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Abstract: A network is an abstract structure that consists of nodes that are connected by links. A
bipartite network is a type of networks where the set of nodes can be divided into two disjoint sets
in a way that each link connects a node from one partition with a node from the other partition. In
this paper, we first determine the maximum H-index of networks in the class of all n-node connected
bipartite network with matching number t. We obtain that the maximum H-index of a bipartite network
with a given matching number is Kt,n−t. Secondly, we characterize the network with the maximum H-
index in the class of all the n-vertex connected bipartite network of given diameter. Based on our obtain
results, we establish the unique bipartite network with maximum H-index among bipartite networks
with a given independence number and cover of a network.
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1. Introduction

In this paper we consider simple and finite network. Undefined notation and terminology can be
found in [1, 2]. The distance between any two nodes is an important quantity in network theory.
Generally, the distance between two nodes u, v in N is the length of a shortest u-v path of N, which
is denoted by dN(u, v) (or d(u, v) for short). The maximum distance between any two nodes of N is
called a diameter. Let DN(v) is the overall sum of distances from any node v in N. Similarly, DN(v)
denotes the sum of all reciprocals of distances from v in N. A well-known distance-based invariant is
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the Wiener index, which was defined as

W(N) =
∑
{u,v}⊆VN

d(u, v) =
1
2

∑
v⊆VN

DN(v). (1.1)

Due to the interesting and successful physio-chemical properties of Wiener index, many other
distance based topological indices of networks have been flourished. Fortunately, one of such
measuring invariants known as the Harary index was proposed by Plavšić et al. [3] and by Ivanciuc
et al. [4] independently in 1993, which is defined as

H(N) =
∑
{u,v}⊆VN

1
dN(u, v)

=
1
2

∑
v⊆VN

DN(v), (1.2)

where dN(u, v) is the distance between the nodes u and v. This is a “reciprocal analogue” of the Wiener
index. More-formally the Wiener index W(N) is half-sum of the distance matrix of N, and it is obvious
to develop a matrix H(N), which is the half-sum of reciprocal analogue of the distance matrix. Such
matrix is so-called reciprocal distance matrix or the Harary matrix [5].

The upper (resp. lower) bound and the corresponding extremal graphs of topological indices are
very important. Gutman [14] showed that the path and the star are respectively the graphs with
minimal and maximal Harary index among all trees. In [15–18], the authors presented several upper
and lower bounds for the Harary index of connected graphs, triangle-free, quadrangle-free graphs,
graphs with given diameter, matching number. Ilić et al. [19] investigated the Harary index of trees
with various parameters. There are many results concerning the Harary index of graph classes with
several constraints, like connectivity [11], trees with given degree sequence [20], unicyclic
graphs [21], bicyclic graphs [22], the ordering [23]. Other results related to distance and its invariants,
one can see [24]. Recently, Feng et al. [25] investigated the minimal Harary index of trees with small
diameters.

The main motivation of establishing most of the results of this paper came from the
references [6–9]. Li et al. [6] studied on the maximal connective eccentricity index of bipartite graphs
with given parameters. Li and Song [7] determined on the sum of all distances in bipartite graphs.
In [9], Wang et al. characterized the connective eccentricity index of networks and its applications to
octane isomers and benzenoid hydrocarbons. To study similar extremal property for the H-index is
natural and interesting for us.

2. Notation and terminology

Let N = (VN, EN) be a network with node set VN and link set EN. The set of neighbors of a node v
in N is denoted by NN(v) or simply N(v). The network obtained from N by deleting an link uv ∈ EN is
denoted by N − uv. Similarly, N + uv is obtained from N by adding an link uv < EN.

