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1. Introduction

It is assumed that the readers are familiar with the fundamental results and the standard notations
of the Nevanlinna value distribution theory of meromorphic functions such as m(r, f), N(r, f), T(r, f),
etc. of Nevalinna theory, (see Hayman [4], Yang [33], Yi and Yang [34]).

It is well known that Nevanlinna value distribution theory is an important tool in studying the
properties of meromorphic functions in the fields of complex analysis. The value distribution theory
of meromorphic functions occupies one of the central places in Complex Analysis. In 1925, R.
Nevanlinna [17] established the second fundamental theorem for meromorphic functions, which is the
most important result in value distribution theory, and at the same time, he gave the question whether
the second fundamental theorem can be extended to small functions. This problem attracted many
mathematicians, for example, Q. T. Chuang [2] proved the second fundamental still holds for small
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entire functions, N. Steinmetz [20] solved this problem in 1986. Besides, numerous works are
devoted to studying its connections with other areas of mathematics (topology, differential geometry,
measure theory, potential theory and others); extending its inferences to wider classes of functions
(meromorphic functions in arbitrary plane regions and Riemann surfaces, algebroid functions,
functions of several variables, meromorphic curves). For example, G. Valiron, E. Ullrich, H. Selberg
and K. L. Hiong [7, 19, 24, 25] in 1930s extended the second fundamental theorem to algebroid
functions; D. C. Sun, Z. S. Gao and H. F. Liu in 2012 [21] further established the second fundamental
theorem concerning small algebroid functions for v-valued algebroid functions.

Algebroid function was firstly introduced by H. Poincaré, and after that, G. Darboux pointed out
that it is a very important class of functions. Let Hy(z),..., Hy(z) be analytic functions in a single
connected domain X € C without common zeros, then the irreducible equation

W(z,w) = H(@f" + H@f ™+ + Hy(2) = 0

defines a v-valued algebroid function f(z) in X € C (see [6,21]). If v = 1, then f(z) is a meromorphic
function in X. Nearly 90 years passed, many famous mathematicians (including G. Rémoundos, G.
Valiron, E. Ullrich, H. Selberg, K. L. Hiong, Y. Z. He, etc.) had paid great attention to study the
value distribution of algebroid function in some complex domains, such as: the whole complex plane
C, the unit disc D and the angular domain A, and obtained a lot of interesting and important results
(see [5,8,12,13,18,22,25-29,32]). As we know, the whole complex plane C, the unit disc D and the
angular domain A can all be regarded as simple connected region, in other words, they only obtained
those results of algebroid functions in some simple connected regions. Thus, a naturel question arises:
what results we can obtain for algebroid function in some multiply connected regions? In 2016, Y.
Tan [23] studied the value distribution of algebroid functions on annulus, and established some basic
theorems which is an analog of Nevanlinna theory of algebroid function in the whole complex plane.
Indeed, annulus is only regarded as a special multiply connected region—double connected region. The
Nevanlinna theory for meromorphic function on annuli were proposed by Korhonen, Khrystiyanyn and
Kondratyuk (see [9-11]), after their works, Lund and Ye, Ferndndez, T. B. Cao, H. Y. Xu further the
value distribution and uniqueness of meromorphic function on annulus(see [1, 15,16,31]).

However, there was very seldom paper dealing with the value distribution of algebroid function in
a more general multiply connected region. In recent, the authors [30] have studied the value
distribution of algebroid functions in a k + 1 multiply connected region—a k-punctured complex
plane, and established some basic theorems of algebroid functions in the k-punctured complex plane.
In this paper, we will further investigate the value distribution of algebroid functions in the
k-punctured plane, and established the second fundamental theorem for algebroid functions
concerning small algebroid functions in the k-punctured planes.

The structure of this paper is as follows. In Section 2, we introduce the basic notations and
fundamental theorems of algebroid functions in the k-punctured complex planes. Section 3 is devoted
to prove the second fundamental theorem of algebroid functions concerning small algebroid functions
in a k-punctured complex plane.
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2. Basic notations and fundamental theorems for algebroid functions in the k-punctured
complex planes

Given a set of distinct points ¢; € C, s € {1,2,...,k},k € N, Q := C\ Ule{cs} can be called as
a k-punctured complex plane. The main purpose of this article is to study meromorphic functions of
those k-punctured planes, k > 2.

