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Abstract: The boundedness of singular and fractional integral operator on Lebesgue and Hardy spaces
have been well studied. The theory of Herz space and Herz type Hardy space, as a local version of
Lebesgue and Hardy space, have been developed. The main purpose of this paper is to establish the
endpoint continuity properties of some multilinear operators related to certain non-convolution type
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for the multilinear operators on Herz and Herz type Hardy spaces are obtained.
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1. Introduction and notations

Let T be the Calderén-Zygmund singular integral operator and b be a locally integrable function on
R". The commutator generated by b and T is defined by [b, T]f = bT(f) — T(bf). The investigation of
the commutator begins with Coifman-Rochberg-Weiss pioneering study and classical result (see [6]).
The classical result of Coifman, Rochberg and Weiss (see [6]) states that the commutator [b, T]f =
T(bf)— bT f is bounded on LP(R") for 1 < p < oo if and only if b € BMO(R"). The major reason for
considering the problem of commutators is that the boundedness of commutator can produces some
characterizations of function spaces (see [1,6]). Chanillo (see [1]) proves a similar result when 7 is
replaced by the fractional integral operator. In [11], the boundedness properties of the commutators for
the extreme values of p are obtained. In recent years, the theory of Herz space and Herz type Hardy
space, as a local version of Lebesgue space and Hardy space, have been developed (see [8,9,12,13]).
The main purpose of this paper is to establish the endpoint continuity properties of some multilinear
operators related to certain non-convolution type fractional singular integral operators on Herz and
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Herz type Hardy spaces.
First, let us introduce some notations (see [8—10,12,13,15]). Throughout this paper, Q will denote
a cube of R" with sides parallel to the axes. For a cube Q and a locally integrable function f, let

fo= 10| fo(x)dx and f*(x) = sup|Q|™! fQ |f(y) — foldy. Moreover, f is said to belong to BMO(R")
O>x

if f* € L™ and define || f||zvo = ||f|l.~; We also define the central BM O space by CMO(R"), which is
the space of those functions f € L;,.(R") such that

fllewo = suplQ(, NI f 1£0) = foldy < .
o

r>1

It is well-known that (see [9,10])
Ifllewo = supinf 100, I f 1£(x) = cld.
r>1 €€ 0

For k € Z, define B, = {x € R" : |x| < 2¥} and C; = By \ By_;. Denote by y; the characteristic
function of C; and j; the characteristic function of C; for k > 1 and j, the characteristic function
of Bo.

Definition 1. Let 0 < p < o0 and @ € R.

(1) The homogeneous Herz space Kg(R") is defined by

Ky(R") = {f € Ly, (R"\{0) : lIfllgs < oo},

where

(o)

flleg = D 2% fxell;

k=—oc0

(2) The nonhomogeneous Herz space Ky (R") 1s defined by

K2R = {f € L2 (R") : IIfllxy < oo},

loc

where

o

1l = D" 2l el

k=0

If @ = n(1 — 1/p), we denote that I'{g(R") = K,(R"), K7 (R") = K,(R").
Definition 2. Let 0 < 6 <nand 1 < p < n/6. We shall call Bf,(R”) the space of those functions f
on R" such that

(1) p—5
Iz, = zull)d "AIP=0I| fx ol < 0.
>

Definition 3. Let 1 < p < oo.
(1) The homogeneous Herz type Hardy space HK,(R") is defined by

HK,(R") = {f € S'(R") : G(f) € K,(R")},

where

I lak, = IG(Hlk,-
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(2) The nonhomogeneous Herz type Hardy space HK,(R") is defined by
HEK,(R") = {f € S"(R") : G(f) € K,(RM)},

where

WAllk, = IGCHlI,-

where G(f) is the grand maximal function of f.

The Herz type Hardy spaces have the atomic decomposition characterization.

Definition 4. Let | < p < co. A function a(x) on R" is called a central (n(1 — 1/p), p)-atom (or a
central (n(1 — 1/p), p)-atom of restrict type), if

1) Suppa c B(0,d) for some d > 0 (or for some d > 1),

2) llall» < 1B, d)|"77,

3) fa(x)dx =0.