The union of two networks H1 and H2 is denoted by H1∪H2 with VH1∪H2 = VH1 ∪VH2 and EH1∪H2 =

EH1 ∪ EH2 . If H1 and H2 are node disjoint, then we let H1 ] H2 denote the join of H1 and H2, which
is the network obtained from H1 ∪ H2 by adding all the links between the nodes x ∈ VH1 and y ∈ VH2 .
For disjoint networks H1,H2, . . . ,Hk with k ≥ 3, the sequential join H1 ] H2 ] · · · ] Hk is the network
(H1]H2)∪ (H2]H3)∪· · ·∪ (Hk−1]Hk). For short, denote by kN and [k]N the union and the sequential
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join of k disjoint copies of N, respectively. For example, kK1 � Kk which is the k isolated nodes and
[p]H1 ] H2 ] [q]H3 denotes the sequential join H1 ] H1 ] . . . ] H1︸                  ︷︷                  ︸

p

]H2 ] H3 ] H3 ] . . . ] H3︸                  ︷︷                  ︸
q

.

A bipartite network N is denoted with bipartition (X,Y) by N[X,Y], and defined as every link has
one end in X and the other end in Y . Moreover, if every node of X is connected to every node of Y
in N[X,Y], then N is said to be a complete bipartite network. Denote Km,n a unique complete bipartite
network with parts of sizes m and n.

Assume that, the set of all n-node connected bipartite networks with matching number “t” is denoted
by Mn,t. Whereas, the set of all n-node connected bipartite networks with diameter “d” is denoted by
Bn,d.

The set of pairwise non-adjacent links in a network N is called a matching. Without loss of
generality, assume that if M is a matching, then the two ends of each link of M are said to be matched
under M, and each node incident with an link of M is said to be covered by M. If M covers as many
nodes as possible then M is called a maximum matching. The number of links in a maximum
matching of a network N is called the matching number of N.

A node (resp. link) independent set of a network N is a set of nodes (resp. links) such that any
two distinct nodes (resp. links) of the set are not adjacent (resp. incident on a common node). A node
(resp. link) cover of a network N is a set of nodes (resp. links) such that each link (resp. node) of N is
incident with at least one node (resp. link) of the set.

Further on, we need the following lemmas. Note that Lemma 2.2 is the extension of Lemma 2.1,
introduced by Feng et al. [10].

Lemma 2.1. [11] Let N be a network and for any link e < EN, then one has H(N + e) > H(N).

Lemma 2.2. [10] If N′ = N + uv for a connected network N and uv < EN, then it holds that

H(N′) > H(N) +
1
2
,

where the equality holds if and only if u and v are pendent nodes sharing the same neighbor.

Lemma 2.3. (The König-Egerváry Theorem). (See [12, 13]). In any bipartite network, the number of
links in a maximum matching is equal to the number of nodes in a minimum covering and denoted by
η(N).

Let N = N[X,Y] be a bipartite network such that N ∈ Mn,t. Based on Lemma 2.3, it is obvious to
see η(N) = t. Let S be a minimum covering of N and XM = S ∩ X, YM = S ∩ Y . Without loss of
generality, suppose that |XM | ≥ |YM |. Since, S is a covering of N, obviously E(X \ XM,Y \ YM) = ∅.

3. Maximum H-index of bipartite networks with a given matching number

This section deals the sharp upper bound on H-index of n-node bipartite networks with matching
number t, and all the corresponding extremal bipartite networks. A covering of a network N is a node
subset K ⊆ VN such that each link of N has at least one end in the set K. The number of nodes in a
minimum covering of a network N is called the covering number of N.
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Lemma 3.1. Let N1[X,Y] be a bipartite network with the same node set as N, where N ∈ Mn,t such
that E(N1) = {xy : x ∈ XM, y ∈ Y} ∪ {xy : x ∈ X \ XM, y ∈ YM}. Then, H(N) 6 H(N1) with equality if
and only if N � N1.

Proof. It is easy to check that N is a subnetwork of N1. From Lemma 2.1, the result is obvious. �

Based on network N1, we define a new network N2 as: N2 = N1 − {uv : u ∈ X \ XM, v ∈ YM} + {uw :
u ∈ X \ XM,w ∈ XM}, which is depicted in Figure 1.

Figure 1. Networks N1 and N2.