Denote d = fminflc; — ¢l : j # s} and ro = L+ max{ley| : s € {1,2,...,k}} Then% < d,
D1r(c)) N Dyjry(cs) = 0 for j # s and Dy, (c;) © D, (0) for s € {1,2,...,k}, where Ds(c) = {z :
lz—¢| < 6} and Ds(c) = {z : |z — ¢| < 6}. For an arbitrary r > ry, we define

k
Q, =D,(0)\ Uﬁl/r(cs)-

s=1

Thus, it follows that ©, D €, for ry < r < +oco. It is easy to see that €, is a k + 1 connected region.
Let A(2),A,-1(2),...,A0(z) be a group of analytic functions which have no common zeros and
define in the k-punctured plane Q,

Yz W) = A,@QW' + A, QW™+ + AW + Ay(z) = 0, 2.1)
Yw(z, W) = vA, QW™ + (v = DA QW' + -+ A,(2) = 0.

Denote J(z) by
1 Av—l Av—2 AO 0 0
0 Av Av—l A1 A() 0
B w-» | 0 0 0 - A, A - A
JO=CED DAL, v=DA, - 00 - 0
0 VA, v-DA_, --- A, O -+ O
0 0 0 - 0 vA, - A

IfA,(z) #0,and J(z) # Oin ¢, € C, 5 € {1,2,...,k}, then irreducible equation (2.1) defines a v-valued
algebroid function in a k-punctured plane Q. For an irreducible algebroid function W(z), the points
in the complex plane can be divided to two classes. One is a set Ty € Q of regular points of W(z),
the other is a set Sy = Q — Ty of critical points of W(z). The set Sy is an isolated set (see [6, 14]).
For every a € Ty. there exist and only exist v number of regular function elements {(w j(z),a)};zl.
Throughout our article, we usually denote W(z) = {w j(z)};le.

Let W(z) be a v-valued algebroid function in a k-punctured plane Q, ry < r < +oco, we use the
notations

1 v 2 ) 1 v k 2
mo(r, W) =5 Z [) log" |wj(re“9)| do + 7 Z Z j(: log"
=1

Jj=1 s=1

do—

1.
wi(cy + —e')
r

v k

1 v 2 ,’ 1 27
-3 ;I} log* |wj(r0e 9)|d0 -3 ]Z:; Z j; log*

s=1

do,

1 .
wiles + —e')
ro
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1 (M ng(t, W L, W
Norwy = & [ W) Ry = W),
vl ot vl, 1

1 1 nO(’Wa) — 1 1 nO(’Wa)
No(r, )__f fd NO(F’W_a)—_‘fr; fdl‘

W—-a v Jr v

N, W>=% f 16 W) 4
ro

t

where w;(z)(j = 1,2,...,v) is a one-valued branch of W(z), ny(z, W) is the counting function of poles
of the function W(z) in Q, := DJ0) \ US ] D, ucy), o < t < +oo (counting multiplicity);
no(t, Wl =) [no(t, 3= a)] is the counting function of poles of the function 7— in €, counting multiplicity
[ignoring multiplicity]; n,(r, W) is the counting function of branch pomts of the function W(z) in Q,,
and N,(r, W) is the density index of branch point of W(z) in Q,.

Let W(z) be an algebroid function in a k-punctured plane €, if there are A branches of W(z) which
take a(# o) as the value in z, point, then we have the fractional power series

W(2) = a+be(z—20)7 +bra1(z—20)T +---, (2.2)

no(r, a) = no(r, ) = Z 7, where ny(r, a) is the counting function of zeros of W(z) —a in Q (counting

multiplicity). If there are A branches of W(z) which take oo as the value in zy point, then we have the

fractional power series
T -7+l

W@) =br(z—20) " +bri(z—20) 7 +--, (2.3)

no(r, ) = no(r, W) = 3, 7, where ny(r, 0o) is the counting function of poles of W(z) —a in Q (counting
W=0c0

multiplicity). z = zo is a branch point of 1 — 1 degree of W(z) on its Riemann Surface .Z. n(r, W) =
(4 — 1) denotes the branch points of W(z) on its Riemann Surface in 2. Obviously, for a € C :=
C U {oo}, we have

1 1 : :
no(r, m) = no(r, m)’ Nofr, m) = Mol m)’

and especially, No(r, 7) = +No(r, Aio) as a = 0, and No(r, W) = tNo(r, Aik) asa = oo
Definition 2.1. Let W(z) be an algebroid function in a k-punctured plane Q, the function
To(r, W) = mo(r, W) + No(r, W), ry<r< +oo,

is called the Nevanlinna characteristic of W(z) in a k-punctured plane.

