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1. Introduction and notations

Let T be the Calderón-Zygmund singular integral operator and b be a locally integrable function on
Rn. The commutator generated by b and T is defined by [b,T ] f = bT ( f )− T (b f ). The investigation of
the commutator begins with Coifman-Rochberg-Weiss pioneering study and classical result (see [6]).
The classical result of Coifman, Rochberg and Weiss (see [6]) states that the commutator [b,T ] f =

T (b f ) − bT f is bounded on Lp(Rn) for 1 < p < ∞ if and only if b ∈ BMO(Rn). The major reason for
considering the problem of commutators is that the boundedness of commutator can produces some
characterizations of function spaces (see [1,6]). Chanillo (see [1]) proves a similar result when T is
replaced by the fractional integral operator. In [11], the boundedness properties of the commutators for
the extreme values of p are obtained. In recent years, the theory of Herz space and Herz type Hardy
space, as a local version of Lebesgue space and Hardy space, have been developed (see [8,9,12,13]).
The main purpose of this paper is to establish the endpoint continuity properties of some multilinear
operators related to certain non-convolution type fractional singular integral operators on Herz and
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Herz type Hardy spaces.
First, let us introduce some notations (see [8–10,12,13,15]). Throughout this paper, Q will denote

a cube of Rn with sides parallel to the axes. For a cube Q and a locally integrable function f , let
fQ = |Q|−1

∫
Q

f (x)dx and f #(x) = sup
Q3x
|Q|−1

∫
Q
| f (y) − fQ|dy. Moreover, f is said to belong to BMO(Rn)

if f # ∈ L∞ and define || f ||BMO = || f #||L∞; We also define the central BMO space by CMO(Rn), which is
the space of those functions f ∈ Lloc(Rn) such that

|| f ||CMO = sup
r>1
|Q(0, r)|−1

∫
Q
| f (y) − fQ|dy < ∞.

It is well-known that (see [9,10])

|| f ||CMO ≈ sup
r>1

inf
c∈C
|Q(0, r)|−1

∫
Q
| f (x) − c|dx.

For k ∈ Z, define Bk = {x ∈ Rn : |x| ≤ 2k} and Ck = Bk \ Bk−1. Denote by χk the characteristic
function of Ck and χ̃k the characteristic function of Ck for k ≥ 1 and χ̃0 the characteristic function
of B0.

Definition 1. Let 0 < p < ∞ and α ∈ R.
(1) The homogeneous Herz space K̇α

p (Rn) is defined by

K̇α
p (Rn) = { f ∈ Lp

loc(R
n \ {0}) : || f ||K̇α

p
< ∞},

where

|| f ||K̇α
p

=

∞∑
k=−∞

2kα|| fχk||Lp;

(2) The nonhomogeneous Herz space Kα
p (Rn) is defined by

Kα
p (Rn) = { f ∈ Lp

loc(R
n) : || f ||Kα

p < ∞},

where

|| f ||Kα
p =

∞∑
k=0

2kα|| f χ̃k||Lp .

If α = n(1 − 1/p), we denote that K̇α
p (Rn) = K̇p(Rn), Kα

p (Rn) = Kp(Rn).
Definition 2. Let 0 < δ < n and 1 < p < n/δ. We shall call Bδ

p(Rn) the space of those functions f
on Rn such that

|| f ||Bδp = sup
d>1

d−n(1/p−δ/n)|| fχQ(0,d)||Lp < ∞.

Definition 3. Let 1 < p < ∞.
(1) The homogeneous Herz type Hardy space HK̇p(Rn) is defined by

HK̇p(Rn) = { f ∈ S ′(Rn) : G( f ) ∈ K̇p(Rn)},

where
|| f ||HK̇p

= ||G( f )||K̇p
.
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(2) The nonhomogeneous Herz type Hardy space HKp(Rn) is defined by

HKp(Rn) = { f ∈ S ′(Rn) : G( f ) ∈ Kp(Rn)},

where
|| f ||HKp = ||G( f )||Kp .

where G( f ) is the grand maximal function of f .
The Herz type Hardy spaces have the atomic decomposition characterization.
Definition 4. Let 1 < p < ∞. A function a(x) on Rn is called a central (n(1 − 1/p), p)-atom (or a

central (n(1 − 1/p), p)-atom of restrict type), if
1) Suppa ⊂ B(0, d) for some d > 0 (or for some d ≥ 1),
2) ||a||Lp ≤ |B(0, d)|1/p−1,
3)

∫
a(x)dx = 0.