Lemma 3.2. Let N1 and N2 be the networks defined above (see Figure 1). Then one has

H(N1) < H(N2).

Proof. Based on N1, we construct a new network, say N2, which is obtained from N1 by deleting all
the links between X \ XM and YM, and adding all the links between X \ XM and XM, see Figure 1. It is
routine to check that N2 ∈ Mn,t with N � N2 � Kt,n−t.

Let |X\XM | = m1, |Y\YM | = m2 suppose m2 > m1 > t. We partition VN1 = VN2 into
XM ∪ YM ∪ (X \ XM) ∪ (Y \ YM) as shown in Figure 1. For the sake of simplicity, assume that, for all
a ∈ Y\YM, b ∈ XM, c ∈ YM and d ∈ X\XM, then one has

DN1(a) =
∑
b∈XM

1
dN1(a, b)

+
∑
c∈YM

1
dN1(a, c)

+
∑

d∈X\XM

1
dN1(a, d)

+
∑

ā∈Y\YM

1
dN1(a, ā)

= t +
t
2

+
m1

3
+

m2 − 1
2

,

DN1(b) =
∑

a∈Y\YM

1
dN1(b, a)

+
∑
c∈YM

1
dN1(b, c)

+
∑

d∈X\XM

1
dN1(b, d)

+
∑
b̄∈XM

1
dN1(b, b̄)

= m2 + t +
m1

2
+

t − 1
2

,

DN1(c) =
∑

a∈Y\YM

1
dN1(c, a)

+
∑
b∈XM

1
dN1(c, b)

+
∑

d∈X\XM

1
dN1(c, d)

+
∑
c̄∈YM

1
dN1(c, c̄)

=
m2

2
+ t + m1 +

t − 1
2

,

DN1(d) =
∑

a∈Y\YM

1
dN1(d, a)

+
∑
b∈XM

1
dN1(d, b)

+
∑
c∈YM

1
dN1(d, c)

+
∑

d̄∈X\XM

1
dN1(d, d̄)

=
m2

3
+

t
2

+ t +
m1 − 1

2
,

DN2(a) =
∑
b∈XM

1
dN2(a, b)

+
∑
c∈YM

1
dN2(a, c)

+
∑

d∈X\XM

1
dN2(a, d)

+
∑

ā∈Y\YM

1
dN2(a, ā)

= t +
t
2

+
m1

2
+

m2 − 1
2

,
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DN2(b) =
∑

a∈Y\YM

1
dN2(b, a)

+
∑
c∈YM

1
dN2(b, c)

+
∑

d∈X\XM

1
dN2(b, d)

+
∑
b̄∈XM

1
dN2(b, b̄)

= m2 + t + m1 +
t − 1

2
,

DN2(c) =
∑

a∈Y\YM

1
dN2(c, a)

+
∑
b∈XM

1
dN2(c, b)

+
∑

d∈X\XM

1
dN2(c, d)

+
∑
c̄∈YM

1
dN2(c, c̄)

=
m2

2
+ t +

m1

2
+

t − 1
2

,

DN2(d) =
∑

a∈Y\YM

1
dN2(d, a)

+
∑
b∈XM

1
dN2(d, b)

+
∑
c∈YM

1
dN2(d, c)

+
∑

d̄∈X\XM

1
dN2(d, d̄)

=
m2

2
+ t +

t
2

+
m1 − 1

2
·

This gives

H(N1) − H(N2) =
1
2

( ∑
u∈VN1

DN1(u) −
∑

u∈VN2

DN2(u)
)

=
1
2

( ∑
a∈Y\YM

DN1(a) −
∑

a∈Y\YM

DN2(a) +
∑
b∈XM

DN1(b) −
∑
b∈XM

DN2(b)

+
∑
c∈YM

DN1(c) −
∑
c∈YM

DN2(c) +
∑

d∈X\XM

DN1(d) −
∑

d∈X\XM

DN2(d)
)

=
1
2

(
m2

(m1

3
−

m1

2
)

+ t
(m1

2
− m1

)
+ t

(
m1 −

m1

2
)

+ m1
(m2

3
−

m2

2
))

=
1
2

(
m2

(m1

3
−

m1

2
)

+ m1
(m2

3
−

m2

2
))

=
−m1m2

6
< 0.