From the above definitions, we can obtain the following some connections with the classical
characteristics of algebroid functions in C as follows.

(@) mo(r, W) = m(r, W) + Zm(— W(c, + 7)) — m(ro, W) — Zm( ,W(cs +72)), for r>ro,

s=1

(b) No(r, W) = N(r, W) + ZN(— W(c, +2)) = N(ro, W) - ZN(— W(c, +2)), for r>r,

s=1 s=1
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() To(r,W) = T(r, W) + Z T(  W(c, +2)) = T(ro, W) — Z T(  W(e, +2)), for r>ro,

s=1

d) Te,W)=Trog, W) <To(r, WY<Tr, W)+ Z T(— W(c, + 2)).
s=1

Next, we will prove the above conclusions. Firstly, (a) is obviously. Secondly, we prove (b). Suppose
W(0) # oo. Let nyo(t, W), (t > r() be the counting function of poles of W(z) in D (()) and nh( W(cY
2)), (t > ry) be the counting function of poles W(c; + z) in Dy(cy) :={z: |z — ¢l < } for s = 1 2..

t]len
1 n [’[’ n A(t7 ” (Cs Z))
NO(), ”) ‘,f 1O(t ) : ‘f 1

o

L (Taew) 1 w my(t, Wie, +2))

_vjr; " dt VZI " dt

. f ne W), 1 f neW) Z f s, W(c +2)
VvV Jo t VvV Jo
1 Zfo ny(, W(cs +) .

=N(r, W) + Z N(— W(c, +2)) = N(ro, W) - Z N(— W(c, +2)). (2.4)

s=1 s=1

The case W(0) = oo can be proved similarly. Because T(r, W) = m(r, W) + N(r, W) and from (2.4),
then relation (c) follows immediately. Thus, (d) follows immediately from (c).

Similarly to Ref. [21], we give some definitions of algebroid function class, small algebroid
function, etc. in a k-punctured complex plane as follows.

Definition 2.2. Let W(z) = {(w;(2), a)};:1 be a v-valued algebroid function in a k-punctured complex
plane. The set of all algebroid mappings of W(z) is denoted by Yy. The set

Hy :={hoW(z2);h € Yy}
is called the algebroid function class of W(z).
Definition 2.3. Set
Xy := {f € Hy; To(r, f) = ol To(r, W)I(r — +o0,7 & Ep)},

where E is a real number set of finite linear measure depending on f. Xy is called the small algebroid
function set of W(z). The element in Xy is called the small algebroid function of W(z).

Remark 2.1. Note that the set Xy contains all the finite or infinite complex constants, all the small
meromorphic functions and all the small algebroid functions.
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Definition 2.4. For any hy, h, € Yy, define
1) Addition: (h; + hy) o W(z) = hy o W(z) + hy o W(2).
2) Subtraction: (hy — hy) o W(z) = hy o W(2) — hy o W(2).
3) Multiplication: (hy - hy) o W(z) = (hy o W(2)) - (hy o W(2)).
4) Division: (1+) o W(z) = hy o W(2) - = o W(2).

Thus, we have

Theorem 2.1. Let W(z) = {(wj(z),a)};:1 and M(z) = {(mj(z),a)}"_, € Hy be two v-valued algebroid

j=
Jfunctions. Then
i) To(r, W+ M) < To(r, W) + To(r, M) + O(1);
ii) To(r, W - M) < To(r, W) + To(r, M) + O(1).

