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1. Introduction

Let M : H ⇒ H be a set-valued maximal monotone mapping and K be a nonempty closed convex
subset of Hilbert space H. The inclusion problem:

Find x ∈ K such that x ∈ M−1(0), (1.1)

was introduced by Rockafellar [19]. The iconic method for solving inclusion problem (1.1) is the
proximal point method which was first introduced and studied by Martinet [15] for optimization
problem and later generalized by Rockafellar [19] to solve the inclusion problem (1.1).

Many problems arising in nonlinear analysis, such as optimization, variational inequality problems,
equilibrium problems and partial differential equations are convertible to the inclusion problem (1.1).
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Therefore, in the recent past, many authors have been extended and generalized the inclusion problem
(1.1) in different directions using novel and innovative techniques, see for example [1, 4, 7, 9, 11–13,
20, 24] and references cited therein.

The fixed point problem of a nonexpansive self mapping S : K → K is defined as:

Find x ∈ K such that x ∈ Fix(S ). (1.2)

Most of the iterative methods to find the fixed point of nonexpansive mappings are due to Mann [14].
Moudafi [16] proposed the viscosity method by combining the nonexpansive mapping S with a given
contraction mapping ϕ over K. For an arbitrary x0 ∈ K, compute the sequence {xn} generated by

xn+1 = βnϕ(xn) + (1 − βn)S (xn), n ≥ 0,

where βn ∈ (0, 1) goes slowly to zero. The sequence {xn+1} achieved from this iterative method converge
strongly to a fixed point of S . Common solution of fixed point problem (1.2) of a nonexpansive self
mapping S and variational inclusion problem studied by Takahashi et al. [22] in Hilbert spaces, which
is defined as:

Find x ∈ K such that x ∈ Fix(S ) ∩ (M + F)−1(0), (1.3)

where F is single valued monotone mapping and M, S are same as defined above. Recently, Ansari
et al. [1] extended the problem (1.3) to Hadamard manifolds and studied the Halpern and Mann type
algorithms to solve problem (1.3) and discussed several applications on Hadamard manifold. Very
recently, Al-Homidan et al. [2] extended the viscosity method for hierarchical variational inequality
problems and discussed its several special cases on Hadamard manifolds. Konrawut et al. [10] studied
the splitting algorithms for common solutions of equilibrium and inclusion problems on Hadamard
manifolds.

In this article, encouraged and inspired by the work of [1, 10, 16], our motive is to introduce and
study a splitting type viscosity method to find the common solution of inclusion problem (1.1) and
fixed point problem (1.2) on Hadamard manifolds, that is,

Find x ∈ K such that x ∈ Fix(S ) ∩ (M)−1(0), (1.4)

where K is a nonempty closed convex subset of Hadamard manifold D. Our suggested method is like
a double back-ward method for inclusion and fixed point problems and can be seen as the refinement
of the work studied in [1]. The article is organized as follows:

The next section consists of preliminaries and some useful results of Riemannian manifolds. Section
3 deals with the main results explaining the splitting type viscosity method and convergence of the
sequences obtained from it. In the last section, some applications of the proposed method and its
convergence theorem to solve variational inequality, optimization and fixed point problems are given.

2. Preliminaries and auxiliary results

Let D be a finite dimensional differentiable manifold and for a vector field p ∈ D, the tangent space
of D at p is denoted by TpD and the tangent bundle by TD = ∪p∈DTpD. The tangent space TpD at p is
a vector space and has the same dimension as D. An inner product<p(·, ·) on TpD is the Riemannian

AIMS Mathematics Volume 6, Issue 5, 5205–5221.



5207

metric on TpD. A tensor <p(·, ·) is called a Riemannian metric on TpD, if for each p ∈ D, the tensor
<(·, ·) is a Riemannian metric on D. We assume that D is endowed with the Riemannian metric
<p(·, ·) with the corresponding norm ‖.‖p. The angle between 0 , x, y ∈ TqD, denoted by ∠p(x, y) is
defined as cos ∠p(x, y) =

<p(·,·)
‖x‖‖y‖ . For the sake of simplicity, we donote ‖.‖p = ‖.‖,<p(·, ·) = <(·, ·) and

∠p(x, y) = ∠(x, y).

For a given piecewise smooth curve γ : [a, b] → D joining p to q (i.e.γ(a) = p and γ(b) = q), the
length of γ is defined as

L(γ) =

∫ b

a
‖γ
′

(s)‖ds.

The Riemannian distance d(p, q) induces the original topology on D, minimize the length over the set
of all such curves joining p to q.

Let O be the Levi-Civita connection corresponding to Riemannian manifold D. A vector field U is
said to be parallel along a smooth curve γ if Oγ′ (s)U = 0. If γ

′

is parallel along γ, i.e., Oγ′ (s)γ
′

(s) = 0,
then γ is called geodesic and in this case ‖γ

′

‖ is constant and if ‖γ
′

‖ = 1, then γ is said to be normalized
geodesic. A geodesic joining p to q in D is called minimal geodesic if its length is equal to d(p, q). A
Riemannian manifold is called (geodesically) complete if for any p ∈ D, all geodesics emanating from
p are defined for all s ∈ (−∞,∞). We know by Hopf-Rinow Theorem [21] that if D is Riemannian
manifold then following are equivalent:

(I) D is complete.
(II) Any pair of points in D can be joined by a minimal geodesic.