Hence, we obtain that H(N2) > H(N1). �

Lemma 3.3. Let N be a connected bipartite network with VN = (X,Y) with |X| = m1 > |Y | = m2.

1. If m1 = 1, then H(N) = 1. Hence, and N = K2.
2. If m1 > 1 and m2 = 1, then H(N) = 1

4 (m2
1 + 3m1) and N is just the network K1,m1 .

3. If m2 > 1, then H(N) 6 1
4 [m2(2m1 + m2 − 1) + m1(2m2 + m1 − 1)] with equality if and only if

N � Km1,m2 .

Hence, due to Lemma 3.3, the considered bipartite network is of order n > 2.

Theorem 3.1. Let N ∈ Mn,t, then H(N) 6 1
4 (n2 − 2t2 + 2nt − n). The equality holds if and only if

N � Kt,n−t.

Proof. It is obvious to obtain that

H(Kt,n−t) =
1
4

(n2 − 2t2 + 2nt − n).

Hence, we only need to show that amongMn,t with maximum H-index is a unique network Kt,n−t.
Choose N, in Mn,t such that its H-index is maximum. For t = b n

2c, due to Lemma 2.1 the extremal
network is just Kb n

2 c,d
n
2 e

as desired. Therefore, we only consider the case t < b n
2c.
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Without loss of generality, assume that the bipartition node set of N is denoted by (X,Y), such that
|Y | > |X| > t. Let M be a maximal matching of N, then due to Lemma 2.1, the addition of new link(s)
increases the H-index of a network. In what follows, if |X| = t, then the extremal network is N = Kt,n−t.
Hence, we consider the case |X| > t.

Assume that M is a matching set and XM(resp. YM) be the set of nodes of X(resp. Y) which are
incident to the links of M. Therefore, |XM | = |YM | = t. Keeping in mind that N does not contains
links between the nodes of X\XM and the nodes of Y\YM. Otherwise, any such link together with M
producing a matching of cardinality greater than that of M, which is a contradiction to the maximality
of M.

By Lemma 3.1 adding all possible links between the nodes of XM and YM, XM and Y\YM, X\XM and
YM we get a network N1 as depicted in Figure 1. Together with Lemma 2.1 we have H(N1) > H(N).
Note that the matching number of N1 is at least t + 1. Hence, N1 < Mn,t and N � N1. Based on N1, we
construct a new network, say N2, which is obtained from N1 by deleting all the links between X \ XM

and YM, and adding all the links between X \ XM and XM, see Figure 1. It is routine to check that
N2 � Kt,n−t. By Lemma 3.2, H(N2) > H(N1). Hence, we obtained our desire result. �

Remark 3.1. The maximum cardinalities of all node (resp. link) independent set is called node (resp.
link) independence number of N, and is denoted by γ(N) (resp. γ′(N)). The minimum cardinalities of
all node (link) covers are said to be a node (resp. link) cover number of N, and is denoted by η(N)
(resp. η′(N)).

Together Lemma 2.3, and Remark 3.1 with Theorem 3.1 the following useful result is obvious.

Corollary 3.1. The network Kσ,n−σ is a unique network having maximum H-index, among all
connected bipartite networks of order n with node cover number or node independence number or
link cover number σ.

4. Maximum H-index of bipartite networks with a given diameter

In this section, we characterize the networks in Bn,d attaining the maximum H-index. Without loss
of generality, assume that P = v0v1 . . . vd is a diametric path in Bn,d. Thereby, any N = (VN, EN) in
Bn,d, there is a partition R0,R1, . . .Rd of VN with d(v0, v) = i such that v ∈ Ri(i = 0, 1, 2, . . . , d). Thus,
we assume Ri a distance layer of VN, and Ri, R j of VN are adjacent if |i − j| = 1. Suppose that |Ri| = li

throughout this section.
For d > 3, if d is odd, then assume Q(n, d) := [ d−1

2 ]K1 + b n−d−1
2 cK1 + dn−d+1

2 eK1 + [d−1
2 ]K1.