Lemma 1. (see [9,13]) Let 1 < p < ∞. A temperate distribution f belongs to HK̇p(Rn)(or HKp(Rn))
if and only if there exist central (n(1−1/p), p)-atoms(or central (n(1−1/p), p)-atoms of restrict type) a j

supported on B j = B(0, 2 j) and constants λ j,
∑

j |λ j| < ∞ such that f =
∑∞

j=−∞ λ ja j (or f =
∑∞

j=0 λ ja j)in
the S ′(Rn) sense, and

|| f ||HK̇p
( or || f ||HKp) ≈

∑
j

|λ j|.

2. Theorems

In this paper, we will consider a class of multilinear operators related to some non-convolution type
singular integral operators, whose definition are following.

Let m be a positive integer and A be a function on Rn. We denote that

Rm+1(A; x, y) = A(x) −
∑
|β|≤m

1
β!

DβA(y)(x − y)β

and

Qm+1(A; x, y) = Rm(A; x, y) −
∑
|β|=m

1
β!

DβA(x)(x − y)β.

Definition 5. Fixed ε > 0 and 0 < δ < n. Let Tδ : S → S ′ be a linear operator. Tδ is called
a fractional singular integral operator if there exists a locally integrable function K(x, y) on Rn × Rn

such that

Tδ( f )(x) =

∫
Rn

K(x, y) f (y)dy

for every bounded and compactly supported function f , where K satisfies:

|K(x, y)| ≤ C|x − y|−n+δ

and
|K(y, x) − K(z, x)| + |K(x, y) − K(x, z)| ≤ C|y − z|ε|x − z|−n−ε+δ
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if 2|y − z| ≤ |x − z|. The multilinear operator related to the fractional singular integral operator Tδ is
defined by

T A
δ ( f )(x) =

∫
Rn

Rm+1(A; x, y)
|x − y|m

K(x, y) f (y)dy;

We also consider the variant of T A
δ , which is defined by

T̃ A
δ ( f )(x) =

∫
Rn

Qm+1(A; x, y)
|x − y|m

K(x, y) f (y)dy.

Note that when m = 0, T A
δ is just the commutators of Tδ and A (see [1,6,11,14]). It is well known that

multilinear operator, as a non-trivial extension of commutator, is of great interest in harmonic analysis
and has been widely studied by many authors (see [3–5]). In [7], the weighted Lp(p > 1)-boundedness
of the multilinear operator related to some singular integral operator are obtained. In [2], the weak (H1,
L1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In
this paper, we will study the endpoint continuity properties of the multilinear operators T A

δ and T̃ A
δ on

Herz and Herz type Hardy spaces.
Now we state our results as following.
Theorem 1. Let 0 < δ < n, 1 < p < n/δ and DβA ∈ BMO(Rn) for all β with |β| = m. Suppose that

T A
δ is the same as in Definition 5 such that Tδ is bounded from Lp(Rn) to Lq(Rn) for any p, q ∈ (1,+∞]

with 1/q = 1/p − δ/n. Then T A
δ is bounded from Bδ

p(Rn) to CMO(Rn).
Theorem 2. Let 0 < δ < n, 1 < p < n/δ, 1/q = 1/p − δ/n and DβA ∈ BMO(Rn) for all β with

|β| = m. Suppose that T̃ A
δ is the same as in Definition 5 such that T̃ A

δ is bounded from Lp(Rn) to Lq(Rn)
for any p, q ∈ (1,+∞) with 1/q = 1/p − δ/n. Then T̃ A

δ is bounded from HK̇p(Rn) to K̇α
q (Rn) with

α = n(1 − 1/p).
Theorem 3. Let 0 < δ < n, 1 < p < n/δ and DβA ∈ BMO(Rn) for all β with |β| = m. Suppose that

T̃ A
δ is the same as in Definition 5 such that T̃ A

δ is bounded from Lp(Rn) to Lq(Rn) for any p, q ∈ (1,+∞)
with 1/q = 1/p − δ/n. Then the following two statements are equivalent:

