either Uk is S θ- totally geodesic
biwarped product submanifold or Uk is a S θ totally umbilical in Ūm(c) with dim S θ = 2.

(d) The equality case of (1) holds identically for all unit tangent vectors to Uk at each x ∈ Uk if
and only if either Uk is totally geodesic submanifold or Uk is a mixed totally geodesic totally
umbilical and S− totally geodesic submanifold with dim Uθ = 2 and dim U⊥ = 2

where k1, k2, and k3 are the dimensions of Uk1
T , Uk2

⊥ , and Uk3
θ respectively.

Proof. Suppose that Uk = Uk1
T × f2 Uk2

⊥ × f3 Uk3
θ be a biwarped product submanifold of a complex space

form. From Gauss equation, we have

k2‖H‖2 = 2τ(Uk) + ‖h‖2 − 2τ̄(Uk). (4.4)
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Let {e1, . . . , ek1 , ek1+1, . . . , ek2 , . . . ek} be a local orthonormal frame of vector fields on Uk such that
{e1, . . . , ek1} are tangent to Uk1

T , {ek1+1, . . . , ek2} are tangent to Uk2
⊥ and {ek2+1, . . . , ek} are tangent to Uk3

θ .
So, the unit tangent vector χ = eA ∈ {e1, . . . , ek} can be expanded (4.4) as follows

k2‖H‖2 = 2τ(Uk) +
1
2

m∑
r=k+1

{(hr
11 + . . . hr

k2k2
+ · · · + hr

kk − hr
AA)2 + (hr

AA)2}

−

m∑
r=k+1

∑
1≤i, j≤k

hr
iih

r
j j − 2τ̄(Uk). (4.5)

The above expression can be written as follows

k2‖H‖2 = 2τ(Uk) +
1
2

m∑
r=k+1

{(hr
11 + . . . hr

k2k2
+ · · · + hr

kk)
2

+ (2hr
AA − (hr

11 + · · · + hr
kk))

2} + 2
m∑

r=k+1

∑
1≤i< j≤k

(hr
i j)

2

− 2
m∑

r=k+1

∑
1≤i< j≤k

i, j,A

hr
iih

r
j j − 2τ̄(Uk).

In view of the Lemma 3.2, the preceding expression takes the form

k2‖H‖2 = 2τ(Uk) +
1
2

m∑
r=k+1

{(hr
k1+1k1+1 + . . . hr

k2k2
+ · · · + hr

kk)
2

+
1
2

m∑
r=k+1

(2hr
AA − (hr

k1+1k1+1 + . . . hr
k2k2

+ · · · + hr
kk))

2

+ 2
m∑

r=k+1

∑
1≤i< j≤k

(hr
i j)

2 − 2
m∑

r=k+1

∑
1≤i< j≤k

i, j,A

hr
iih

r
j j − 2τ̄(Uk).

(4.6)

Considering unit tangent vector χ = eA, we have three choices χ is either tangent to the base manifold
Uk1

T or to the fibers Uk2
⊥ and Uk3

θ .

Case 1: If χ is tangent to Uk1
T , then we need to choose a unit vector field from {e1, . . . , ek1}. Let χ = e1.
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Then from (2.14) and (3.5) we have

k2‖H‖2 ≥R(χ) +
1
2

m∑
r=k+1

{(hr
k1+1k1+1 + . . . hr

k2k2
+ · · · + hr

kk)
2 +

k2∆ f2

f2

+
k3∆ f3

f3
+

1
2

m∑
r=k+1

(2hr
11 − (hr

k1+1k1+1 + . . . hr
k2k2

+ · · · + hr
kk))

2

+

m∑
r=k+1

∑
1≤α<β≤k1

(hr
ααhr

ββ − (hr
αβ)

2)

+

m∑
r=k+1

∑
k1+1≤p<q≤k2

(hr
pphr

qq − (hr
pq)2)

+

m∑
r=k+1

∑
k2+1≤s<t≤k

(hr
ssh

r
tt − (hr

st)
2)

+

m∑
r=k+1

∑
1≤i< j≤k

(hr
i j)

2 −

m∑
r=k+1

∑
2≤i< j≤k

(hr
iih

r
j j)

− 2τ̄(U) +
∑

2≤i< j≤k

κ̄(ei, e j) + τ̄(Uk1
T ) + τ̄(Uk2

⊥ ) + τ̄(Uk3
θ ).