(III) (D, d) is a complete metric space.
(IV) Bounded closed subsets of D are compact.

Let γ : [0, 1]→ D be a geodesic joining p to q. Then

d(γ(s1), γ(s2)) = |s1 − s2|d(p, q), ∀s1, s2 ∈ [0, 1]. (2.1)

Assuming D is a complete Riemannian manifold, the exponential mapping expp : TpD → D at p
is defined by expp(ϑ) = γϑ(1, p) for each ϑ ∈ TpD, where γ(·) = γϑ(·, p) is the geodesic starting at p
with velocity ϑ (i.e., γ(0) = 0 and γ

′

(0) = ϑ). We know that expq(sϑ) = γϑ(s, p) for each real number
s. One can easily see that expp0 = γϑ(0; p) = p, where 0 is the zero tangent vector. The exponential
mapping expp is differentiable on TpD for any p ∈ D. It is known to us that the derivative of expp(0)
is equal to the identity vector of TpD. Therefore by inverse mapping theorem there exists an inverse
exponential mapping exp−1 : D→ TpD. Moreover, for any p, q ∈ D, we have d(p, q) = ‖exp−1

p q‖.

A complete, simply connected Riemannian manifold of non-positive sectional curvature is called a
Hadamard manifold.

Proposition 2.1. [21] Let D be a Hadamard manifold. Then expp : TpD→ D is a diffeomorphism for
all p ∈ D and for any two points p, q ∈ D, there exists a unique normalized geodesic γ : [0, 1] → D
joining p = γ(0) to q = γ(1) which is in fact a minimal geodesic denoted by

γ(s) = expp s exp−1q, for all s ∈ [0, 1]. (2.2)
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A subset K ⊂ D is said to be convex if for any two points p, q ∈ K, the geodesic joining p to
q is contained in K, that is, if γ : [a, b] → D is a geodesic such that p = γ(a) and q = γ(b), then
γ((1− s)a + sb) ∈ K for all s ∈ [0, 1]. From now on, K ⊂ D will denote a nonempty, closed and convex
subset of a Hadamard manifold D. The projection onto K is defined by

PK(p) = {r ∈ K : d(p, r) ≤ d(p, q), for all q ∈ K}, for all p ∈ D. (2.3)

A function g : K → R is said to be convex if for any geodesic γ : [a, b] → D, the composition
function g ◦ γ : [a, b]→ R is convex, that is,

(g ◦ γ)(as + (1 − s)b) ≤ s(g ◦ γ)(a) + (1 − s)(g ◦ γ)(b), for all s ∈ [0, 1] and for all a, b ∈ R.

Proposition 2.2. [21] The Riemannian distance d : D × D → R is a convex function with respect to
the product Riemannian metric, i.e., given any pair of geodesics γ1 : [0, 1] → D and γ2 : [0, 1] → D,
the following inequality holds for all s ∈ [0, 1] :

d(γ1(s), γ2(s)) ≤ (1 − s)d(γ1(0), γ2(0)) + sd(γ1(1), γ2(1)). (2.4)

In particular, for each p ∈ D, the function d(·, p) : D→ R is a convex function.

If D is a finite dimensional manifold with dimension n, then Proposition 2.1 shows that D is
diffeomorphic to the Euclidean space Rn. Thus, we see that D has the same topology and differential
structure as Rn. Moreover, Hadamard manifolds and Euclidean spaces have several similar geometrical
properties. We describe some of them in the following results.

Recall that a geodesic triangle ∆(q1, q2, q3) of Riemannian manifold is a set consisting of three
points q1, q2 and q3 and the three minimal geodesics γ j joining q j to q j+1, where j = 1, 2, 3 mod (3).

Lemma 2.1. [13] Let ∆(q1, q2, q3) be a geodesic triangle in Hadamard manifold D. Then there exist
q
′

1, q
′

2, q
′

3 ∈ R
2 such that

d(q1, q2) = ‖q
′

1 − q
′

2‖, d(q2, q3) = ‖q
′

2 − q
′

3‖, and d(q3, q1) = ‖q
′

3 − q
′

1‖.

The points q
′

1, q2
′, q

′

3 are called the comparison points to q1, q2, q3, respectively. The triangle
∆(q

′

1, q
′

2, q
′

3) is called the comparison triangle of the geodesic triangle ∆(q1, q2, q3), which is unique
upto isometry of D.

Lemma 2.2. [13] Let ∆(q1, q2, q3) be a geodesic triangle in Hadamard manifold D and ∆(q
′

1, q
′

2, q
′

3) ∈
R2 be its comparison triangle.

(i) Let θ1, θ2, θ3 (respectively, θ
′

1, θ
′

2, θ
′

3) be the angles of ∆(q1, q2, q3) (respectively, ∆(q
′

1, q
′

2, q
′

3)) at the
vertices (q1, q2, q3) (respectively, q

′

1, q
′

2, q
′

3). Then the following inequality holds:

θ
′

1 ≥ θ1, θ
′

2 ≥ θ2, θ
′

3 ≥ θ3.