Lemma 1. (see [9,13]) Let 1 < p < co. A temperate distribution f belongs to HK »(R")(or HK,(R"))
if and only if there exist central (n(1—1/p), p)-atoms(or central (n(1—-1/p), p)-atoms of restrict type) a;
supported on B; = B(0,2/) and constants 4;, 3 ;|4;| < co such that f = 37 Aja; (or f = X3, 4;a,)in
the S’(R") sense, and

Lz, Cor 1flla,) = D 14,1

J

2. Theorems

In this paper, we will consider a class of multilinear operators related to some non-convolution type
singular integral operators, whose definition are following.
Let m be a positive integer and A be a function on R". We denote that

1
Rys1(4:.5,3) = A) = ) ) 2 DA =Y
Bl<m ™"

and

1
Ot (As x,) = Ro(As X, y) — WZ EDﬂA(x)u —y)r.

Definition 5. Fixed ¢ > 0and 0 < 6 < n. LetTs : § — S’ be a linear operator. Tj is called
a fractional singular integral operator if there exists a locally integrable function K(x,y) on R" X R"
such that

T = [ Koy
Rn
for every bounded and compactly supported function f, where K satisfies:
IK(x, )| < Clx = y[™*°

and
|K(y7 .X) - K(Z, X)l + |K(_X, y) — K(x’ Z)| < C|y _ Z|8|x _ Z|—n—s+(§
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if 2]y — z| < |x — z|. The multilinear operator related to the fractional singular integral operator 7 is
defined by
Ry 1(A; X, y)
R e DKy
R -

We also consider the variant of T4, which is defined by

1 = [ 2 k) roay
R X ="

Note that whenm = 0, Tg‘ is just the commutators of 75 and A (see [1,6,11,14]). It is well known that
multilinear operator, as a non-trivial extension of commutator, is of great interest in harmonic analysis
and has been widely studied by many authors (see [3-5]). In [7], the weighted L”(p > 1)-boundedness
of the multilinear operator related to some singular integral operator are obtained. In [2], the weak (H',
L")-boundedness of the multilinear operator related to some singular integral operator are obtained. In
this paper, we will study the endpoint continuity properties of the multilinear operators 74 and Tg‘ on
Herz and Herz type Hardy spaces.

Now we state our results as following.

Theorem 1. Let 0 < 6 < n, 1 < p < n/§ and DPA € BMO(R") for all 8 with || = m. Suppose that
Tg‘ is the same as in Definition 5 such that 75 is bounded from L?(R") to LY(R") for any p, g € (1, +o0]
with 1/g = 1/p — 6/n. Then Tg‘ is bounded from B‘;(R”) to CMO(R").

Theorem 2. Let 0 < 6 <n,1 < p <n/d,1/g =1/p—36/n and D’A € BMO(R") for all g with
|8] = m. Suppose that Tg‘ is the same as in Definition 5 such that Tg‘ is bounded from L”(R") to LY(R")
for any p,q € (1,+c0) with 1/g = 1/p — 6/n. Then T is bounded from HK,(R") to K2(R") with
a=n(l-1/p).

Theorem 3. Let 0 < 6 < n, 1 < p < n/§ and DPA € BMO(R") for all 8 with || = m. Suppose that
Tg‘ is the same as in Definition 5 such that Tg‘ is bounded from L?(R") to LY(R") for any p,q € (1, +o0)
with 1/g = 1/p — 6/n. Then the following two statements are equivalent:

(i) T4 is bounded from B)(R") to CMO(R");

(i1) for any cube Q and z € 3Q \ 20, there is

1

_ dx < C||fllg»
01 Jo U

1
Z E'Dﬁ A(x) = (DPA),l f Kp(z, ) f()dy
Bl=m """ 40y

where Kz(z,y) = Y K(z,y) for |B] = m.

[z=y[™
Remark. Theorem 2 is also hold for nonhomogeneous Herz and Herz type Hardy space.

3. Proofs of theorems

To prove the theorem, we need the following lemma.
Lemma 2. (see [5]) Let A be a function on R" and DPA € LY(R") for || = m and some ¢ > n. Then

l/q
IRn(A; ) < Clx =" > ( IDBA(Z)I"dz) :

|Bl=m |Q(-x9 )’)| Q(x,y)
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where Q(x, y) is the cube centered at x and having side length 5 v/n|x — y/.
Proof of Theorem 1. It suffices to prove that there exists a constant C such that

7 f ITA(/)) — Coldx < Cllfllgy

holds for any cube Q = Q(0,d) with d > 1. Fix a cube Q = Q(0,d) withd > 1. Let O = 5+nQ and
Ax) = Ax) - Y ﬁi,(DﬂA)Qxﬂ, then R,41(A; X, y) = Ru1(A; x,y) and DPA = DPA — (DPA) for all B

with |B] = m. We write, for fi = fxp and fo = fxgm o,

m+ 9 Ny R 9 Sy
o = [ Rt Bi09) ) ey = | Hm WAy
R" R"