(4.7)

Putting V1,V4 = ei and V2,V3 = e j in the formula (2.2), we have

2τ̄(U) =
c
4

[k(k − 1) + 3k1 + 3k3 cos2 θ] (4.8)

∑
2≤i< j≤k

κ̄(ei, e j) =
c
8

[(k − 1)(k − 2) + 3(k1 − 1) + 3k3 cos2 θ]

τ̄(Uk1
T ) =

c
8

[k1(k1 − 1) + 3k1]

τ̄(Uk2
⊥ ) =

c
8

[k2(k2 − 1)]

τ̄(Uk3
θ ) =

c
8

[k3(k3 − 1) + 3k3 cos2 θ].
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Using these values in (4.7), we get

k2‖H‖2 ≥R(χ) +
1
2

k2‖H‖2 +
1
2

m∑
r=k+1

(2hr
11 − (hr

k1+1k1+1 + · · · + hr
kk))

2

+
k2∆ f2

f2
+

k3∆ f3

f3
+

m∑
r=k+1

k1∑
i=1

k2∑
j=k1+1

(hr
i j)

2

+

m∑
r=k+1

k1∑
i=1

k∑
k=k2+1

(hr
ik)

2 +

m∑
r=k+1

k1∑
β=2

hr
11hr

ββ

−

m∑
r=k+1

k1∑
i=2

k2∑
j=k1+1

hr
iih

r
j j −

m∑
r=k+1

k1∑
i=2

n∑
n=k2+1

hr
iih

r
nn

+
c
4

(k − k1k2 − k2k3 − k3k1 −
1
2

).

(4.9)

In view of Lemma 3.1
m∑

r=k+1

k1∑
β=2

hr
11hr

ββ =

m∑
r=k+1

(hr
11)2

−

m∑
r=k+1

k1∑
i=2

[ k2∑
j=k1+1

hr
iih

r
j j +

k∑
n=k2+1

hr
iih

r
nn
]

=

m∑
r=k+1

n∑
j=k1+1

hr
11hr

j j.

Utilizing in (4.9), we have

k2‖H‖2 ≥R(χ) +
1
2

k2‖H‖2 +
1
2

m∑
r=k+1

(2hr
11 − (hr

k1+1k1+1 + · · · + hr
kk))

2

+
k2∆ f2

f2
+

k3∆ f3

f3
+

m∑
r=k+1

k1∑
i=1

k2∑
j=k1+1

(hr
i j)

2

+

m∑
r=k+1

k1∑
i=1

k∑
k=k2+1

(hr
ik)

2 −

m∑
r=k+1

(hr
11)2 +

k1∑
i=1

k∑
j=k1+1

hr
iih

r
j j

+
c
4

(k − k1k2 − k2k3 − k3k1 −
1
2

).

(4.10)

The third term on the right hand side can be written as

1
2

m∑
r=k+1

(2hr
11 − (hr

k1+1k1+1 + · · · + hr
k2k2

+ · · · + hr
kk))

2

= 2
m∑

r=k+1

(hr
11)2 +

1
2

k2‖H‖2 − 2
m∑

r=k+1

[ k2∑
j=k1+1

hr
11hr

j j

+

k∑
n=k2+1

hr
11hr

nn
]
.

(4.11)
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Combining above two expressions, we have

1
2

k2‖H‖2 ≥R(χ) +

m∑
r=k+1

(hr
11)2 −

m∑
r=k+1

k∑
j=k1+1

hr
11hr

j j

+
1
2

m∑
r=k+1

(hr
k1+1k1+1 + · · · + hr

k2k2
+ · · · + hr

kk)
2

+

m∑
r=k+1

k1∑
i=1

k∑
j=k1+1

(hr
i j)

2 +
k2∆ f2

f2
+

k3∆ f3

f3

+
c
4

(k − k1k2 − k2k3 − k3k1 −
1
2

).