Proof. We assume that {wj(z)};:1 and {mj(z)};:1 are v simple-valued branches of W(z) and M(z),
respectively, by cutting the k-punctured plane. Then

I . .
mo(r, W + M) :ﬂ Z f log* |w‘,~(re’9) + mj(re’9)| do
j=1 0
1 2
+
+ o Z Z f log
1 < o | i0 0 |
- — log™ |wi(roe”) + m(roe)| do
2ﬂ;£ A0 A0

1 < k 27 .
_EZZL log

Jj=1 s=1

do

1. 1.
wics + =€) + mj(c, + —e")
r r

do.

1 1 .
wi(cs + —e) + mj(cs + —e')
ro ro

Since for j=1,2,...,vand s = 1,2,...,k,

27 27
f log* |wj(ree™)| d6 < O(1), f log* |m;(roe™)| d8 < O(1),
0 0

21
f log*
0

so, it follows

and

df < 0(1),

1 .
mj(cs + —e
ro

1 .
wi(cs + —e'
ro

27
do < O(1), f log*
0

14

1 2 . 2 .
mo(r, W+ M) == > { f log" |w;(re")| do + f log* |m(re")| de} +0(1)
0 0

=1
27
do + f log*
0

+%22{f02n10g+

1.
mj(cs + ;e’g)

1.
wiles + ;6’9)

.
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1 . 1 .
wilcs + —e') mj(cy + —e')
ro ro

27
do + f log* dG}
0

<my(r, W) + my(r, M) + O(1), (2.5)

1 v k 21 N
_ﬂzzl{j; log

j=1 s=

and by using the argument as in (2.4), we have

1 (" nt,W+M 1 & (7 (L, Wiey +2) + M(cs + 2)
Wiy L [T, 1 [t ’
% t v, t

1o

<Ny(r, W) + No(r, M). (2.6)

Thus, from (2.5) and (2.6), (1) follows. By using the same argument as in (2.5) and (2.6), we can prove
(i1) easily. |

In [30], the authors obtained some basic results of algebroid functions in a k-punctured plane as
follows.

Theorem 2.2. (the first fundamental theorem for algebroid function in the k-punctured planes). Let
W(z) be a v-valued algebroid function which is determined by (2.1) in a k-punctured plane C, and
a € C, then for ry < r < +0o0 we have

mo(r,a) + No(r,a) = To(r, W) + O(1).

Theorem 2.3. Let W(2) be a v-valued algebroid function which is determined by (2.1) in a k-punctured
plane Q, then
N.(r,W) <2(v = 1)To(r, W) + O(1).

Theorem 2.4. (the second fundamental theorem for algebroid function in the k-punctured planes).
Let W(z) be a v-valued algebroid function which is determined by (2.1) in a k-punctured plane £,
a, € C(t=1,2,...,p) are p distinct complex numbers, then we have

p
@—MRMMSZM&; %men%mm,
t=1

W_a[

and

— 1
(p = 2v)To(r, W) < Ny (r,
W - a[

)+ S()(I", W),

where Ny(r, W) is the density index of all multiple values including finite or infinite, every T multiple
value counts T — 1, and

w’ p w’
So(r, W) = mg (r, 7 ) + ;mo (r, T at) +0(1),

Remark 2.2. By Lemma 3 and Lemma 6 in [3] and using the same argument as in [6,21], we can get
the following conclusion about the remainder S o(r, W).

So(r, W) = O(log Ty(r, W)) + O(log r),

outside a set of finite linear measure as r — +oo.
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3. The fundamental theorem for algebroid functions in the k-punctured plane concerning small
algebroid functions

In this paper, the main purpose is to extend Theorem 2.4: when p distinct complex numbers a;(j =
1,2,..., p) are replaced by p small algebroid functions a;(z)(j = 1,2, ..., p). We obtain

Theorem 3.1. Suppose that W(z) = {(w;(z), a)};:1 is a v-valued nonconstant algebroid function in a

k-punctured plane Q. {a,(z)}[p=1 C Xy are p > 2 distinct small algebroid functions of W(z). Then for
any € € (0, 1) and r > ry, we have
p
1
my(r, W) + Z my(r, ——) < 2+ &)To(r, W)+ 2+ &)N(r, W) + So(r, W), 3.1
— W(2) - a(2)

where S o(r, W) is stated as in Remark 2.2.
Remark 3.1. Since

1
<To(r, W —a;) — Ny (r, W

_at

1
mo (r, —W(Z) — al(z)) ) + 0(1)

t

1
STVO(’/"‘A/)_NO(’”’‘/V )+S0(F’W),

and combining with Theorem 3.1, we have

P
(p—1-=8Ty(r,W) < No(r, W) + Z No(r, )+ 2+ N(r, W)+ So(r, W). (3.2)