(ii) Let p be a point on the geodesic joining q1 to q2 and p
′

be its comparison point in the interval
[q
′

1, q
′

2]. Suppose that d(p, q1) = ‖p
′

− q
′

1‖ and d(p, q2) = ‖p
′

− q
′

2‖. Then

d(p, q3) ≤ ‖p
′

− q
′

3‖.
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Proposition 2.3. [21] (Comparison Theorem for Triangle) Let ∆(q1, q2, q3) be a geodesic triangle.
Denote, for each j = 1, 2, 3 mod (3), by γ j : [0, li] → D geodesic joining q j to q j+1 and set l j =

L(γ j), θ j = ∠(γ
′

j(0),−γ
′

j−1(l j−1)). Then

θ1 + θ2 + θ3 ≤ π, (2.5)

l2
j + l2

j+1 − 2l jl j+1 cos θ j+1 ≤ l2
j−1. (2.6)

In terms of distance and exponential mapping, (2.6) can be rewritten as

d2(q j, q j+1) + d2(q j+1, q j+2) − 2<(exp−1
q j+1

q j, exp−1
q j+1

q j+2) ≤ d2(q j−1, q j), (2.7)

since

<(exp−1
q j+1

q j, exp−1
q j+1

q j+2) = d(q j, q j+1)d(q j+1, q j+2) cosα j+1. (2.8)

Following proposition characterizes the projection mapping.

Proposition 2.4. [23] Let K be a nonempty closed convex subset of a Hadamard manifold D. Then
for any p ∈ D, PK(p) is a singleton set and the following inequality holds:

<
(
exp−1

PK (p) p, exp−1
PK (p)q

)
≤ 0, ∀q ∈ D. (2.9)

The set of all single-valued vector fields M : D → TD is denoted by Ω(D) such that M(p) ∈ Tp(D)
for all p ∈ D. We denote by χ(D) the set of all set-valued vector fields, M : D⇒ TD such that M(p) ⊆
Tp(D) for all p ∈ D(M), where D(M) is the domain of M defined as D(M) = {p ∈ D : M(p) , ∅}.

Definition 2.1. [17] A single-valued vector field M ∈ Ω(D) is said to be monotone if for all p, q ∈ D,

<
(
M(p), exp−1

p q
)
≤ <

(
M(q), − exp−1

q p
)
.

Definition 2.2. [12] A single-valued vector field M ∈ Ω(D) is said to be firmly nonexpansive if for all
p, q ∈ K ⊆ D, the mapping ψ : [0, 1]→ [0,∞] defined by

ψ(s) = d(expp s exp−1
p M(p), expq s exp−1

q M(q)), ∀s ∈ [0, 1],

is nonincreasing.

Definition 2.3. [8] A set-valued vector field M ∈ χ(D) is said to be monotone if for all p, q ∈ D(D),

<
(
u, exp−1

p q
)
≤ <

(
v,−exp−1

q p
)
, ∀u ∈ M(p),∀v ∈ M(q).

Definition 2.4. [12] Let M ∈ χ(D), the resolvent of M of order λ > 0 is set-valued mapping JM
λ : D⇒

D(M) defined by
JM
λ (p) = {q ∈ D : p ∈ expqλM(q)}, ∀p ∈ D.

Theorem 2.1. [12] Let λ > 0 and M ∈ χ(D). Then vector field M is monotone if and only if JM
λ is

single-valued and firmly nonexpansive.

Lemma 2.3. [13] Let {an} and {bn} be two sequences of positive real numbers such that lim
n→∞

bn
an

= 0

and
∞∑

n=1
an = +∞. Let {xn} be a sequence of positive real numbers satisfying the recursive inequality:

xn+1 ≤ (1 − an)xn + anbn, ∀n ∈ N,

then lim
n→∞

xn = 0.
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3. Main results

We propose the following splitting type viscosity method for problem (1.4) on Hadamard
manifold.

Algorithm 3.1. Suppose that K be nonempty closed and convex subset of Hadamard manifold D. Let
M : K ⇒ D be a set-valued vector field, ϕ : K → K be a contraction and S : K → K be a
nonexpansive mapping such that Fix(S ) ∩ (M)−1(0) , ∅. For an arbitrary x0 ∈ K, αn, βn ∈ (0, 1) and
λ > 0, compute the sequences {yn} and {xn} as follows :

yn = expxn
(1 − αn)exp−1

xn
JM
λ (xn),

xn+1 = expϕ(xn)(1 − βn)exp−1
ϕ(xn)S (yn),

or, equivalently
xn+1 = γn(1 − βn), ∀n ≥ 0,

where γn : [0, 1] → D is sequence of geodesics joining ϕ(xn) to S (yn), that is, γn(0) = ϕ(xn) and
γn(1) = S (yn) for all n ≥ 0.

For the convergence of Algorithm 3.1, we require the following conditions on the sequences {αn}

and {βn} :

(A1) lim
n→∞

αn = 0, lim
n→∞

βn = 0;

(A2)
∞∑

n=0
αn = ∞,

∞∑
n=0

βn = ∞;

(A3)
∞∑

n=0
|αn+1 − αn| < ∞,

∞∑
n=0
|βn+1 − βn| < ∞

If S = I, the identity mapping on K, then Algorithm 3.1 reduces to the following algorithm to find the
solution of problem (1.1).

Algorithm 3.2. Suppose that K be nonempty closed and convex subset of Hadamard manifold D. Let
M : K ⇒ D be a set-valued vector field and ϕ : K → K be self mapping. For an arbitrary x0 ∈ K,
compute the sequences {yn} and {xn} as follows

yn = expxn
(1 − αn)exp−1

xn
JM
λ (xn),

xn+1 = exp−1
ϕ(xn)(1 − βn)exp−1

ϕ(xn)yn,

where αn, βn ∈ (0, 1) and λ > 0 are same as given in Algorithm 3.1.