(4.12)

Or equivalently

1
4

k2‖H‖2 ≥R(χ) +
1
4

m∑
r=k+1

(2hr
11 − (hr

k1+1k1+1 + · · · + hr
k2k2

+ · · · + hr
kk))

2

+

m∑
r=k+1

k1∑
i=1

k∑
j=k1+1

(hr
i j)

2 +
k2∆ f2

f2
+

k3∆ f3

f3

+
c
4

(k − k1k2 − k2k3 − k3k1 −
1
2

),

(4.13)

which gives the inequality (i) of (1).
Case 2. If χ is tangent to Uk2

⊥ , we chose the unit vector from {ek1+1, . . . , ek2}. Suppose χ = ek2 , then
from (4.6), we deduce

k2‖H‖2 ≥R(χ) +
1
2

m∑
r=k+1

(hr
k1+1k1+1 + . . . hr

k2k2
+ · · · + hr

kk)
2 +

k2∆ f2

f2

+
k3∆ f3

f3
+

1
2

m∑
r=k+1

((hr
k1+1k1+1 + . . . hr

k2k2
+ · · · + hr

kk) − 2hr
k2k2

)2

+

m∑
r=k+1

∑
1≤α<β≤k1

(hr
ααhr

ββ − (hr
αβ)

2) +

m∑
r=k+1

∑
k1+1≤s<t≤k2

(hr
ssh

r
tt − (hr

st)
2)

+

m∑
r=k+1

∑
k2+1≤p<q≤k

(hr
pphr

qq − (hr
pq)2) +

m∑
r=k+1

∑
1≤i< j≤k

(hr
i j)

2

−

m∑
r=k+1

∑
1≤i< j≤k

i, j,k2

(hr
iih

r
j j) − 2τ̄(U) +

∑
1≤i< j≤k

i, j,k2

κ̄(ei, e j)

+ τ̄(Uk1
T ) + τ̄(Uk2

⊥ ) + τ̄(Uk3
θ ).

(4.14)

From (2.2) by putting V1,V4 = ei and V2,V3 = e j, one can compute∑
1≤i< j≤k

i, j,k2

κ̄(ei, e j) =
c
8

[(k − 1)(k − 2) + 3k1 + 3k3 cos2 θ]
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τ̄(Uk1
T ) =

c
8

[k1(k1 − 1) + 3k1]

τ̄(Uk2
⊥ ) =

c
8

[k2(k2 − 1)]

τ̄(Uk3
θ ) =

c
8

[k3(k3 − 1) + 3k3 cos2 θ].

Using these values together with (4.8) in (4.14) and applying similar techniques as in Case 1, we obtain

k2‖H‖2 ≥R(χ) +
1
2

m∑
r=k+1

((hr
k1+1k1+1 + . . . hr

k2k2
+ · · · + hr

kk) − 2hr
k2k2

))2

+
1
2

k2‖H‖2 +
k2∆ f2

f2
+

k3∆ f3

f3
+

m∑
r=k+1

∑
1≤i< j≤k

(hr
i j)

2

+

m∑
r=k+1

[ k2−1∑
t=k1+1

hr
k2k2

hr
tt +

k∑
l=k2+1

hr
k2k2

hr
ll
]

m∑
r=1

k1∑
i=1

[ k2−1∑
j=k1+1

hr
iih

r
j j +

k∑
n=k2+1

hr
iih

r
nn
]

+
c
4

(k − k1k2 − k2k3 − k3k1 + 1).

(4.15)

By the Lemma 3.1, one can conclude

m∑
r=1

k1∑
i=1

[ k2−1∑
j=k1+1

hr
iih

r
j j +

k∑
n=k2+1

hr
iih

r
nn
]

= 0.

