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1. Introduction

The concept of asymptotically almost periodicity was introduced by Fréchet [1] in the early 1940s.
The study of almost periodic solutions and asymptotically almost periodic solutions of differential
equations have become a hot spot in the qualitative theory of differential equations [2–13].
Huang [13] established the asymptotically almost periodic solutions of the delayed Nicholson-type
system involving patch structure

x
′

i(t) = −aii(t)xi(t) +

n∑
j=1, j,i

ai j(t)x j(t) +

m∑
j=1

βi j(t)xi(t − τi j(t))e−γi j(t)xi(t−τi j(t)).

with weaker conditions.
In recent years, some scholars have established the asymptotic almost periodic theories in

probability to study stochastic processes. These theories have good applications prospect in statistics,
mathematical physics, mechanics and mathematical biology. Cao [14] studied the asymptotically
almost periodic solutions of first order stochastic functional differential equation

dx(t) = (Ax(t) + F(t, x(t), xt))dt + G(t, x(t), xt)dW(t), t ∈ R
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Where A : D(A) ⊂ L2(P,H) → L2(P,H) generates strongly continuous semigroups {T (t)}t≥0. W(t) is a
Q-Wiener process with covariance operator Q whose value is taken on L2(P,H).

Liu [15] studied the asymptotically almost periodic mild solutions for the class of stochastic
functional differential equations

dx(t) = (A(t)x(t) + F(t, x(t), xt))dt + G(t, x(t), xt)dW(t), t ∈ R

where A(t) : D(A) ⊂ L2(P,H) → L2(P,H) can display the center flow. W(t) is a certain Q-Wiener
process with covariance operator Q whose value is taken on L2(P,H).

On the other hand, the second order stochastic differential equation is the correct model of
continuous time, which can be used to explain the synthesis process of making it into continuous
time. McKibben [16] first established the second order damped functional stochastic evolution
equation. In addition, McKibben [17] studied the existence and uniqueness of mild solutions for a
class of second order neutral stochastic evolution equations with finite delay. Since then, it has
attracted people’s attention in many literatures, such as [18–22]. The existence of solutions for the
second order abstract Cauchy problem is closely related to the concept of cosine function. Research
on abstract second order differential equations controlled by evolutionary operators {U(t, s) : t, s ∈ J}
was developed by Kozak. Kozak [23] has proved that homogeneous equation

u′′(t) = A(t)u(t), t ∈ J

with
u(s) = x, u′(s) = y

exists a mild solution u(t) = − ∂
∂sU(t, s)x + U(t, s)y +

∫ t

s
U(t, ξ) f (ξ)dξ.

Various methods for determining the existence of evolution operators generated by the family of
{A(t) : t ∈ J} can be found in references [24,25]. It is a better way to study the second order differential
system directly instead of transforming it into the first order system.

Recently, Ren [26] established the existence and uniqueness of mild solutions to the following
second order nonautonomous neutral stochastic evolution equations with infinite delay, which are
driven by standard cylindrical Wiener process and independent cylindrical fractional Brownian
motion.

d[y′(t) − f (t, yt)] = [A(t)y(t)dt + g(t, yt)]dt + h(t, yt)dW(t) + σ(t)dBH
Q(t), t ∈ I = [0,T ]

and
y0 = φ ∈ B, y′(0) = ξ.

The existence of asymptotically almost periodic solutions for second order nonautonomous
stochastic evolution equations is an untreated topic. Under the stimulation of these works and certain
conditions, and by using the Banach contraction mapping principle and the evolution operator theory,
this paper established the existence and uniqueness of square-mean asymptotically almost periodic
mild solutions to the following second order nonautonomous stochastic evolution equations

dx′(t) = A(t)x(t)dt + F(t, x(t))dt + G(t, x(t))dW(t), t ∈ R+ = [0,+∞) (1.1)

with
x(0) = x0, x′(0) = x1 (1.2)
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in a real separable Hilbert space, where {A(t)}t≥0 is a family of linear closed operators from X into X
that generate an evolution operators {U(t, s)}t,s≥0, and {W(t)}t≥0 is a Q-Wiener process. Here F, G are
appropriate functions specified later.