=yl "
1 K (A
-3 [ iy [ Bt D i
— B! lx =l R =y
then
inA
@l 1 TN - THRO|de < — ( BB o s

dx + \Tg‘(fzxx) - T}(/)(0)| dx

| | m

( )ﬁD”Afl) (x)

3 s
= I+ 1+l

For I, note that for x €e Qand y € Q, using Lemma 2, we get

Ru(A; x,y) < Clx =" >~ IDPAllsuo,
IBl=m

thus, by the LP(R") to LY(R")-boundedness of T4 for 1 < p,q < oo with 1/g = 1/p — §/n, we get
T (Z ||DﬂA||BMof1} (x)

)
101 Jo| | &,

1/q
CZHDHAHBMo(l o f |T5(f1>(x)|qu)

dx

<
|Bl=m
< C D IDPAllwol QN fills
|Bl=m
< C DL IDPAlswor ™7 fx gl
|Bl=m
< C D IDPAlsyollfllg;-
|Bl=m

For I1, taking 1 < s < p such that 1/r = 1/s — ¢/n, by the (L, L")-boundedness of Ts and Holder’s
inequality, we gain

= IQIf
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1/r
< cZ(l o f |75 (04 - (D)) firo)| dx)

|Bl=m

IO > IDPA = (D°A)g) fillus
|Bl=m

C|Q|_1/r||fl”u’

IA

|Q|(p—s)/(ps)

IA

(p—5)/(ps)
f IDPA(y) — (DPA)I""/ P~ ”dy)

£ m(IQI
C > IDPAllsuor ™Il fx gl
1Bl=m

C > IIDPAllsuollfll -
|Bl=m

IA

IA

To estimate 111, we write

A i K(x, K(0,
T - TAHNO0) = f [ () _ KQ.y)
g1 =)l Iyl

K(, i A
+f M[Rm(A;x,y)—Rm(A?o’y)]dy

[yl™
K(x,y)(x—yF K(, y)(—y)ﬂ) DA
_ _ A d
V;nﬂ‘ L o LY
= III, + 111, + 111,

] Ru(A; x, ) fo(»)dy

By Lemma 2 and the following inequality (see [15])

1bg, = bg,| < Clog(|Qal/1Q1DIbllsmo for Oy C O,

we know that, for x € Q and y € 210\ 2¢Q,
Rn(A;x,y) < Clx—yl" Z(“DBA”BMO +(DPA) gy — (DPA)g))

1Bl=m

< Cklx—y|" Z ID° Allgao-
=

A

Note that |x —y| ~ |y| for x € Qand y € R" \ O, we obtain, by the condition of K,

|x] |x|* v
i < ¢ f (|y|m+n+1_5+ |y|m+,,+8_5)|Rm<A;x,y>||f2<y>|dy
R
< C) |ID°A d
< V%u ||BMOZ f - (W1 S+ e 6)If(y)| y
< c) ||DBA||BMOZI<<2 + 275 )P gl
1Bl=m
< C ) IIDPAllsmo Z k27 + 27| il
1Bl=m
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< C D IDPAlsaollfllas-
Bl=m

For 111,, by the formula (see [5]):
A A 1 Y A 4
Ru(A; x,3) = Ry(A; x0,) = ) =Ry (DY A; x, x0)(x = )
yl<m *°

and Lemma 2, we have

IRu(As %, ) = Ru(As x0, ) < € Y " e = xol" e = 3" IDP Al saso

lyl<m |Bl=m
thus, similar to the estimates of 111, we get
|x]
IIL| < C DPA dy<C DPA
\I1D| WZ D" Al Z LIQ\M T/ 0)ldy V;n IDPAllsssoll fl;.

For 1115, by Holder’s inequality, similar to the estimates of 111, we get

3 Al ol
b= e f ( + )IDBA< NfO)ld
3 V;:;nkzz(; ZkHQ\ZkQ |y|n+1—6 | |n+€ 5 y f y y

1/p

CZZ(z-"+2‘@")<2’<r>—"“/"-‘”'“(|2’€Q|—1 f2 ,IDPAD) = (DA dy) - Wfxaxoll

1Bl=m k=1

IA

IA

C > IIDPAllsuo Z(z + 2725y P gl
1Bl=m

C > IIDPAllsuoll ;-
|Bl=m

IA

Thus
11 < C Y IIDPAllsuoll g
|Bl=m
which together with the estimates for I and I/ yields the desired result. This finishes the proof of
Theorem 1.
Proof of Theorem 2. Let f € HK,(R"), by Lemma 1, f = }7 = Ajaj, Where a;.s are the central
(n(1 = 1/p), p)-atom with suppa; C B; = B(0, 27) and ||f||H1<,, ~ 214, We write