=1 —4aj

Remark 3.2. By combining with Theorem 2.3 and Theorem 3.1, we have

P
(p—4v+3-)To(r,W) < No(r, W) + Z Ny(r, ﬁ) + So(r, W). (3.3)
Y

=1
To prove this theorem, we require some lemmas as follows.

Lemma 3.1. (see [21]). Suppose that W(z) is a v-valued nonconstant algebroid function and n is a

positive integer. Then W is the differential polynomial of %

w
Lemma 3.2. (see [21]). Let fi, f>, ..., [,& € Hy. Then
f IR
’ ’ .. ’ f
W(ﬁ’fZ""’f;]) = fl f2 fq _qu(ﬁ,fza * ’gq .
(g—1) (- . (g—1)
1 2 q

Lemma 3.3. (see [21]). Suppose that A, = {a, := a/(2)};_, C Xw are u > 1 distinct small algebroid
functions. Let L(x,A,) denote the vector space spanned by finitely many products ay'al’ - - - aj", where
integer p, > 0(t = 1,2,...,u)and Y, p; = x(= 1). Let dimL(y, A,) denote the dimension of the vector

space L(x,A,). Then for any € > 0, there exists y > 1 such that

dimL(y + 1,A,)

1+e.
dimL(p. Ay ¢
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Lemma 3.4. Suppose that W(z) = {(w;(z),a)} is a v-valued nonconstant algebroid function in a k-
punctured plane Q, and {a,(2)}_, C Xw are p distinct small algebroid function with respect to W(z).
Then for any r > ry, we have

p p
m&;ww—MJ ZMGW@cWJ:

=1

S()(I", W)’

where S o(r, W) is state as in Remark 2.2, E is a positive real number set of finite linear measure.

Proof. We can cut W(z) into v single-valued branch {w;(z)}_, in a k-punctured plane, by using the tree
Y through all branch points of W(z). Accordingly, we also cut every a,(z) into v single-valued branch

{a;, J-(z)};:1 in a k-punctured plane. For any j =1,2,...,v, set
)4
Fi2) = Z v (Z) ey (3.4)
Since a,(z) € Xy, then we have m(r, a,) < To(r,a,) = o(To(r, W)) fort = 1,2,..., p and r > ry. Hence,
it follows

c 1
. —| df
Z wi(re) — a,(re)

p v 21
1 1
) —— | = — log*
WP;W@wm)Zhﬁ ®
271
l +
27r ; f o8
27
- Z 27rf log*

1

w j(es + Le)) — ac, + Le)

do

t=

1

W (roe®) — a,(roe®)

- 1
[ o
wics + e’(”) —acs + 6‘9)

=1

1
P 2
1 1
< — log* . .
L Z 2 j(: 08 w(re) — a,(re)
j=1 t=1
LI k 27 1
+ — log*
“ ; 2n Z; fo wics + 1e) — a(c, + L)

1

Wj(f’oeie) — a,(roe®)

1

1 i 1 i
wics + %e’(”) —a,(cs + %ele)

|
1
5=
1~
=}
N

£ 1
SZmo (r, m) + So(r, W). (3.5)
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Next, we will estimate the lower bound of Z;zl my(r, F;), for any z € Q, set
0(z) := min {la, j(z) — a, ;(2)} = 0.
1<t<u<p

Note that ¢;(z) is the function of z € Q, by the uniqueness theorem, its zeros must be isolated. Take
arbitrary z € {z: 6,(z) # 0}.
Case 1. If forany r € {1,2,..., p},

6;(z)
wi(2) — a,(2)] > ép :
then we have
2p
lo < plog® ) (3.6)
Z R — at,<z)| =P8 50
Case 2. If there exists some u € {1,2, ..., p} such that
6;(2)
Wi(2) — a, j(2)] < ;p . (3.7)
Thus, for ¢ # u, it follows
wi(2) — a; /()| = la,;j(2) — a.,;j(2)| - ij(z) — a,,j(2)]
Z 2
> 6,(2) - J() p L.
Hence from (3.7) we have
1 1 2
< P (3.8)
wi(2) —a,j(2) — 2p—16;(2)
1 1
3.9