The structure of this paper is as follows. In Section 2, we introduce the concepts of evolution
operator, square mean asymptotically almost periodic stochastic process, and give some properties
and Lemmas of them. In Section 3, we obtain the existence and uniqueness of the square-mean
asymptotically almost periodic mild solution for the second order nonautonomous stochastic
evolution equation. In Section 4, we give an example to illustrate our main results.

2. Preliminaries

In this section, we give some definitions, basic properties and Lemmas, which will be used in the
sequel. As in [5–10, 27–29], two real separable Hilbert spaces are represented by (H, ‖ · ‖, 〈·, ·〉) and
(K, ‖ · ‖K , 〈·, ·〉). Denote the complete probability space by (Ω, F, P) . The symbol L2(P,H) denotes the
spatial variable x of all random variables with the value of H, such that

E‖x‖2 =

∫
Ω

‖x‖2dP < ∞.

For x ∈ L2(P,H), let

‖x‖2 =

(∫
Ω

‖x‖2dP
) 1

2

.

Then it is a Banach space equipped with the norm ‖ · ‖2.
Definition 2.1 (see [5]) A stochastic process x : R → L2(P,H) is said to be continuous in the

square-mean sense if
lim
t→s

E‖x(t) − x(s)‖2 = 0, for all s ∈ R.

Definition 2.2 (see [5]) Let x : R → L2(P,H) be continuous in the square-mean sense. x is said to
be square-mean almost periodic if for each ε > 0, there exists l(ε) > 0 such that any interval of length
l(ε) contains at least a number τ for which

sup
t∈R

E‖x(t + τ) − x(t)‖2 < ε.

The collection of all such functions will be denoted by AP(L2(P,H)). AP(L2(P,H)) is a Banach
space when it is equipped with the norm ‖x‖∞ = sup

t∈R
(E‖x(t)‖2)

1
2 .

Definition 2.3 (see [5]) A continuous function f : R × L2(P,H)→ L2(P,H), (t, x)→ f (t, x) which
is jointly continuous, is said to be square-mean almost periodic in t ∈ R uniformly for all x ∈ K, where
K is compact subset of L2(P,H), if for any ε > 0, there exists l(ε,K) > 0 such that any interval of
length l(ε,K) contains at least a number τ for which

sup
t∈R

E‖ f (t + τ, x) − f (t, x)‖2 < ε

for each stochastic process x : R→ K.
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The set of all these functions is represented by AP(R × L2(P,H), L2(P,H)) .
The notation C0(R+, L2(P,H)) denotes the set of all continuous stochastic processes ϕ from R+ into

L2(P,H), such that lim
t→+∞

E‖ϕ(t)‖2 = 0. Similarly, we use C0(R+×L2(P,H), L2(P,H)) to denote the space

of all continuous functions φ : R+ × L2(P,H)→ L2(P,H) such that lim
t→+∞

E‖φ(t, x)‖2 = 0, uniformly for

x in any compact subset of L2(P,H).
Definition 2.4 (see [14]) A stochastic process f : R+ → L2(P,H) is said to be square-mean

asymptotically almost periodic if it can be decomposed as f = g + h, where g is square-mean almost
periodic function and h ∈ C0(R+, L2(P,H)).

By AAP(R+, L2(P,H)) we denote the collection of all such functions.
Definition 2.5 (see [14]) A stochastic process f : R+ × L2(P,H) → L2(P,H) is said to be square-

mean asymptotically almost periodic in t, uniformly for x in compact subset K of L2(P,H), if it can
be decomposed as f = g + h, where g is square-mean almost periodic function and h ∈ C0(R+ ×

L2(P,H), L2(P,H)).
Denote by AAP(R+ × L2(P,H), L2(P,H)) the collection of all such functions.
The following Lemma generalizes Theorem 5 of [2]. It can be proved in an analogous way.
Lemma 2.6 A continuous function f : R+ → L2(P,H) is square-mean asymptotically almost

periodic if and only if, for every ε > 0, there exists L(ε, E‖ f ‖2, L2(P,H)) > 0 and a relatively dense
subset of R+, denoted by T(ε, E‖ f ‖2, L2(P,H)), such that E‖ f (t + τ) − f (t)‖2 < ε for every
t ≥ L(ε, E‖ f ‖2, L2(P,H)) and every τ ∈ T(ε, E‖ f ‖2, L2(P,H)).