We can obtain the the following proposition by substituting A = 0, zero vector field in Proposition
3.2 of [3].

Proposition 3.1. For any x ∈ K, the following assertions are equivalent:

(i) x ∈ (M)−1(0);
(ii) x = JM

λ

[
expx(−λx)

]
, for all λ > 0.
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Remark 3.1. It can be easily seen that for a nonexpansive mapping S , the set Fix(S ) is geodesic
convex, for more details, (see [1, 12]). Since JM

λ is nonexpansive, by Proposition 3.1, it follows that
Fix

(
JM
λ

)
=

(
M

)−1(0). Therefore
(
M

)−1(0) is closed and geodesic convex in D. Hence, Fix(S )∩
(
M

)−1(0)
is closed and geodesic convex in D.

Theorem 3.1. Let D be a Hadamard manifold and K be a nonempty, closed and convex subset of D.
Let S : K → K be a nonexpansive mapping and ϕ : K → K be a contraction with constant κ. Let
M : K → TD be a set-valued monotone vector field. Suppose {αn}, and {βn} are sequences in (0, 1),
satisfying the conditions A1 − A3. If Fix(S ) ∩ (M)−1(0) , ∅, then the sequences achieved by Algorithm
3.1 converges to w ∈ Fix(S ) ∩ (M)−1(0), where w = PFix(S )∩(M)−1(0)ϕ(w).

Proof. We divide the proof into following five steps.
Step I. We show that {yn}, {xn}, {ϕ(xn)} and {T (yn)} are bounded.
Let x? ∈ Fix(S ) ∩ (M)−1(0), then x? ∈ Fix(S ) and x? ∈ (M)−1(0). Since yn = γn(1−αn), by Proposition
3.1 and nonexpansive property of JM

λ , we have

d(yn, x?) = d
(
γn(1 − αn), x?

)
≤ αnd

(
γn(0), x?

)
+ (1 − αn)d

(
γn(1), x?

)
≤ αnd

(
xn, x?

)
+ (1 − αn)d

(
JM
λ (xn), x?

)
≤ αnd

(
xn, x?

)
+ (1 − αn)d

(
xn, x?

)
= d

(
xn, x?

)
. (3.1)

Since xn+1 = γn(1 − βn), then by convexity of Riemannian distance, we have

d(xn+1, x?) = d(γn(1 − βn), x?)
≤ βnd(γn(0), x?) + (1 − βn)d(γn(1), x?)
= βnd(ϕ(xn), x?) + (1 − βn)d(S (yn), x?)
≤ βn

[
d(ϕ(xn), ϕ(x?)) + d(ϕ(x?), x?)

]
+ (1 − βn)d(S (yn), S (x?))

≤ βn
[
κd(xn, x?) + d(ϕ(x?), x?)

]
+ (1 − βn)d(yn, x?)

≤ βn
[
κd(xn, x?) + d(ϕ(x?), x?)

]
+ (1 − βn)d(xn, x?)

≤
[
1 − βn(1 − κ)]d(xn, x?) + βnd(ϕ(x?), x?)
...

≤ max
{
d(x0, x?),

1
1 − κ

d(ϕ(x?), x?)
}
, (3.2)

which implies that the sequence {xn} is bounded and using (3.1), {yn} is also bounded. Since S is
nonexpansive, ϕ is a contraction, we conclude that the sequences {S (yn)} and {ϕ(xn)} are also bounded.

Step II. We show that lim
n→∞

d(xn+1, xn) = 0.
Since S is nonexpansive and ϕ is a contraction, then using (2.1), (2.4) and Proposition 2.2, we have

d(xn+1, xn) = d
(
γn(1 − βn), γn−1(1 − βn−1)

)
≤ d

(
γn(1 − βn), γn−1(1 − βn)

)
+ d

(
γn−1(1 − βn), γn−1(1 − βn−1)

)
AIMS Mathematics Volume 6, Issue 5, 5205–5221.
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≤ βnd
(
γn(0), γn−1(0)

)
+ (1 − βn)d

(
γn(1), γn−1(1)

)
+ |βn − βn−1|d

(
ϕ(xn−1), S (yn−1)

)
≤ βnd

(
ϕ(xn), ϕ(xn−1)

)
+ (1 − βn)d

(
S (yn), S (yn−1)

)
+ |βn − βn−1|d

(
ϕ(xn−1), S (yn−1)

)
≤ βnκd(xn, xn−1) + (1 − βn)d(yn, yn−1)

+ |βn − βn−1|d
(
ϕ(xn−1), S (yn−1)

)
. (3.3)

Again, by Algorithm 3.1 and nonexpansive property of JM
λ , we have

d(yn, yn−1) = d
(
γn(1 − αn), γn−1(1 − αn−1)

)
≤ d

(
γn(1 − αn), γn−1(1 − αn)

)
+ d

(
γn−1(1 − αn), γn−1(1 − αn−1)

)
≤ d

(
γn(0), γn−1(0)

)
+ (1 − αn)d

(
γn(1), γn−1(1)

)
+ |αn − αn−1|d

(
xn−1, JM

λ (xn−1)
)

≤ αnd
(
xn, xn−1)

)
+ (1 − αn)d

(
JM
λ (xn), JM

λ (xn−1)
)

+ |αn − αn−1|d
(
xn−1, JM

λ (xn−1)
)