()

T3 Plkg = D 2" PPl
k=—o0
0o k—1 0o o)
< 2N T @l + Y 2P 4l T @l
k=—o00 j=—00 k=—oc0 j=k
= J+JJ
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For JJ, by the (L?, L7)-boundedness of Tg‘ for1/g=1/p—d/n, we get

C Z kn(1- 1/p>z \llla;ll < C Z kn(1- 1/p>z |42/ 1P=1)

k=—00

c Z oy Z Al Ye Z 1 < Cll ik,

k=—oc0

JJ

IA

IA

To obtain the estimate of J, we denote that A(x) = A(x) = Y5 [%(DBA)ZBJ.xﬂ. Then Q,.(A; x,y) =
On(A; x,y) and Qpr1(A;x,Y) = Ru(A;x,Y) = Yigiem [%(x — yWDPA(x). We write, by the vanishing
moment of @ and for x € C, withk > j + 1,

. K(x,)Rn(A; x,y) 1 f K(x, ) DPA(x)(x = yf
TA . = i d - —_— j d
Map) B e IO WZ 3 E— a;(y)dy
- [ [K(x’yi - K(X;O)]RM(A;x,ymj(y)dy
wlle=y" 1
K(x,0 ~ -
+ f I(;I’" )[Rm(A;x,y) — Ryu(A; x,0)]a;(y)dy
Rn
K, )(x=y)  K(x,0)% ] DPA
— - A ()dy.
). [ P | A

|Bl=m

Similar to the proof of Theorem 1, we obtain

TMa)x) < C f [l bl Dbl _]|Rm<A;x,y>||aj(y>|dy
N

x|m+n+1—6 |x|m+n+s 5

Iyl Iyl® -
+C Z Ln [|x|"+1—5 + |x|n+s—6] |DBA(X)||Clj(y)|dy

2 20¢ 20¢ .
< C Z ID"Allswo [2k(n+1 —6) | Dk(n+e— 6):| +C Z [2k(n+1 ) 2k(n+a—6)] IDPA(x)l,
|Bl=m |Bl=m

thus

2J nje
kn(1-1/p) kn/
J < C Z ID°Allsmo Z 2 8 Z 14 |[2k(n+1 =5 " Dklnte- 6)]2 !

1Bl=m j=—o0
TS - 2/ g
+CW|Z;M:ZOOZ P j;m |/1j|[2k(n+1_6) i 5>](f |DBA(X)|qu)
j 2j€
kn(1-6/n)
< CV; ||DBA||BM0kZ 2 Z 4, |[2k(n+l —5) T ke 5)]
< C Z IDPAllsmo Z |41 Z [2/7 4 2Ube]
|Bl=m jemeo  k=j+l
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C > IIDPAllsuo i A1

<
|Bl=m Jj=—00

< € D IDPAlswoll fllig, -
|Bl=m

This completes the proof of Theorem 2.
Proof of Theorem 3. For any cube Q = Q(0,r) with r > 1, let f € Bép and A(x) = A(x) —
> é(DﬁA)Qxﬁ. We write, for f = fxso + fxaor = fi + frand z € 30\ 20,

|Bl=m
TN = T+ | ’I’;(A—;”K(x WAy
WZ —(DPAG) = (DPA)Q)(T3(f)(X) = Top(/2)(2)
- V; L(DPAG) - (D )Tss(£)R)

Ii(x) + L(x) + I3(x, 2) + L4(x, 2),

where Tsg is the singular integral operator with the kernel (x y)BK(x y) for |[8] = m. Note that
(14(-,2))9o = 0, we have

T3(NHX) = (T5 (g = Lix) = (Lo + hL(x) = L(2) = [L() = h(@)]g = I(x,2) + (I3(x, 2)g — La(x, 2).

By the (L?, L7)-bounded of T4, we get

1 1 5 1/q
— f 1 (x)ldx < (— f IT(?(fl)(x)l’fdx) < CIOM Il fills < Clfllgs.
10l Jo 10l Jo
Similar to the proof of Theorem 1, we obtain

I12(x) = L(2)| < ClIfllp

and
1

10l

Then integrating in x on Q and using the above estimates, we obtain the equivalence of the estimate

f 153, Dldx < Cllfl,

G f AP — FAoldx < Cllflyg

and the estimate .