The following Lemmas can be obtained directly from [14].
Lemma 2.7 (AAP(R+, L2(P,H)), ‖ · ‖∞) is a Banach space with the norm given by

‖x‖∞ = sup
t∈R+

‖x(t)‖2 = sup
t∈R+

(E‖x(t)‖2)
1
2 .

Let K ⊂ L2(P,H). We denote by CK(R+ × L2(P,H), L2(P,H)) the set of all the functions f : R+ ×

L2(P,H)→ L2(P,H) satisfying f (t, ·) is uniformly continuous on L2(P,H) uniformly for t ∈ R+.
Lemma 2.8 Let x ∈ AAP(R+, L2(P,H)) and f ∈ AAP(R+ × L2(P,H), L2(P,H)) ∩CK(R+ × L2(P,H),

L2(P,H)) with K = {x(t), t ∈ R+}. Then f (t, x(t)) ∈ AAP(R+, L2(P,H)).
This concept of evolution operator has been developed by Kozak [23], recentley used by Henrı́quez

et al. [24, 25] and Ren [26].
Definition 2.9 The familly {U(t, s)}t,s≥0 is said to be an evolution operator generated by the {A(t)}t≥0

if the following conditions hold:
(A1) for each x ∈ X the map (t, s)→ U(t, s)x is continuously differentiable and

(a) for each t ∈ R+, U(t, t) = 0;
(b) for all t, s ∈ R+, ∂

∂t U(t, s)x|t=s = x and ∂
∂sU(t, s)x|t=s = −x.

(A2) for all t, s ∈ R+, if x ∈ D(A(t)), then ∂
∂sU(t, s)x ∈ D(A(t)), the map (t, s) → U(t, s)x is of class

C2 and
(a) ∂2

∂t2 U(t, s)x = A(t)U(t, s)x;
(b) ∂2

∂s2 U(t, s)x = U(t, s)A(s)x;
(c) ∂2

∂s∂t U(t, s)x|t=s = 0.
(A3) for all t, s ∈ R+, if x ∈ D(A(t)), then ∂

∂sU(t, s)x ∈ D(A(t)), there exist ∂3

∂t2∂sU(t, s)x,
∂3

∂s2∂t U(t, s)x and
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(a) ∂3

∂t2∂sU(t, s)x = A(t) ∂
∂sU(t, s)x. Moreover, the map (t, s)→ A(t) ∂

∂sU(t, s)x is continuous;
(b) ∂3

∂s2∂t U(t, s)x = ∂
∂t U(t, s)A(s)x.

3. Results

In this section, we suppose that the following assumptions hold:
(H1) The evolution operator {U(t, s)}t,s≥0 generated by A(t) satisfies the following conditions:
(1) There exists constants M0,M1 > 0 such that

‖U(t, s)‖ ≤ M0e−δ(t−s),

∥∥∥∥∥ ∂∂s
U(t, s)

∥∥∥∥∥ ≤ M1e−δ(t−s)

for all t ≥ s ≥ 0 and δ > 0 .
(2) For each ε1 > 0, there exists constant l(ε1) > 0, such that every interval of length l(ε1) contains

a constant τ with the property that

‖U(t + τ, s + τ) − U(t, s)‖ ≤ ε1e−δ(t−s).

for all t, s ∈ R+ , where δ > 0 is the constant required in (1).
(H2) The functions F,G : R+ × L2(P,H)→ L2(P,H) satisfy the following conditions:

(1) F,G ∈ AAP(R+ × L2(P,H), L2(P,H)) and F(t, ·), G(t, ·) are uniformly continuous in every
bounded subset K ⊂ L2(P,H) uniformly for t ∈ R+;

(2) there exist constants LF , LG > 0 such that

E‖F(t, x) − F(t, y)‖2 ≤ LF E‖x − y‖2,

E‖G(t, x) −G(t, y)‖2 ≤ LGE‖x − y‖2,

for all x, y ∈ K and t ∈ R+.
Definition 3.1 An Ft-adapted continuous stochastic process x(t) is called a mild solution to

problems (1.1) and (1.2) if the following hold:
(1) x0, x1 satisfying ‖x0‖

2 < ∞, ‖x1‖
2 < ∞;