≤ αnd(xn, xn−1) + (1 − αn)d(xn, xn−1)
+ |αn − αn−1|d

(
xn−1, JM

λ (xn−1)
)

≤ d(xn, xn−1) + |αn − αn−1|d
(
xn−1, JM

λ (xn−1)
)
. (3.4)

Since {xn}, {ϕ(xn)} and {JM
λ (xn)} are bounded, then there exist constants C1,C2 and C3, such that

d(xn, JM
λ (xn−1)) ≤ C1, d(ϕ(xn), x?) ≤ C2, d(xn, x?) ≤ C3 . Thus, we have

d(yn, yn−1) ≤ d(xn, xn−1) + |αn − αn−1|C1, (3.5)

and

d
(
ϕ(xn−1), S (xn−1)

)
≤ d(ϕ(xn−1), x?) + d(S (yn−1), x?)
≤ d(ϕ(xn−1), x?) + d(yn−1, x?)
≤ d(ϕ(xn−1), x?) + d(xn−1, x?)
≤ C2 + C3 := C4. (3.6)

d(xn, xn−1) ≤ d(xn, x?) + d(xn−1, x?) ≤ C3 + C3 = 2C3 := C5. (3.7)

Combining (3.4), (3.5), (3.6) and (3.7), (3.3) becomes

d
(
xn+1, xn

)
≤ [1 − βn(1 − κ)]C5 + +|αn − αn−1|C1 + |βn − βn−1|C4

≤ (1 − β̄n)C5 + |αn − αn−1|C1 + |βn − βn−1|C4,

where β̄n = βn(1 − κ). Let m ≤ n, then

d
(
xn+1, xn

)
≤ C5

n∏
i=m

(1 − β̄i) + C1

n∑
i=m

|αi − αi−1| + C4

n∑
i=m

|βi − βi−1|.
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Taking limit n→ ∞, we have

d
(
xn+1, xn

)
≤ C5

∞∏
i=m

(1 − β̄i)) + C1

∞∑
i=m

|αi − αi−1| + C4

∞∑
i=m

|βi − βi−1|.

From condition A2, we have
∞∏

i=m
(1− β̄i) = 0, from A3, we get

∞∑
i=m
|αi − αi−1| = 0 and

∞∑
i=m
|βi − βi−1| = 0, as

m→ ∞. Thus by taking m→ ∞, we get

lim
n→∞

d
(
xn+1, xn

)
= 0. (3.8)

Step III. Next, we show that lim
n→∞

d(xn, yn) = 0. Since ϕ is a contraction, then by using Algorithm 3.1
and (3.1), we obtain

d(xn, yn) ≤ d(xn, x?) + d(yn, x?)
≤ d(xn, x?) + d(xn, x?)
= 2d(xn, x?)
= 2

{
d(γn−1(1 − βn−1), x?)

}
≤ 2

{
βn−1d(γn−1(0), x?) + (1 − βn−1)d(γn−1(1), x?)

}
≤ 2

{
βn−1d(ϕ(xn−1), x?) + (1 − βn−1)d(S (yn−1), x?)

}
≤ 2

{
βn−1[d(ϕ(xn−1), ϕ(x?)) + d(ϕ(x?), x?)] + (1 − βn−1)d(S (yn−1), x?)

}
≤ 2

{
βn−1κd(xn−1, x?) + βn−1d(ϕ(x?), x?) + (1 − βn−1)d(xn−1, x?)

}
< 2

{
βn−1κd(xn−1, x?) + βn−1d(ϕ(x?), x?) + (1 − βn−1)d(xn−1, x?)

}
= 2

{
[1 − βn−1(1 − κ)]d(xn−1, x?) + βn−1d(ϕ(x?), x?)

}
= 2

{
[1 − β̄n−1]d(xn−1, x?) + βn−1d(ϕ(x?), x?)

}
. (3.9)

Let m ≤ n, then we have

d(xn, yn) < 2C1

n−1∏
j=m

(1 − β̄ j) + 2
n−1∑
j=m

{
β j

n−1∏
i= j+1

(1 − β̄i)
}
d(ϕ(x?), x?).

By taking limit n→ ∞, we have

d(xn, yn) < 2C1

∞∏
j=m

(1 − β̄ j) + 2
∞∑

j=m

{
β j

∞∏
i= j+1

(1 − β̄i)
}
d(ϕ(x?), x?).

From A2, it follows that lim
m→∞

∞∏
j=m

(1− β̄ j) = 0 and from A1 − A2, lim
m→∞

∞∑
j=m

{
β j

∞∏
i= j+1

(1− β̄i)
}

= 0. Hence by

letting limit m→ ∞, we get

lim
n→∞

d(xn, yn) = 0. (3.10)
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Step IV. Since {xn} is bounded, so there exists a subsequence {xnk} of {xn} such that xnk → w as k → ∞.
Let un = JM

λ (xn), by Algorithm 3.1, yn = expxn
(1−αn)exp−1

xn
JM
λ (xn). Then we have d(yn, un) = αnd(xn, un)

and d(yn, un)→ 0 as n→ ∞. Thus

d(xn, un) ≤ d(xn, yn) + d(yn, un)→ 0 as n→ ∞. (3.11)

By the contuinuity of JM
λ , as k → ∞, we have

0 = d(xnk , unk) = d(xnk , J
M
λ (xnk))

= d(w, JM
λ (w)). (3.12)

This implies that JM
λ (w) = w, by Proposition 2.1, we get w ∈ (M)−1(0).