The second and seventh terms on right hand side of (4.15) can be solved as follows

1
2

m∑
r=k+1

((hr
k1+1k1+1 + · · · + hr

kk) − 2hr
k2k2

))2 +

m∑
r=k+1

[ k2−1∑
t=k1+1

hr
k2k2

hr
tt +

k∑
l=k2+1

hr
k2k2

hr
ll
]

=
1
2

m∑
r=k+1

(hr
k1+1k1+1 + · · · + hr

kk)
2 + 2

m∑
r=k+1

(hr
k2k2

)2

− 2
m∑

r=k+1

k∑
j=k1+1

hr
k2k2

hr
j j +

m∑
r=k+1

k∑
t=k1+1

hr
k2k2

hr
tt −

m∑
r=k+1

(hr
k2k2

)2

=
1
2

m∑
r=k+1

(hr
k1+1k1+1 + · · · + hr

kk)
2 +

m∑
r=k+1

(hr
k2k2

)2

−

m∑
r=k+1

k∑
j=k1+1

hr
kkh

r
j j.

(4.16)
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Utilizing these two values in (4.15), we arrive

1
2

k2‖H‖2 ≥R(χ) +

m∑
r=k+1

(hr
k2k2

)2 −

m∑
r=k+1

k∑
i=k1+1

hr
kkh

r
j j

+
1
2

m∑
r=k+1

(hr
k1+1k1+1 + · · · + hr

kk)2 +
1
2

k2‖H‖2 +
k2∆ f2

f2
+

k3∆ f3

f3

+

m∑
r=k+1

k1∑
i=1

k∑
j=k1+1

(hr
i j)

2 +
c
4

(k − k1k2 − k2k3 − k3k1 + 1).

(4.17)

By using similar steps as in Case 1, the above inequality can be written as

1
4

k2‖H‖2 ≥R(χ) +
1
4

m∑
r=k+1

(2hr
k2k2
− (hr

k1+1k1+1 + · · · + hr
kk))

2

+
k2∆ f2

f2
+

k3∆ f3

f3
+

c
4

(k − k1k2 − k2k3 − k1k3 + 1).

(4.18)

The last inequality leads to inequality (ii) of (1).
Case 3. If χ is tangent to Uk3

θ , then we choose the unit vector field from {ek2+1, . . . , ek}. Suppose the
vector χ is ek. Then from (4.6)

k2‖H‖2 ≥R(χ) +
1
2

m∑
r=k+1

(hr
k1+1k1+1 + . . . hr

k2k2
+ · · · + hr

kk)
2 +

k2∆ f2

f2

+
k3∆ f3

f3
+

1
2

m∑
r=k+1

((hr
k1+1k1+1 + . . . hr

k2k2
+ · · · + hr

kk) − 2hr
kk)

2

+

m∑
r=k+1

∑
1≤α<β≤k1

(hr
ααhr

ββ − (hr
αβ)

2) +

m∑
r=k+1

∑
k1+1≤s<t≤k2

(hr
ssh

r
tt − (hr

st)
2)

+

m∑
r=k+1

∑
k2+1≤p<q≤k

(hr
pphr

qq − (hr
pq)2) +

m∑
r=k+1

∑
1≤i< j≤k

(hr
i j)

2

−

m∑
r=k+1

∑
1≤i< j≤k−1

hr
iih

r
j j − 2τ̄(U) +

∑
1≤i< j≤k−1

κ̄(ei, e j)

+ τ̄(Uk1
T ) + τ̄(Uk2

⊥ ) + τ̄(Uk3
θ ).

(4.19)

From (2.2), one can compute∑
1≤i< j≤k−1

κ̄(ei, e j) =
c
8

[(k − 1)(k − 2) + 3k1 + 3(k3 − 1) cos2 θ]

τ̄(Uk1
T ) =

c
8

[k1(k1 − 1) + 3k1]

τ̄(Uk2
⊥ ) =

c
8

[k2(k2 − 1)]
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τ̄(Uk3
θ ) =

c
8

[k3(k3 − 1) + 3k3 cos2 θ].