For d > 4, if d is even, then assume Q̂(n, d) := {Q(n, d) = [ d
2 − 1]K1 + a1K1 + b n−d+2

2 cK1 + a2K1 +

[ d
2 − 1]K1 : a1 + a2 = d n−d+2

2 e}. The following is our main result of this section.

Theorem 4.1. Let N be a network in Bn,d with the maximum H-index.

1. If d = 2, then N � Kb n
2 c,d

n
2 e

.
2. If d > 3, then N � Q(n, d) for odd d, and N is an arbitrary network in Q(n, d) otherwise.

Proof. Choose a network N in Bn,d which maximizes the H-index.
(i) In view of Lemma 2.1, we have N � Kn−q,q for d = 2, where q, n − q > 2. Assume |X| = n − q

and |Y | = q, then it is routine to check that, for all x (resp. y) in X (resp. Y), one has
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DN(x) = q + 1
2 (n − q − 1) = 1

2 (n + q − 1), DN(y) = (n − q) + 1
2 (q − 1) = n − 1

2q − 1
2 . This gives

H(Kn−q,q) =
1
2

(∑
x∈X

DN(x) +
∑
y∈Y

DN(y)
)

=
1
2

(1
2

(n − q)(n + q − 1) + q(n −
1
2

q −
1
2

)
)

=
1
4

(
n2 − 2q2 − n + 2nq

)
.

If n is odd, then H(Kn−q,q) 6 1
8 (3n2 − 2n − 1) with equality if and only if q = n−1

2 , or q = n+1
2 , i.e.,

N � K n+1
2 , n−1

2
; and if n is even, then H(Kn−q,q) 6 1

8n(3n − 2) with equality if and only if q = n
2 i.e.,

N � K n
2 ,

n
2

as desired. �

(ii) In order to prove this part, we use the following structural properties.

Proposition 4.1. N[Ri] � |Ri|K1, i.e., the induced subnetwork N[Ri] contains no link for i = 1, 2, . . . , d,
and |Rd| = 1 for d > 3.

Proof of Property 4.1. By a contradiction, we assume that there exist two nodes z+, z− in some Ri

such that z+z− ∈ EN[Ri] ⊆ EN. Since both z+ and z− are in Ri, there exists two distinct paths, we
say U1 and U2, such that U1 (resp. U2) connects the nodes z0, z+ (resp. z0, z−). Clearly, the paths
U1 ∪ U2 ∪ z+z− contains an odd cycle in N. In fact, if U1 and U2 contain no common internal node,
then U1 ∪ U2 + z+z− is an odd cycle. Otherwise, suppose that w0 is the last common internal node of
U1,U2, then U1(w0, z+) ∪ U2(w0, z−) + z+z− is an odd cycle. This is impossible since N is bipartite.

In what follows we prove the second part. In fact, if |Rd| ≥ 2, then we may choose r ∈ Rd \ {xd} and
put N̆ = N + {rz+ : z+ ∈ Rd−3}. It is easy to check that N̆ ∈ Bn,d with its node partition

R0 ∪ R1 ∪ R2 ∪ . . . ∪ Rd−3 ∪ (Rd−2 ∪ {r}) ∪ Rd−1 ∪ (Rd \ {r}).

In view of Lemma 2.1, one obtains ξee(N̆) > ξee(N), which contradicts to the choice of N. Thus,
|Rd| = 1. �

Proposition 4.2. N[R j−1 ∪ R j] � K|R j−1 |,|R j |, i.e., N[R j−1 ∪ R j] induces a complete bipartite network for
each j = 1, 2, . . . , d.