Again, by using the convexity of Riemannian manifold, we have

d(xn+1, S (yn)) = d
(
γn(1 − βn), S (yn)

)
≤ βnd

(
γn(0), S (yn)

)
+ (1 − βn)d

(
γn(1), S (yn)

)
≤ βnd

(
ϕ(xn), S (yn)

)
+ (1 − βn)d

(
S (yn), S (yn)

)
≤ βnd

(
ϕ(un), S (yn)

)
. (3.13)

Since {xn} is bounded and ϕ is a κ-contraction, we get

d(ϕ(xn), S (yn)) ≤ d(ϕ(xn), ϕ(x?)) + d(ϕ(x?), S (yn))
≤ κd(xn, x?) + d(ϕ(x?), x?) + d(S (yn), x?)
< κd(xn, x?) + d(ϕ(x?), x?) + d(yn, x?)
≤ κd(xn, x?) + d(ϕ(x?), x?)+)d(xn, x?)
≤ (1 + κ)d(xn, x?) + d(ϕ(x?), x?)
≤ (1 + κ)C3 + C2 = C6. (3.14)

This together with the condition A1, implies that

lim
n→∞

d(xn+1, S (yn)) = lim
n→∞

βnC6 = 0. (3.15)

Also, from (3.9) and with a subsequence {ynk} of {yn}, we have

lim
k→∞

d(ynk ,w) ≤ lim
k→∞

d(ynk , xnk) + lim
k→∞

d(xnk ,w) = 0, (3.16)

that is, {ynk} converges to w as k → ∞. Then, we obtain

d(S (w),w) ≤ d(S (w), S (ynk)) + d(S (ynk), xnk+1) + d(xnk+1,w)
≤ d(w, ynk) + d(S (ynk), xnk+1) + d(xnk+1,w) → 0, as k → ∞, (3.17)

and so, w ∈ Fix(S ). Thus, we have w ∈ Fix(S ) ∩ (M)−1(0).
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Step V. Finally, we show that lim
n→∞

d(xn, z) = 0.

To prove the last step, we need to show that lim sup
n→∞

<
(
exp−1

z ϕ(z), exp−1
z S (yn)

)
≤ 0, where z is a fixed

point of the mapping PFix(S)∩(M)−1(0)ϕ.

Since w ∈ Fix(S) ∩ (M)−1(0) and w = PFix(S)∩(M)−1(0)ϕ(w), then by Proposition 2.4, we have
<

(
exp−1

z ϕ(z), exp−1
z w

)
≤ 0. Boundedness of {yn} implies that {<(exp−1

z ϕ(z), exp−1
z S (yn))} is bounded.

Then, we have

lim sup
n→∞

<
(
exp−1

z ϕ(z), exp−1
z yn

)
= lim

k→∞
<

(
exp−1

z ϕ(z), exp−1
z S (ynk)

)
. (3.18)

Since ynk → w as k → ∞ and by using continuity of S , we obtain

lim
k→∞
<

(
exp−1

z ϕ(z), exp−1
z S (ynk)

)
= <

(
exp−1

z ϕ(z), exp−1
z S (w)

)
≤ 0,

therefore,

lim sup
n→∞

<
(
exp−1

z ϕ(z), exp−1
z S (yn)

)
≤ 0. (3.19)

For n ≥ 0, set v = ϕ(xn), q = S (yn) and consider geodesic triangles ∆(v, q, z), ∆(ϕ(z), q, v)
and ∆(ϕ(z), q, z), with their comparison triangles ∆(v

′

, q
′

, z
′

), ∆(ϕ(z)′, q′, v′) and ∆(ϕ(z)
′

, q
′

, z
′

). From
Lemma 2.1, we have

d(ϕ(xn), z) = d(v, z) = ‖v
′

− z
′

‖ and d(S (yn), z) = d(q, z) = ‖q
′

− z
′

‖.

d(ϕ(z), z) = ‖ϕ(z)
′

− z
′

‖ and d(S (yn), z) = d(q, z) = ‖q
′

− z
′

‖.

Recall that xn+1 = expϕ(xn)(1 − βn)exp−1
ϕ(xn)S (yn) = expv(1 − βn)exp−1

v q. The comparison point of xn+1 in
R2 is x

′

n+1 = βnv
′

+ (1 − βn)q
′

. Let θ and θ
′

denote the angles at q and q
′

in the triangles ∆(ϕ(z), q, z)
and ∆(ϕ(z)

′

, q
′

, z
′

), respectively. Therefore, θ ≤ θ
′

, and then, cos θ′ ≤ cos θ. By Lemma 2.2 (ii), using
nonexpansive property of S and contraction property of ϕ, we have

d2(xn+1, z) ≤ ‖x
′

n+1 − z
′

‖2

= ‖βnv
′

+ (1 − βn)q
′

− z
′

‖2

= ‖βn(v
′

− z
′

) + (1 − βn)(q
′

− z
′

)‖2

= β2
n‖v

′

− z
′

‖2 + (1 − βn)2‖q
′

− z
′

‖2 + 2βn(1 − βn)‖v
′

− z
′

‖‖q
′

− z
′

‖ cos θ
′

≤ β2
nd2(ϕ(xn), z) + (1 − βn)2d2(S (yn), z)
+ 2βn(1 − βn)d(ϕ(xn), z)d(S (yn), z) cos θ

≤ β2
nd2(ϕ(xn), z) + (1 − βn)2d2(S (yn), z)
+ 2βn(1 − βn)