10l

This completes the proof of Theorem 3.

f (3, Dldx < Cllf .
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4. Applications

In this section we shall apply the theorems of the paper to some particular operators such as the
Calder6n-Zygmund singular integral operator and fractional integral operator.

Application 1. Calderén-Zygmund singular integral operator.

Let T be the Calderén-Zygmund operator defined by (see [10,11,15])

T = fR K@) f0)dy,

the multilinear operator related to 7 is defined by

Rm+ A; s
T = [ EE Dk oy
R lx =)l

Then it is easily to see that 7 satisfies the conditions in Theorems 1-3, thus the conclusions of
Theorems 1-3 hold for T4.

Application 2. Fractional integral operator with rough kernel.

For 0 < 6 < n, let T be the fractional integral operator with rough kernel defined by (see [2,7])

Qx—y)

Tsf(x) = |—n_5f )y,
g X =)

the multilinear operator related to 7 is defined by

Rm+ A; ’
rifw = [ D0 - oy
Rn

where () is homogeneous of degree zero on R”, fS,H Q(x")do(x') = 0 and Q € Lip(S™") for some
0 < & < 1, that is there exists a constant M > 0 such that for any x,y € §"7!, |Q(x) — Q(y)| < M|x — y]°.
Then T} satisfies the conditions in Theorem 1. In fact, for suppf C (2Q)° and x € Q = Q(x,d), by the
condition of Q, we have (see [16])

Qx-y) Qxo-y)
lx = yI" fxo = yI*™°

X — Xxol¢ X — X
sC(l ol N | ol )

Xo — n+e—o Xo — n+l1-96
y y

thus, the conclusions of Theorems 1-3 hold for Tg‘.
Acknowledgements

The author would like to express his deep gratitude to the referee for his/her valuable comments and
suggestions. This research was supported by the National Natural Science Foundation of China (Grant
No. 11901126), the Scientific Research Funds of Hunan Provincial Education Department. (Grant

No. 19B509).

AIMS Mathematics Volume 6, Issue 5, 4989-4999.



4999

Contflict of interest

The authors declare that they have no competing interests.

References

1. S. Chanillo, A note on commutators, Indiana U. Math. J., 31 (1982), 7-16.

2. W. Chen, G. Hu, Weak type (H', L") estimate for multilinear singular integral operator, Adv. Math.,
30 (2001), 63-69.

3. J. Cohen, A sharp estimate for a multilinear singular integral on R", Indiana U. Math. J., 30 (1981),
693-702.

4. J. Cohen, J. O. Gosselin, On multilinear singular integral operators on R", Studia Math., 72 (1982),
199-223.

5. J. Cohe, J. Gosselin, A BMO estimate for multilinear singular integral operators, Illinois J. Math.,
30 (1986), 445-465.

6. R. R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several
variables, Ann. Math., 103 (1976), 611-635.

7. Y. Ding, S. Z. Lu, Weighted boundedness for a class rough multilinear operators, Acta Math. Sin.,
17 (2001), 517-526.
J. Garcia-Cuerva, Hardy spaces and Beurling algebras, J. Lond. Math. Soc., 39 (1989), 499-513.

. J. Garcia-Cuerva, M. L. Herrero, A theory of Hardy spaces associated to the Herz spaces, P. Lond.
Math. Soc., 69 (1994), 605-628.

10. J. Garcia-Cuerva, J. L. R. de Francia, Weighted norm inequalities and related topics, North
Holland, 116 (1985).

11. E. Harboure, C. Segovia, J. L. Torrea, Boundedness of commutators of fractional and singular
integrals for the extreme values of p, Illinois J. Math., 41 (1997), 676-700.

12. S. Z. Lu, D. C. Yang, The decomposition of the weighted Herz spaces and its applications, Sci.
China (Ser. A), 38 (1995), 147-158.

13. S. Z. Lu, D. C. Yang, The weighted Herz type Hardy spaces and its applications, Sci. China (Ser.
A), 38 (1995), 662-673.

14. S. Z. Lu, D. C. Yang, The continuity of commutators on Herz type spaces, Michigan Math. J., 44
(1997), 255-281.

15. E. M. Stein, Harmonic Analysis: real variable methods, orthogonality and oscillatory integrals,
Princeton University Press, 1993.

16. A. Torchinsky, S. Wang, A note on the Marcinkiewicz integral, Collog. Math., 60-61 (1990),
235-243.

©2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

@ AIMS Press

AIMS Mathematics Volume 6, Issue 5, 4989-4999.


http://creativecommons.org/licenses/by/4.0

	Introduction and notations
	Theorems
	Proofs of theorems
	Applications