< .
2p—1Iwi(z) — a, ;@)
Thus, from (3.4) and (3.9) we have

F;
| (Z)l = | ](Z) auj(z)| Z \% ](Z)_atj(Z)|

t#u

. 1 p—1 1 N 1
T wi@ —au i@l 2p—11wiz) —a, ;@) 2wi(z) — a, ;@I

and it follows from (3.8) that

1
lo +|F~(z)|>10 | —— oY 3]
& Wy 8 |w,~<)—auj<z>| .

)4
= los™ —log?2
2,log W@ — a, @)l a,1<z)| - 2 log’ W) — a, @) at,<z>| o8

t#u

L o
2 ) Jog" o = D log s — log2

t#u
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2p
> log* — plog* —log?2. (3.10)
Z £ W@ - a,el az,(z)l P8 50~ %
Hence form (3.6) and (3.10), combining Case 1 and Case 2, we have

1
w;(2) = a,;(2)|

)4
log™ |F;(z)| > Z log* — plog* —log2. (3.11)
=1

2p
0;(2)
By definition, for any z € {z : 6;(z) # 0}, there exists #(z) # u(z) such that 6;(2) = ay) j(2) — au(),;(2)-

Hence we have
I 1 1

= < .
0i(2)  lay,j(2) — auw), (@)l la, j(z) — ay, j(2)|

1<t<u<p

Thus,

1 27 Z fZﬂ' dg .\ 0(1)
— log . .
21 Jo 5 (re“’) la, j(re®) — a, j(re?)|

1<1‘<u<p
= > m(r,a,(2) - @, (2) + O(1)
< > m(ray)) + mr,a,) + O(1), (3.12)

1 21 27 de
[ o e o [t ——— OO
21t Jo oy (Cc + 6’9) |at,j(cs +5e?) —a, j(cs + e

1<t<u<p

1. 1.
= Y m(rayjcs + —e") = a, (e, + —e) + O(1)
r ’ r

1. 1.
< 3 mlrayjlcs + =€) + mr,a, (e, + —e™) + O(1), (3.13)
r r
and X X
1 do 1 [ do
— | log’ 1 log" ———— = 0(1 3.14
2y 8 Smen - M =), & ot tany O 19

Hence from (3.12)—(3.14), we have

Y[ LA 2 do
Z— f log - Z f —1 ,
‘= 21 Jo 6(rel) =5 6'(cs+;e’9)
v 1 27 v k 2 d@
ISR e f 49
23 5(’06’9) ZZ 0 6-(cs+%e"9)

0
< Z To(r,a.;) + To(r,a, ) + O(1) = So(r, W). (3.15)

Substituting z = re”, z = ¢, + 1e”, z = rpe” and z = ¢, + %e"g into (3.11), respectively, and integrating
on @ from 0 to 27, by (3.15) we have

4 1
o (r’ Z W) - az(z))
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v 1 27 ) y v 1 k o . 1 .
:j:zl ﬂf; log™ |F j(re”)|d6 + ; ﬂ;\fo log" |Fj(c, + ~e )|d6

v 1 o . v 1 k 21 1 .
- Z — f log* |Fj(roe”)ld6 — » — Z f log" |F(cs + —e")ld6
= 271' 0 = 27T pu 0 ro

> Zp: 1 ” log* ! do
- 21 £ lw(re®) — a, j(re)|

Pk 1 27 1
+ - lo * do
. Z Z; 2n L g wi(cs + %eié)) —a, j(cy + %ei9)|
v 1 f27r 1
- 5= | log” . —df
,Z Z1 2 Jo ® wj(roe’) — a; j(roe)|

2
1
f 10g+ Y T do
0 lwi(cs + ge’g) —aj(cs + g€’9)|

v 21 v 2
p + 2pdo P . 2pde
£ 1 - _ § § £ logt — =27
2ﬂ£ ©8 d(re?) . 2n °8 6j(cs+%ef9)

NEE
ibﬁ»