[
d(ϕ(z), z) + d(ϕ(yn), ϕ(z))

]
d(S (xn), z) cos θ

≤ β2
nd2(ϕ(xn), z) + (1 − βn)2d2(xn, z)
+ 2βn(1 − βn)

[
d(ϕ(z), z) + d(ϕ(xn), ϕ(z))

]
d(xn, z) cos θ

≤ β2
nd2(ϕ(xn), z) + (1 − βn)2d2(xn, z)
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+ 2βn(1 − βn)
[
d(ϕ(z), z)d(xn, z) + d(ϕ(xn), ϕ(z))d(xn, z)

]
cos θ

≤ β2
nd2(ϕ(xn), z) + (1 − βn)2d2(xn, z)
+ 2βn(1 − βn)

[
<(exp−1

z ϕ(z), exp−1
z xn) + κd2(xn, z)

]
= [1 − 2βn + β2

n + 2βn(1 − βn)κ]d2(xn, z)] + β2
nd2(ϕ(xn), z)

+ 2βn(1 − βn)<(exp−1
z f (z), exp−1

z xn)
= (1 − bn)d2(xn, z) + bncn,

where bn = [1−2βn +β2
n +2βn(1−βn)κ] and cn = 1

bn
[β2

nd2(ϕ(xn), z)+2βn(1−βn)<(exp−1
z ϕ(z), exp−1

z xn)].

By (3.19), lim
n→∞

cn ≤ 0 and by conditions A1 and A2, we have lim
n→∞

bn = 0 and
∞∑

n=1
bn = ∞, respectively .

Hence by Lemma 2.3, lim
n→∞

d(xn, z) = 0. This completes the proof. �

We obtain the following convergence result for Algorithm 3.2, by replacing S = I, the identity
mapping in Theorem 3.1.

Theorem 3.2. Let K be a nonempty, closed and convex subset of Hadamard manifold D. Let ϕ : K →
K be a contraction mapping with constant κ and M : K ⇒ TD be a set-valued monotone vector
field. If (M)−1(0) , ∅, then the sequence achieved by Algorithm 3.2 converges to w ∈ (M)−1(0), where
w = P(M)−1(0)ϕ(w).

Remark 3.2. We can obtain splitting type Mann’s iterative methods for the said problems by putting
ϕ = I, the identity mapping on K in Algorithm 3.1 and Algorithm 3.2 and by putting κ = 1 in Theorem
3.1 and Theorem 3.2, we can obtain the convergence theorems.

To illustrate the convergence of our algorithms, we extend the example which was also considered
in [4].

Example 3.1. Let D = R++ = {x ∈ R : x > 0}. Then M is a Riemannian manifold with Riemannian
metric 〈·, ·〉 defined by 〈u, v〉 := g(x)uv for all u, v ∈ TxD, where g : R++ → (0,+∞) is given by
g(x) = x−2. It directly follows that the tangent plane TxD at x ∈ D is equal to R for all x ∈ D. The
Riemannian distance d : D × D→ R+ is given by

d(x, y) :=
∣∣∣∣∣ln x

y

∣∣∣∣∣ , ∀x, y ∈ D.

Therefore, (R++, 〈·, ·〉) is a Hadamard manifold and the unique geodesic γ : R → D starting from
x = γ(0) with v = γ̇(0) ∈ TxD is defined by γ(t) := xe(v/x)t. In other words, γ(t), in terms of initial point
γ(0) = x and terminal point γ(1) = y, is defined as γ(t) := x1−tyt. The inverse of exponential mapping
is given by

γ′(0) = exp−1
x y = x ln

y
x
.

Consider a vector field M : D⇒ R defined by

M(x) := {x}, ∀x ∈ D(M).

Note that M is a monotone vector field and the resolvent of M is given by

JM
λ (x) := xe−λ, ∀λ > 0.
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Let ϕ be a contraction and S be a nonexpansive mapping, defined by ϕ(x) = 1
2 x and S (x) = x for

all x ∈ D, respectively. Clearly, the solution set of the problem (1.4) is {0}. Choose any initial guess
x0 = 1, λ = 1

2 , αn = βn = 1
√

n+1
, and αn = βn = 1

(n+1)
1
3
. Then all the conditions of Theorem 3.2 are

satisfied, and hence, we conclude that the sequence {xn}
∞
n=0 generated by Algorithm 3.1 converges to a

solution of the problem (1.4). The convergence of the sequence is shown in Figure 1.

Figure 1. Convergence graph for the Algorithm 3.1 with the initial choices of scalars λ = 1
2 ,

αn = βn = 1
(n+1)1/2 and αn = βn = 1

(n+1)1/3 initial point x0 = 1.

4. Applications

By adopting the techniques and methodologies of [1–6], we drive the algorithm and convergence
results for variational inequality and optimization problems using the proposed iterative methods.

4.1. Variational inequality

Let K be a nonempty, closed and convex subset of Hadamard manifoldM and A : K → TM be a
single-valued vector field. Németh [18], introduced the variational inequality problem VI(A,K) to find
x? ∈ K such that

〈A(x?), exp−1
x?y〉 ≥ 0,∀y ∈ K. (4.1)

It is known to us that x ∈ K is a solution of VI(A,K) if and only if x satisfies (for more details, see [11])

0 ∈ A(x) + NK(x), (4.2)
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where NK(x) denotes the normal cone to K at x ∈ K, defined as

NK(x) = {w ∈ TxM : <(w, exp−1
x y) ≤ 0, ∀ y ∈ K}.