(2) the stochastic integral equation satisfied

x(t) = −
∂

∂s
U(t, 0)x0 + U(t, 0)x1 +

∫ t

0
U(t, s)F(s, x(s))ds +

∫ t

0
U(t, s)G(s, x(s))dW(s) (3.1)

for all t ∈ R+.
Lemma 3.2 Assume that (H1) is satisfied. If v : R+ → L2(P,H) is square-mean asymptotically

almost periodic, then the function

u(t) =

∫ t

0
U(t, s)v(s)ds, t ∈ R+

is square-mean asymptotically almost periodic.
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Proof Let ε > 0 be given and T( δ
2

4 ε, E‖v‖
2, L2(P,H)), L = L( δ

2

4 ε, E‖v‖
2, L2(P,H)) be as in

Lemma 2.6. Let L1 > 0 and 16M2
0

δ2 e−2δ(L1−L)E‖v‖2 < ε
4 . For t ≥ L + L1 and τ ∈ T( δ

2

4 ε, E‖v‖
2, L2(P,H)), by

using the Cauchy-Schwarz inequality, one has

E‖u(t + τ) − u(t)‖2

= E

∥∥∥∥∥∥
∫ t+τ

0
U(t + τ, s)v(s)ds −

∫ t

0
U(t, s)v(s)ds

∥∥∥∥∥∥2

= E
∥∥∥ ∫ τ

0
U(t + τ, s)v(s)ds +

∫ L

0
U(t + τ, s + τ)(v(s + τ) − v(s))ds

+

∫ t

L
U(t + τ, s + τ)(v(s + τ) − v(s))ds +

∫ t

0
(U(t + τ, s + τ) − U(t, s))v(s)ds

∥∥∥2

≤ 4E
(∫ τ

0
‖U(t + τ, s)v(s)‖ds

)2

+ 4E
(∫ L

0
‖U(t + τ, s + τ)(v(s + τ) − v(s))‖ds

)2

+ 4E
(∫ t

L
‖U(t + τ, s + τ)(v(s + τ) − v(s))‖ds

)2

+ 4E
(∫ t

0
‖(U(t + τ, s + τ) − U(t, s))v(s)‖ds

)2

≤ 4M2
0 E

(∫ τ

0
e−δ(t+τ−s)‖v(s)‖ds

)2

+ 4M2
0 E

(∫ L

0
e−δ(t−s)‖v(s + τ) − v(s)‖ds

)2

+ 4M2
0 E

(∫ t

L
e−δ(t−s)‖v(s + τ) − v(s)‖ds

)2

+ 4ε2
1E

(∫ t

0
e−δ(t−s)‖v(s)‖ds

)2

≤ 4M2
0

(∫ τ

0
e−δ(t+τ−s)ds

)2

E‖v‖2 + 16M2
0

(∫ L

0
e−δ(t−s)ds

)2

E‖v‖2

+ 4M2
0

(∫ t

L
e−δ(t−s)ds

)2

E‖v(t + τ) − v(t)‖2 + 4ε2
1

(∫ t

0
e−δ(t−s)ds

)2

E‖v‖2

≤
4M2

0

δ2 e−2δtE‖v‖2 +
16M2

0

δ2 e−2δ(t−L)E‖v‖2 +
4M2

0

δ2 ε +
4ε2

1

δ2 E‖v‖2

and hence
E‖u(t + τ) − u(t)‖2 < ε.

Therefore, by Lemma 2.6, u(t) ∈ AAP(R+, L2(P,H)). This completes the proof.
Lemma 3.3 Assume that (H1) is satisfied. If v : R+ → L2(P,H) is square-mean asymptotically

almost periodic, then the function

w(t) =

∫ t

0
U(t, s)v(s)dW(s), t ∈ R+

is square-mean asymptotically almost periodic.
Proof Let ε > 0 be given and T( δ4ε, E‖v‖

2, L2(P,H)), L = L( δ4ε, E‖v‖
2, L2(P,H)) be as in Lemma 2.6.