+ So(r, W). (3.16)

\%
1
3
(=)
—_
>
=
&
|
2
=
&
N —

Therefore, this lemma is proved by (3.5) and (3.16). O

The proof of Theorem 3.1: We use the method of [21] to complete the proof of Theorem 3.1.
Let A, = {ai,a,,...,a,}, and let L(y,A,) denote the vector space spanned by finitely many products
ay'ay - a?,”, where Y7 n, = y and n, > 0(r = 1,2,..., p). Suppose that dimL(y,A,) = n, for given
x- Thus, let by, by, ..., b, denote a basis of L(y,A,). Assume that dimL(y + 1,A,) = [, we also assume
that By, B,, ..., B; denote a basis of L(y +1,A,). Thus, by Lemma 3.3, for any & > 0, there exists some
X such that

dimL(y + 1, A
G dmle+ LA) Ly (3.17)
dimL(x,Ap) n

Let
P(W) = W(Bl, Bz, ey B[, Wbl, sz, ey an)

Because By, B, ..., B, Wb, Wb,, ..., Wb, are linearly independent, P(W) # 0. From the definition of
the Wronskian determinant, it follows

n+l-1 n+l—-1 W(t) qr
P(W) = Z C,(2) 1_[ (WOt = W Z C,(2) n ( W ) . (3.18)
=0 =0
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Because my (r, %) = So(r, W), we get
my(r, P(W)) < nmo(r, W) + S o(r, W). (3.19)

From Lemma 3.2, we have

B, B,

W(B,,B,,...,B,Whb,,...,Wb,) = P(W :W””-W( e, —,
(B1, B, I 1 ) (W) W W

bl,...,bn). (3.20)

(1) Suppose that z; is a pole of W(z), (¢(z), D(zo, 9)) is a T-fold pole element with A(1 > 1) sheet in z,
where D(zp,0) = {0 < |z—2z0| < 6}. Let 6 > 0 be sufficiently small, such that g(z) has no poles or zeros in
D(zo, 6). Suppose that function elements (B 4.y, D(20,96)), . . ., (B4, D(20,0)) of By, ..., B, by,...,b,
are corresponding to the pole function (g(z), D(zo, 9)) respectively. Thus, it follows from Lemma 3.2
that

Pq(z)(W) = W(Bl,q(z)» ceey Bl,q(z)’ q(z)bl,q(z)’ cee Q(Z)bn,q(z))

B, B
,q(2) 1,q(z)
Digys s bn,q(z)) .

— n+l w e,
R e e

By observing the right hand side of the above equality, if zj is a 7-fold pole of ¢(z), it can be seen that
outside the poles of the small algebroid functions {B;}, {b,;}, the order of pole of P(W) at (¢(z), z0) is
(n + Dr. If 79 1s a zero of g(z), by the left of the above equality, it can be seen that outside the poles of
the small algebroid functions {B;}, {b,}, (¢(2), zo) is not the pole of P(W).

(ii) Suppose that zj is a branch point of W(z), (p(2), D(zo, 9)) is a A sheet algebraic function element
in 7, but not a pole element. Let 6 > 0 be sufficiently small, such that p(z) has no poles or zeros in
D(zy,0). If its corresponding derivative function element (p’(z), D(zo, 6)) s the pole element, then its
order is at most 4 — 1. Suppose that function elements (B ), D(20,0)),..., (Bipz), D(z0,0)),
(b1,p2)» D(20,0)), - . ., (b p(y, D(20,0)) of By,...,B;,by,...,b, are corresponding to the pole function
(p(2), D(zo, 0)) respectively. Denote

Wz(Bll’p(Z), cee B;’p(z)a (p(Z)bl,p(z)),’ cees (p(z)bn,P(Z))’)

to be the algebraic cofactor that generate by moving the first line and the # column of the n + / order
determinant

Pp(z)(W) = Wt(Bl,p(z)a cees Bl,p(z)a (p(z)bl,p(z))a cees (p(z)bn,p(z)))~

In view of Lemma 3.2, it follows

i
Pp(z)(W) = Z[Bt,p(z)Wt(B/] P Bz,p(z)» (p(Z)bl,p(z))/, cees (P(Z)bn,p(z))')]