Proof of Property 4.2. Without loss of generality, assume that N[R j−1 ∪ R j] is not a complete bipartite
network for some j. By Property 4.1, we get N[R j−1] � |R j−1|K1 and N[R j] � |R j|K1. Thus, there exists
vi in R j−1 and v j in R j, such that vi, v j are not adjacent. Construct N′ = N + viv j. Obviously, N′ ∈ Bn,d

and we have H(N′) > H(N) by Lemma 2.1. Hence, this contradicts to the choice of N, so we get our
desired result. �

Bear in mind the same notations as above, we have the following structural property.

Proposition 4.3. For d ≥ 3, each of the following holds.

1. For odd d, we have

|R0| = |R1| = |R2| = · · · = |R d−3
2
| = |R d+3

2
| = · · · = |Rd−1| = |Rd| = 1,

and
∣∣∣∣|R d−1

2
| − |R d+1

2
|

∣∣∣∣ 6 1.
(4.1)
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2. For even d, one has

|R0| = |R1| = |R2| = · · · = |R d
2−2| = |R d

2 +2| = · · · = |Rd−1| = |Rd| = 1,

and
∣∣∣∣|R d

2−1| + |R d
2 +1| − |R d

2
|

∣∣∣∣ 6 1.
(4.2)

Proof of Property 4.3. (i) Note that |R0| = |Rd| = 1, here we only show that |R1| = 1 holds. Similarly,
we can show that |R2| = · · · = |R d−3

2
| = |R d+3

2
| = · · · = |Rd−1| = 1. We omit the procedure here.

If d = 3, then the result is obvious. In what follows, we consider that d > 5. If |R1| > 2, then choose
u ∈ R1 and let N′ = N−u0v+ {ux : x ∈ R4}. In fact, the node partition of N′ is R0∪ (R1 \{u})∪R2∪ (R3∪

{u})∪R4∪. . .∪Rd; in view of Property 4.1 and the choice ofN, any two of adjacent blocks of RN′ induce

a complete bipartite subnetwork and |Rd| = 1 for d > 5. Note that, DN(u) = DN′(u) + 2
3 −

d∑
i=4

2li
(i−1)(i−3) ,

DN(v) = DN′(v)+ 2
3 for all v ∈ R0,DN(v) = DN′(v) for all v ∈ (R1\{u})∪R2∪R3,DN(v) = DN′(v)− 2

(i−1)(i−3)
for all v ∈ R4 ∪ R5 ∪ . . . ∪ Rd.

H(N) − H(N′) =
1
2

( ∑
v∈VN

DN(v) −
∑

v∈VN′

DN′(v)
)

=
1
2

[∑
v∈R0

(
DN(v) − DN′(v)

)
+

(
DN(u) − DN′(u)

)
+

d∑
j=4

∑
v∈R j

(
DN(v) − DN′(v)

)]
=

1
2

(2
3

+

d∑
j=4

−2li

(i − 1)(i − 3)
+

d∑
j=4

−2li

(i − 1)(i − 3)
+

2
3

)
=

1
2

(4
3
− 4

d∑
j=4

li

(i − 1)(i − 3)

)
= −2

( d∑
j=4

li

(i − 1)(i − 3)
−

1
3

)
= −2

( l4

(4 − 1)(4 − 3)
+

d∑
j=5

li

(i − 1)(i − 3)
−

1
3

)
< 0.

The last inequality follows that l4 > 0 and
d∑

j=5

li
(i−1)(i−3) > 0. i.e H(N′) > H(N), a contradiction to the

choice of N. Hence, |R1| = 1.
Next we show that if d is odd, then

∣∣∣∣|R d−1
2
| − |R d−1

2 +1|

∣∣∣∣ 6 1. Without loss of generality, we assume
that |R d−1

2
| > |R d−1

2 +1|. Then it suffices to show that |R d−1
2
| − |R d−1

2 +1| 6 1. If this is not true, then

|R d−1
2
| − |R d−1

2 +1| > 2. Choose w ∈ R d−1
2

, let N′ = N −
{
wx : x ∈ R d−3

2
∪ R d+1

2

}
+

{
wy : y ∈ R d−1

2
∪ R d+3

2

}
.