Let L1 > 0 and 8M2
0

δ
e−2δ(L1−L)E‖v‖2 < ε

4 . Let W̃(s) = W(s + τ) − W(τ) for each s ≥ 0. Note that W̃ is
also a Brownian motion and has the same distribution as W. By using Itô’s isometry identity [27] and
Cauchy-Schwarz inequality, we have
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E‖w(t + τ) − w(t)‖2

= E

∥∥∥∥∥∥
∫ t+τ

0
U(t + τ, s)v(s)dW(s) −

∫ t

0
U(t, s)v(s)dW(s)

∥∥∥∥∥∥2

= E‖
∫ τ

0
U(t + τ, s)v(s)dW̃(s) +

∫ L

0
U(t + τ, s + τ)(v(s + τ) − v(s))dW̃(s)

+

∫ t

L
U(t + τ, s + τ)(v(s + τ) − v(s))dW̃(s) +

∫ t

0
(U(t + τ, s + τ) − U(t, s))v(s)dW̃(s)‖2

≤ 4E
∫ τ

0
‖U(t + τ, s)‖‖v(s)‖2 ds + 4E

∫ L

0
‖U(t + τ, s + τ)‖‖(v(s + τ) − v(s))‖2 ds

+ 4E
∫ t

L
‖U(t + τ, s + τ)‖‖(v(s + τ) − v(s))‖2 ds + 4E

∫ t

0
‖(U(t + τ, s + τ) − U(t, s))‖‖v(s)‖2 ds

≤ 4M2
0

∫ τ

0
e−2δ(t+τ−s)E‖v(s)‖2ds + 4M2

0

∫ L

0
e−2δ(t−s)E‖v(s + τ) − v(s))‖2ds

+ 4M2
0

∫ t

L
e−2δ(t−s)E‖v(s + τ) − v(s))‖2ds + 4ε2

1

∫ t

0
e−2δ(t−s)E‖v(s)‖2ds

≤
2M2

0

δ
e−2δtE‖v‖2 +

8M2
0

δ
e−2δ(t−L)E‖v‖2 +

2M2
0

δ
ε +

2ε2
1

δ
E‖v‖2.

For t ≥ L( δ4ε, E‖v‖
2, L2(P,H)) + L1, τ ∈ T( δ4ε, E‖v‖

2, L2(P,H)), we obtain

E‖w(t + τ) − w(t)‖2 < ε.

Therefore, by Lemma 2.6, w(t) ∈ AAP(R+, L2(P,H)). This completes the proof.

Theorem 3.4 Assume that assumptions (H1)-(H3) hold. If M0

√(
2LF
δ2 + LG

δ

)
< 1, the stochastic

differential equations (1.1) and (1.2) have a unique square-mean asymptotically almost periodic mild
solution.

Proof Define the operator Γ : AAP(R+, L2(P,H))→ AAP(R+, L2(P,H)) by

(Γx)(t) = −
∂

∂s
U(t, 0)x0 + U(t, 0)x1 +

∫ t

0
U(t, s)F(s, x(s))ds +

∫ t

0
U(t, s)G(s, x(s))dW(s)

= −
∂

∂s
U(t, 0)x0 + U(t, 0)x1 + (Γ1x)(t) + (Γ2x)(t),

where (Γ1x)(t) =
∫ t

0
U(t, s)F(s, x(s))ds, (Γ2x)(t) =

∫ t

0
U(t, s)G(s, x(s))dW(s).

We need to prove that Γ is well defined that is Γ(AAP(R+, L2(P,H))) ⊂ AAP(R+, L2(P,H)).
From previous assumptions of {U(t, s)}t,s≥0, one can easily see that

E‖ −
∂

∂s
U(t, 0)x0 + U(t, 0)x1‖

2 ≤ 2E‖ −
∂

∂s
U(t, 0)x0‖

2 + 2E‖U(t, 0)x1‖
2

≤ 2M2
1e−2δtE‖x0‖

2 + 2M2
0e−2δtE‖x1‖

2.