=1
n+l

+ Z [P p) - Wi B pioys - - - Bl piys (PD1p) s - - - (P2 p) )]

t=I+1

B,l,p B;,p (pbl,p)’ (pbn,p)/
(pbt,p), T (pbt,p)l ’ (pbt,p)/ T (pbt,p)/

1
= Biy(0'biy + pbl )" W,
t=1
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n+l

B B, (pby,) (pbn,y)
+ § b.,((p'b, + pb, Y"1 W, E L )
L PO B T Py N @b,y Wby Wby (0bry)

Thus outside the poles of the small algebroid functions {B;},{b,}, the order of pole of P(W) at
(9(2), D(z9,0)) is at most (4 — 1)(n + 1 —1).

(ii1) Suppose that z; is a branch point of W(z), (q(z), D(zo, 9)) is a A sheet algebraic function element
in zo, but not a pole element, and also not the pole of the ¢ — 1 order derivative g“~V(z). If z, is a pole
of the ¢ order derivative q(’)(z), then its order is at most 4 — 1. Similar to the above argument, outside
of the poles of {B;}, {b,}, the order of pole of P(W) at (¢(z), D(zo,0)) at most (4 — 1)(n +[—1).

Thus, in view of (1)-(iii), it yields

No(r, P(W)) < (n+ DNo(r, W)+ (n+ 1= 1)N,(r, W) + So(r, W).
From (3.20) and Theorem 2.1, we have
To(r, P(W)) < nTo(r, W) + INy(r, W)+ (n+ 1 = 1)N(r, W) + So(r, W). (3.21)
Let a be a linear combination of {a,}, then

P(W—Cl) = W(B],Bz,...,Bl, Wb] —Clbl,sz —abz,...,an —ab,,)
= W(B,By,...,B, Wbl,sz,...,an)iZW(Bl,Bz,...,Bl,...),

where the element ”...” behind B; in Y W(B,B,,...,B,,...) consists of ab,, However ab, and
Bi, B, ..., B; are linearly dependent, thus we have ), W(By, B, ..., B;,...) = 0. So, we obtain

P(W —a) = P(W). (3.22)

Thus, it follows from Lemma 3.1 and (3.18) that

P(W) =W". Q(%) (3.23)

where Q (%) is the differential polynomial of % Let

V/
Vt::W_aI’ Ql::Q(_t), t:1a2""’p'
Vi
From (3.22) and (3.23), it follows P(W) = P(V,) = V!'Q,, that is,
1 O,

W=ay PW)

Therefore, we have L
Lol
W—a| |POW)|"

(3.24)

Set
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thus by Lemma 3.4 it follows

p p
mo(r, F) = m (r,ZW(Z) a,(z)] Zmo(r T a,(z))+S0(r’ W), (3.25)

t=1 t=

and from (30) we have

p
1 n-
FQI< 2 e —aa < |P(W>|" Z or

Hence from the above inequality and Theorem 2.1, we have

1

1
mo(r, F) < ;n’lo (I’, m

1 )4
) = Zl mo(r, Q) + O(1)

1 1 1
< ;To(l’, P(W)) - ZNO( P(W)) + S()(}" W)
< Ty W) + LNy + 2 Ly W1 L) sy w
< To(r, )+; o(r, W) + N (r, W) P(W) + So(r, W)
< To(r,W) + lNo(r, W)Y2 + )N, (r, W) — lNo ( ! ) +So(r, W). (3.26)
n n " P(W)
Hence from (23), (31) and (32), we have
: 1
mo(r, W) + ; my (r, W —a) a,(z))
srémo(r, W) + mo(r, F)
<(1+ é)To(r, W)+ Q2+ )N (r, W)+ So(r, W)
<2+ eTy(r,W)+ 2 +&)N,(r,W) + So(r, W), (3.27)

that is, (7) holds.
Therefore, this completes the proof of Theorem 3.1.

4. Conclusions

Theorem 3.1 can be called as the fundamental theorem for algebroid functions in the k-punctured
plane concerning small algebroid functions, which is important in the study on the uniqueness and the
value distribution of algebroid functions in the k-punctured plane. From the conclusion of Theorem
3.1, a very natural question is raised: can the constant € be removed?
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