By usage of these values together with (4.8) in (4.19) and analogous to case 1 and case 2, we obtain

k2‖H‖2 ≥R(χ) +
1
2

k2‖H‖2 +
1
2

m∑
r=k+1

((hr
k1+1k1+1 + . . . hr

k2k2
+ · · · + hr

kk) − 2hr
kk)

2

+
k2∆ f2

f2
+

k3∆ f3

f3
+

m∑
r=k+1

∑
1≤i< j≤k

(hr
i j)

2

+

m∑
r=k+1

k−1∑
q=k1+1

hr
kkh

r
qq −

m∑
r=k+1

k1∑
i=1

k−1∑
j=k1+1

hr
iih

r
j j

+
c
4

(k − k1k2 − k2k3 − k1k3 + 1 −
3
2

cos2 θ).

(4.20)

On applying the Lemma 3.1, it is easy to verify

m∑
r=k+1

k1∑
i=1

k−1∑
j=k1+1

hr
iih

r
j j = 0. (4.21)

Using in (4.20), we obtain

k2‖H‖2 ≥R(χ) +
1
2

k2‖H‖2 +
1
2

m∑
r=k+1

((hr
k1+1k1+1 + . . . hr

k2k2
+ · · · + hr

kk) − 2hr
kk)

2

+
k2∆ f2

f2
+

k3∆ f3

f3
+

m∑
r=k+1

∑
1≤i< j≤k

(hr
i j)

2 +

m∑
r=k+1

k−1∑
q=k1+1

hr
kkh

r
qq

+
c
4

(k − k1k2 − k2k3 − k1k3 + 1 −
3
2

cos2 θ).

(4.22)

The third and seventh terms on the right hand side of (4.22) in a similar way as in case 1 and case 2
can be simplified as

1
2

m∑
r=k+1

((hr
k1+1k1+1 + . . . hr

k2k2
+ · · · + hr

kk) − 2hr
kk)

2 +

m∑
r=k+1

k−1∑
q=k1+1

hr
kh

r
qq

=
1
2

m∑
r=k+1

(hr
k1+1k1+1 + . . . hr

k2k2
+ · · · + hr

kk)
2 +

m∑
r=k+1

(hr
kk)

2

−

m∑
r=k+1

k∑
j=k1+1

hr
kkh

r
j j.

(4.23)

By combining (4.22) and (4.23) and using similar techniques as used in case 1 and case 2, we can
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derive

1
4

k2‖H‖2 ≥ R(χ) +
1
4

m∑
r=k+1

(2hr
kk − (hr

k1+1k1+1 + · · · + hr
kk))

2

+
k2∆ f2

f2
+

k3∆ f3

f3
+

c
4

(k − k1k2 − k2k3 − k1k3 + 1

−
3
2

cos2 θ).

(4.24)

The last inequality leads to inequality (iii) in (1).
Next, we explore the equality cases of (1). First, we redefine the notion of the relative null spaceNx

of the submanifold Uk in the complex space form Ūm(c) at any point x ∈ Uk, the relative null space
was defined by B. Y. Chen [8], as follows

Nx = {V1 ∈ TxUk : h(V1,V2) = 0,∀V2 ∈ TxUk}.

For A ∈ {1, . . . , k} a unit vector field eA tangent to Uk at x satisfies the equality sign of (4.1) identically
if and only if

(i)
k1∑

p=1

k∑
q=k1+1

hr
pq = 0 (ii)

k∑
b=1

n∑
A=1
b,A

hr
bA = 0 (iii) 2hr

AA =

k∑
q=k1+1

hr
qq, (4.25)

holds for r ∈ {k + 1, . . .m}, which implies that Uk is mixed totally geodesic biwarped product
submanifold. Combining statements (ii) and (iii) with the fact that Uk is biwarped product
submanifold, we get that the unit vector field χ = eA belongs to the relative null space Nx. The
converse is trivial, this proves statement (2).