AIMS Mathematics Volume 6, Issue 5, 5040–5052.
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then we get

lim
t→+∞

E‖ −
∂

∂s
U(t, 0)x0 + U(t, 0)x1‖

2 = 0,

that is − ∂
∂sU(t, 0)x0 + U(t, 0)x1 ∈ C0(R+, L2(P,H)).

Let x ∈ AAP(R+, L2(P,H)). By (H2) and Lemma 2.8, the function F(t, x(t)) and G(t, x(t)) belongs
to AAP(R+, L2(P,H)).

By Lemma 3.2 and 3.3, Γ maps AAP(R+, L2(P,H)) into itself. To complete the proof, it suffices to
prove that Γ has a fixed point. Clearly, we get

E‖(Γx)(t) − (Γy)(t)‖2 = E‖(Γ1x)(t) − (Γ1y)(t) + (Γ2x)(t) − (Γ2y)(t)‖2

≤ 2E‖(Γ1x)(t) − (Γ1y)(t)‖2 + 2E‖(Γ2x)(t) − (Γ2y)(t)‖2

= 2E

∥∥∥∥∥∥
∫ t

0
U(t, s)[F(s, x(s)) − F(s, y(s))]dW(s)

∥∥∥∥∥∥2

+ 2E

∥∥∥∥∥∥
∫ t

0
U(t, s)[G(s, x(s)) −G(s, y(s))]dW(s)

∥∥∥∥∥∥2

≤ 2M2
0 E

(∫ t

0
e−δ(t−s)‖F(s, x(s)) − F(s, y(s))‖ds

)2

+ 2E
(∥∥∥∥∥∥

∫ t

0
U(t, s)[G(s, x(s)) −G(s, y(s))]dW(s)

∥∥∥∥∥∥
)2

.

We evaluate the first term of the right-hand side as follows:

E
(∫ t

0
e−δ(t−s)‖F(s, x(s)) − F(s, y(s))‖ds

)2

≤ E
[(∫ t

0
e−δ(t−s)ds

) (∫ t

0
e−δ(t−s)‖F(s, x(s)) − F(s, y(s))‖2ds

)]
≤

(∫ t

0
e−δ(t−s)ds

) (∫ t

0
e−δ(t−s)E‖F(s, x(s)) − F(s, y(s))‖2ds

)
≤ LF

(∫ t

0
e−δ(t−s)ds

) (∫ t

0
e−δ(t−s)E‖x(s) − y(s)‖2ds

)
≤ LF

(∫ t

0
e−δ(t−s)ds

)2

sup
t≥0

E‖x(t) − y(t)‖2

≤ LF

(∫ ∞

0
e−δ(t−s)ds

)2

sup
t≥0

E‖x(t) − y(t)‖2

≤
LF

δ2 sup
t≥0

E‖x(t) − y(t)‖2.

As to the second term, we use again an estimate on the Itô’s integral established in [27] to obtain:
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E(‖
∫ t

0
U(t, s)[G(s, x(s)) −G(s, y(s))]dW(s)‖)2

≤ E
(∫ t

0
‖U(t, s)‖‖G(s, x(s)) −G(s, y(s))‖2ds

)
≤ M2

0

∫ t

0
e−2δ(t−s)E‖G(s, x(s)) −G(s, y(s))‖2ds

≤ M2
0 LG

(∫ t

0
e−2δ(t−s)ds

)
sup
t≥0

E‖x(t) − y(t)‖2

≤ M2
0 LG

(∫ ∞

0
e−2δ(t−s)ds

)
sup
t≥0

E‖x(t) − y(t)‖2

≤
M2

0 LG

2δ
sup
t≥0

E‖x(t) − y(t)‖2.

So, we have

E‖(Γx)(t) − (Γy)(t)‖2 ≤ M2
0

(
2LF

δ2 +
LG

δ

)
sup
t≥0

E‖x(t) − y(t)‖2,

that is

‖(Γx)(t) − (Γy)(t)‖22 ≤ M2
0

(
2LF

δ2 +
LG

δ

)
sup
t≥0
‖x(t) − y(t)‖22. (3.2)

Note that

sup
t≥0
‖x(t) − y(t)‖22 ≤

(
sup
t≥0
‖x(t) − y(t)‖2

)2

. (3.3)

Hence, by (3.2) and (3.3), for t ≥ 0, we obtain

‖(Γx)(t) − (Γy)(t)‖2 ≤ M0

√(
2LF

δ2 +
LG

δ

)
‖x(t) − y(t)‖∞.