Then the node partition of N′ is R0 ∪ R1 . . .∪ R d−3
2
∪ (R d−1

2
\ {w})∪ (R d+1

2
∪ {u})∪ R d+3

2
∪ . . .∪ Rd and

each of the two adjacent blocks of RN′ induces a complete bipartite network. By direct calculation, we
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have

H(N′) − H(N) =
(
(|R d−1

2
| − 1) +

1
2
|R d+1

2
|
)
−

(1
2

(|R d−1
2
| − 1) + |R d+1

2
|
)

=
1
2

(
|R d−1

2
| − |R d+1

2
| − 1

)
> 0,

a contradiction to the choice of N. This completes the proof of Property 4.3(i).
Together Property 4.1 and Property 4.2 with (4.1), we obtain that N � Q(n, d).
(ii) By the same discussion as the proof of the first part of (i) as above, we can show that |R0| =

|R1| = |R2| = · · · = |R d
2−2| = |R d

2 +2| = · · · = |Rd−1| = |Rd| = 1, we omit the procedure here.

Next we show that if d is even, then
∣∣∣∣|R d

2
| − (|R d

2−1| + |R d
2 +1|)

∣∣∣∣ 6 1. Without loss of generality, we
assume that |R d

2
| < |R d

2−1| + |R d
2 +1|. Then it suffices to show that |R d

2 +1| + |R d
2−1| − |R d

2
| 6 1. If this is not

true, then |R d
2 +1| + |R d

2−1| − |R d
2
| > 2. It is routine to check that at least one of R d

2−1 and R d
2 +1 contains at

least two nodes. Hence, we assume without loss of generality that |R d
2−1| > 2. Choose w ∈ R d

2−1 and let

N∗ = N −
{
wx : x ∈ R d

2−2 ∪ R d
2

}
+

{
wy : y ∈ R d

2−1 ∪ R d
2 +1

}
.

Then the node partition of N∗ is R0 ∪ R1 . . . ∪ (R d
2−1 \ {w}) ∪ (R d

2
∪ {w}) ∪ R d

2 +1 ∪ . . . ∪ Rd and each
of the two adjacent blocks of RN∗ induces a complete bipartite network. By direct calculation, we have

H(N∗) − H(N) =
(
(|R d

2−1| − 1) +
1
2
|R d

2
| + |R d

2 +1|
)
−

(1
2

(|R d
2−1| − 1) + |R d

2
| +

1
2
|R d

2 +1|
)

=
1
2

(
|R d

2−1| + |R d
2 +1| − (|R d

2
| + 1)

)
>

1
2

(1) > 0,

a contradiction to the choice of N. This completes the proof of Property 4.3(ii).
For even d, by Property 4.1 and Property 4.3(ii), we obtain that |R0| = |R1| = |R2| = · · · = |R d

2−2| =

|R d
2 +2| = · · · = |Rd−1| = |Rd| = 1, and

∣∣∣∣|R d
2−1| + |R d

2 +1| − |R d
2
|

∣∣∣∣ 6 1, and it is easy to check that if

N,N∗ ∈ Q̂(n, d), then H(N) = H(N∗), which implies that N � Q(n, d) ∈ Q̂(n, d), as desired. �

5. Conclusions

In this contribution, we determined the unique bipartite network with maximum H-index among
all bipartite networks with given matching number, independence number, cover of a network and
diameter.

Acknowledgment

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz
University, Jeddah, under grant No. RG-12-135-41. The authors, therefore, gratefully acknowledge
DSR technical and financial support.

AIMS Mathematics Volume 6, Issue 5, 5165–5175.



5174

References

1. R. B. Bapat, Graphs and Matrices, New York: Springer, 2010.

2. Q. Li, S. Zaman, W. Sun, J. Alam, Study on the normalized Laplacian of a penta-graphene with
applications, Int. J. Quantum. Chem., 120 (2020), e26154.
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