For a biwarped product submanifold, the equality sign of (4.1) holds identically for all unit tangent
vector belong to UT at x if and only if

(i)
k1∑

p=1

k∑
q=k1+1

hr
pq = 0 (ii)

k∑
b=1

k1∑
A=1
b,A

hr
bA = 0 (iii) 2hr

pp =

k∑
q=k1+1

hr
qq, (4.26)

where p ∈ {1, . . . , k1} and r ∈ {k + 1, . . . ,m}. Since Uk is biwarped product submanifold, the third
condition implies that hr

pp = 0, p ∈ {1, . . . , k1}. Using this in the condition (ii), we conclude that Uk

is S−totally geodesic biwarped product submanifold in Ūm(c) and mixed totally geodesicness follows
from the condition (i). Which proves (a) in the statement (3).

For a biwarped product submanifold, the equality sign of (4.2) holds identically for all unit tangent
vector fields tangent to U⊥ at x if and only if

(i)
k1∑

p=1

n∑
q=k1+1

hr
pq = 0 (ii)

k∑
b=1

k2∑
A=k1+1

b,A

hr
bA = 0 (iii) 2hr

KK =

k∑
q=k1+1

hr
qq, (4.27)

such that K ∈ {k1 + 1, . . . , k2} and r ∈ {k + 1, . . . ,m}. From the condition (iii) two cases emerge, that
is

hr
LL = 0, ∀L ∈ {k1 + 1, . . . , k2} and r ∈ {k + 1, . . . ,m} or dim U⊥ = 2. (4.28)
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If the first case of (4.27) satisfies, then by virtue of condition (ii), it is easy to conclude that Uk is
a S ⊥− totally geodesic biwarped product submanifold in Ūm(c). This is the first case of part (b) of
statement (3).

For a biwarped product submanifold, the equality sign of (4.3) holds identically for all unit tangent
vector fields tangent to Uk3

θ at x if and only if

(i)
k1∑

p=1

k∑
q=k1+1

hr
pq = 0 (ii)

n∑
b=1

k3∑
A=k2+1

b,A

hr
bA = 0 (iii) 2hr

LL =

n∑
q=k1+1

hr
qq, (4.29)

such that L ∈ {k2 + 1, . . . , k} and r ∈ {k + 1, . . . ,m}. From the condition (iii) two cases arise, that is

hr
LL = 0, ∀L ∈ {k2 + 1, . . . , n} and r ∈ {k + 1, . . . ,m} or dim Uθ = 2. (4.30)

If the first case of (4.29) satisfies, then by virtue of condition (ii), it is easy to conclude that Uk is a S θ−

totally geodesic biwarped product submanifold in Ūm(c). This is the first case of part (c) of statement
(3).

For the other case, assume that Uk is not S θ−totally geodesic biwarped product submanifold and
dim Uθ = 2. Then condition (ii) of (4.29) implies that Uk is S θ− totally umbilical biwarped product
submanifold in Ū(c), which is second case of this part. This verifies part (c) of (3).

To prove (d) using parts (a), (b) and (c) of (3), we combine (4.26), (4.27) and (4.29). For the first case
of this part, assume that dimU⊥ , 2 and dimUθ , 2. Since from parts (a), (b) and (c) of statement (3) we
conclude that Uk is S−totally geodesic, S ⊥− totally geodesic and S θ− totally geodesic submanifolds
in Ūm(c). Hence Uk is a totally geodesic submanifold in Ūm(c).

For another case, suppose that first case does not satisfy. Then parts (a), (b) and (c) provide that Uk is
mixed totally geodesic and S− totally geodesic submanifold of Ūm(c) with dimU⊥ = 2 and dimUθ = 2.
From the conditions (b) and (c) it follows that Uk is S ⊥− and Dθ−totally umbilical biwarped product
submanifolds and from (a) it is S−totally geodesic, which is part (d). This proves the theorem. �

If Uk2
⊥ = {0}, then the biwarped product submanifold becomes the Point wise semi-slant warped

product submanifold that is Uk = Uk1
T × f2 Uk3

θ . Now, we have the following corollary which can be
deduced from the Theorem 4.2.