Therefore, we get

‖(Γx)(t) − (Γy)(t)‖∞ ≤ M0

√(
2LF

δ2 +
LG

δ

)
‖x(t) − y(t)‖∞

which implies that Γ is a contraction mapping by M0

√(
2LF
δ2 + LG

δ

)
< 1. So by the Banach contraction

mapping principle, we conclude that there exists a unique fixed point x(·) for Γ ∈ AAP(R+, L2(P,H)),
such that Γx = x, that is

(Γx)(t) = −
∂

∂s
U(t, 0)x0 + U(t, 0)x1 +

∫ t

0
U(t, s)F(s, x(s))ds +

∫ t

0
U(t, s)G(s, x(s))dW(s),

for t ≥ 0. This completes the proof.
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4. Example

To complete this work, we apply the previous results to consider the following second-order
stochastic partial equation

∂2z(t, ξ)
∂t2 =

(
∂2z(t, ξ)
∂ξ2 + a(t)

∂z(t, ξ)
∂ξ

)
∂t + f (t, z(t, ξ))∂t + g(t, z(t, ξ))dW(t), t ≥ 0, ξ ∈ [0, π] (4.1)

with

z(t, 0) = z(t, π) = 0, t ≥ 0 (4.2)

and

z(0, ξ) = z0(ξ),
∂

∂t
z(0, ξ) = z1(ξ), ξ ∈ [0, π], (4.3)

where W is a Q-Wiener process with TrQ < ∞ and f , g are appropriate functions.
Take H = L2([0, π]) equipped with its natural topology. The operator A(t) = A + B(t), where A

is defined by Az =
d2z(ξ)

dξ2 , with D(A) = {z ∈ H : z(0) = z(π)} and B(t)z = a(t) dz(ξ)
dξ . The spectrum

of A consists of the eigenvalues −n2 for n ∈ N, with associated eigenvectors en(ξ) = 1
√

2π
einξ, n ∈ N.

Furthermore, the set {en : n ∈ N} is an orthonormal basis of H. In particular, Ax =
∞∑

n=1
−n2〈x, en〉en,

x ∈ D(A). It is well known that A generates a cosine function C(t) on H, defined by

C(t)x =

∞∑
n=1

cos(nt)〈x, en〉en, t ∈ R,

with associated sine function

S (t)x = t〈x, e0〉e0 +

∞∑
n=1

sin(nt)
n
〈x, en〉en, t ∈ R.

It is clear that ‖C(t)‖ ≤ 1. It is easy to see that A(t) = A + B(t) is a closed linear operator, and
U(t, s) : H → H is well defined and satisfies the condition of Definition 2.9. We refer to [24] for more
details.

Let z(t)(ξ) = z(t, ξ). Define F : [0, π] × H → H, G : [0, π] × H → L2(H) by F(t, z)(·) = f (t, z(t, ·))
and G(t, z)(·) = g(t, z(t, ·)). Therefore, the above system can be be written in the following abstract
form:

dz′(t) = A(t)z(t)dt + F(t, z(t))dt + G(t, z(t))dW(t), t ∈ R+ = [0,+∞) (4.4)

with

z(0) = z0, z′(0) = z1. (4.5)

Assume that U(t, s), F and G satisfy the conditions of Theorem 3.4. Then the above system has a
unique square-mean asymptotically almost periodic solutions.
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5. Conclusions

This paper established the existence and uniqueness of square-mean asymptotically almost periodic
mild solutions for a class of second order nonautonomous stochastic evolution equations in Hilbert
spaces. The results are based on the properties of evolution operators and the Lipschitz condition.
However, if we generalize the results to the second order nonautonomous neutral stochastic evolution
equations with infinite delay or not, can we get similar results? This is an interesting and meaningful
work. In the future, we will study these problems. Also, we will study the asymptotically almost
periodic mild solutions of other types of second order nonautonomous stochastic differential equations.
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