Let IK be the indicator function of K, i.e.,

IK(x) =

 0, i f x ∈ K,

+∞, i f x < K.

Since IK is proper, lower semicontinuous, the differential ∂IK(x) of IK is maximal monotone, defined
by

∂IK(x) = {u ∈ TxM : <(u, exp−1
x y) ≤ IK(y) − IK(x)} = 0.

Thus, we have

∂IK(x) = {v ∈ TxM : <(v, exp−1
x y) ≤ 0}.

= NK(x). (4.3)

Let J∂IK
λ be the resolvent of ∂IK , defined as

J∂IK
λ (x) = {v ∈ M : x ∈ expvλ∂IK(v)} = PK(x), ∀x ∈ M, λ > 0.

Thus, for A : K → M and for all for x ∈ K, we have

x ∈ (A + ∂IK)−1(0) = −A(x) ∈ ∂IK(x)
⇐⇒ <(−A(x), exp−1

x y) ≤ 0, ∀y ∈ K

⇐⇒ x ∈ VI(A,K). (4.4)

Now, we can state some results for the common solution of VI(A,K) and Fix(S ).

Theorem 4.1. Let D be Hadamard manifold and K be a nonempty, closed and convex subset of D. Let
S : K → K be a nonexpansive mapping, ϕ : K → K be a contraction mapping and A : K → TD be a
continuous vector field. Suppose {αn} and {βn} are sequences in (0, 1) satisfying the conditions A1−A3.
If Fix(S ) ∩ VI(A,K) , ∅, then the sequences {yn} and {xn} achieved by

yn = expxn
(1 − αn)exp−1

xn
PK(Axn),

xn+1 = expϕ(xn)(1 − βn)exp−1
ϕ(xn)S (yn),

converge to the solution of VI(A,K) ∩ Fix(S ), which is a fixed point of the mapping PFix(S )∩(M)−1(0)ϕ.

Corollary 4.1. Let D be Hadamard manifold and K be a nonempty, closed and convex subset of D. Let
ϕ : K → K be a contraction mapping and A : K → TD be a continuous vector field. Suppose {αn} and
{βn} are sequences in (0, 1) satisfying the conditions A1 − A3. If (M)−1(0) , ∅, then the sequences {yn}

and {xn} achieved by

yn = expxn
(1 − αn)exp−1

xn
PK(Axn),

xn+1 = expϕ(xn)(1 − βn)exp−1
ϕ(xn)(yn),

converge to the solution of VI(A,K), which is a fixed point of the mapping P(M)−1(0)ϕ.
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4.2. Optimization

For a proper lower semicontinuous and geodesic convex function h : D → (−∞,+∞], the
minimization problem is

min
p∈D

h(p). (4.5)

We know that, the subdifferential ∂h(p) at p is closed and geodesic convex [1] and is defined as

∂h(p) = {q ∈ TpD : <(q, exp−1
p q) ≤ h(q) − h(p), ∀ q ∈ D}. (4.6)

Lemma 4.1. Let h : D → (−∞,+∞] be a proper lower semicontinuous and geodesic convex function
on Hadamard manifold D. Then the subdifferential ∂h(p) of h is maximal monotone vector field.

If the solution set of minimization problem (4.5) is Ω, then it can be easily seen that

p ∈ Ω⇔ 0 ∈ ∂h(p). (4.7)

Now, we can state some results for minimization problem (4.5), using Algorithm 3.1 and
Algorithm 3.2.

Theorem 4.2. Let D be a Hadamard manifold. Let h : D → D be a proper lower semicontinuous and
geodesic convex function, S : K → K be a nonexpansive mapping and ϕ : K → K be a κ-contraction.
Suppose {αn} and {βn} are sequences in (0, 1) satisfying the conditions A1 − A3. If Fix(S )∩Ω , ∅, then
the sequences {yn} and {xn} achieved by

yn = expxn
(1 − αn)exp−1

xn
J∂h
λ (xn),

xn+1 = expϕ(xn)(1 − βn)exp−1
ϕ(xn)S (yn),

converge to the solution of Ω ∩ Fix(S ), which is a fixed point of the mapping PFix(S )∩Ωϕ.

Corollary 4.2. Let D be a Hadamard manifold. Let h : D→ D be a proper lower semicontinuous and
geodesic convex function and ϕ : K → K be a κ-contraction. Suppose {αn} and {βn} are sequences in
(0, 1) satisfying the conditions A1 − A3. If Fix(S )∩Ω , ∅, then the sequences {yn} and {xn} achieved by

yn = expxn
(1 − αn)exp−1

xn
J∂h
λ (xn),

xn+1 = expϕ(xn)(1 − βn)exp−1
ϕ(xn)(yn),

converge to the solution of Ω ∩ Fix(S ), which is a fixed point of the mapping PΩϕ.

5. Conclusions

In this paper, we studied the splitting type viscosity methods for inclusion and fixed point problem
of nonexpansive mapping in Hadamard manifolds. We prove the convergence of iterative sequences
obtained from the proposed method. Our method is new and can be seen as the refinement of methods
studied in [1]. Some applications of the proposed method are given for variational inequalities,
optimization and fixed point problems. We suppose that the method presented in this paper can be
used to study some generalized inclusion and fixed point problems in geodesic spaces.
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