Corollary 4.2. Let Uk = Uk1
T × f3 Uk3

θ be a pointwise semi-slant warped product submanifold
isometrically immersed in a complex space form Ū(c). Then for each orthogonal unit vector field
χ ∈ TxU, either tangent to Uk1

T or Uk3
θ , we have

(1) The Ricci curvature satisfy the following inequalities

(i) If χ is tangent to Uk1
T , then

1
4

k2‖H‖2 ≥ R(χ) +
k3∆ f3

f3
+

c
4

(k − k1k3 −
1
2

). (4.31)

(ii) χ is tangent to Uk3
θ , then

1
4

k2‖H‖2 ≥ R(χ) +
k3∆ f3

f3
+

c
4

(k − k1k3 + 1 −
3
2

cos2 θ). (4.32)
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(2) If H(x) = 0, then each point x ∈ Uk there is a unit vector field χ which satisfies the equality case
of (1) if and only if Uk is mixed totally geodesic and χ lies in the relative null space Nx at x.

(3) For the equality case we have

(a) The equality case of (4.31) holds identically for all unit vector fields tangent to UT at each
x ∈ Uk if and only if Uk is mixed totally geodesic and S−totally geodesic point wise semi
slant warped product submanifold in Ūm(c).

(b) The equality case of (4.32) holds identically for all unit vector fields tangent to Uk3
θ at each

x ∈ Uk if and only if S is mixed totally geodesic and either Uk is Dθ- totally geodesic point
wise semi slant warped product submanifold or Uk is a S θ totally umbilical in Ūm(c) with
dim S θ = 2.

(c) The equality case of (1) holds identically for all unit tangent vectors to Uk at each x ∈ Uk if
and only if either Uk is totally geodesic submanifold or Uk is a mixed totally geodesic totally
umbilical and S− totally geodesic submanifold with dim Uθ = 2.

where k1 and k3 are the dimensions of Uk1
T and Uk3

θ respectively.

Now, we have another case that is if Uk3
θ = {0} then the biwarped product submanifold becomes the

CR-warped product submanifold. In this case we have the following corollary.

Corollary 4.3. Let Uk = Uk1
T × f2 Uk2

⊥ be a CR-warped product submanifold isometrically immersed in
a complex space form Ūm(c). Then for each orthogonal unit vector field χ ∈ TxU, either tangent to Uk1

T
or Uk2

⊥ , we have

(1) The Ricci curvature satisfy the following inequalities

(i) If χ is tangent to Uk1
T , then

1
4

k2‖H‖2 ≥ R(χ) +
U2∆ f2

f2
+

c
4

(k − k1k2 −
1
2

). (4.33)

(ii) If χ is tangent to Uk2
⊥ , then

1
4

k2‖H‖2 ≥ R(χ) +
k2∆ f2

f2
+

c
4

(k − k1k2 + 1). (4.34)

(2) If H(x) = 0, then each point x ∈ Uk there is a unit vector field χ which satisfies the equality case
of (1) if and only if Uk is mixed totally geodesic and χ lies in the relative null space Nx at x.

(3) For the equality case we have

(a) The equality case of (4.33) holds identically for all unit vector fields tangent to UT at each
x ∈ Uk if and only if Uk is mixed totally geodesic and S−totally geodesic CR-warped product
submanifold in Ūm(c).

(b) The equality case of (4.34) holds identically for all unit vector fields tangent to Uk2
⊥ at each

x ∈ Uk if and only if U is mixed totally geodesic and either Uk is S ⊥- totally geodesic
biwarped product or Uk is a S ⊥ totally umbilical in Ūm(c) with dim S ⊥ = 2.

(c) The equality case of (1) holds identically for all unit tangent vectors to Uk at each x ∈ Uk if
and only if either Uk is totally geodesic submanifold or Uk is a mixed totally geodesic totally
umbilical and S− totally geodesic submanifold with dim U⊥ = 2.

where k1 and k2 are the dimensions of Uk1
T and Uk2

⊥ respectively.
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