(i) T̃ A
δ is bounded from Bδ

p(Rn) to CMO(Rn);
(ii) for any cube Q and z ∈ 3Q \ 2Q, there is

1
|Q|

∫
Q

∣∣∣∣∣∣∣∣
∑
|β|=m

1
β!
|DβA(x) − (DβA)Q|

∫
(4Q)c

Kβ(z, y) f (y)dy

∣∣∣∣∣∣∣∣ dx ≤ C|| f ||Bδp ,

where Kβ(z, y) =
(z−y)β

|z−y|m K(z, y) for |β| = m.
Remark. Theorem 2 is also hold for nonhomogeneous Herz and Herz type Hardy space.

3. Proofs of theorems

To prove the theorem, we need the following lemma.
Lemma 2. (see [5]) Let A be a function on Rn and DβA ∈ Lq(Rn) for |β| = m and some q > n. Then

|Rm(A; x, y)| ≤ C|x − y|m
∑
|β|=m

(
1

|Q̃(x, y)|

∫
Q̃(x,y)

|DβA(z)|qdz
)1/q

,
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where Q̃(x, y) is the cube centered at x and having side length 5
√

n|x − y|.
Proof of Theorem 1. It suffices to prove that there exists a constant CQ such that

1
|Q|

∫
Q
|T A
δ ( f )(x) −CQ|dx ≤ C|| f ||Bδp

holds for any cube Q = Q(0, d) with d > 1. Fix a cube Q = Q(0, d) with d > 1. Let Q̃ = 5
√

nQ and
Ã(x) = A(x) −

∑
|β|=m

1
β! (D

βA)Q̃xβ, then Rm+1(A; x, y) = Rm+1(Ã; x, y) and DβÃ = DβA − (DβA)Q̃ for all β

with |β| = m. We write, for f1 = fχQ̃ and f2 = fχRn\Q̃,

T A
δ ( f )(x) =

∫
Rn

Rm+1(Ã; x, y)
|x − y|m

K(x, y) f (y)dy =

∫
Rn

Rm(Ã; x, y)
|x − y|m

K(x, y) f1(y)dy

−
∑
|β|=m

1
β!

∫
Rn

K(x, y)(x − y)β

|x − y|m
DβÃ(y) f1(y)dy +

∫
Rn

Rm+1(Ã; x, y)
|x − y|m

K(x, y) f2(y)dy,

then

1
|Q|

∫
Q

∣∣∣∣T A
δ ( f )(x) − T Ã

δ ( f2)(0)
∣∣∣∣ dx ≤

1
|Q|

∫
Q

∣∣∣∣∣∣Tδ

(
Rm(Ã; x, ·)
|x − ·|m

f1

)
(x)

∣∣∣∣∣∣ dx

+
∑
|β|=m

1
β!

1
|Q|

∫
Q

∣∣∣∣∣∣Tδ

(
(x − ·)β

|x − ·|m
DβÃ f1

)
(x)

∣∣∣∣∣∣ dx +
∣∣∣∣T Ã

δ ( f2)(x) − T Ã
δ ( f2)(0)

∣∣∣∣ dx

:= I + II + III.

For I, note that for x ∈ Q and y ∈ Q̃, using Lemma 2, we get

Rm(Ã; x, y) ≤ C|x − y|m
∑
|β|=m

||DβA||BMO,

thus, by the Lp(Rn) to Lq(Rn)-boundedness of T A
δ for 1 < p, q < ∞ with 1/q = 1/p − δ/n, we get

I ≤
C
|Q|

∫
Q

∣∣∣∣∣∣∣∣Tδ

∑
|β|=m

||DβA||BMO f1

 (x)

∣∣∣∣∣∣∣∣ dx

≤ C
∑
|β|=m

||DβA||BMO

(
1
|Q|

∫
Q
|Tδ( f1)(x)|qdx

)1/q

≤ C
∑
|β|=m

||DβA||BMO|Q|−1/q|| f1||Lp

≤ C
∑
|β|=m

||DβA||BMOr−n(1/p−δ/n)|| fχQ̃||Lp

≤ C
∑
|β|=m

||DβA||BMO|| f ||Bδp .

For II, taking 1 < s < p such that 1/r = 1/s − δ/n, by the (Ls, Lr)-boundedness of Tδ and Holder’s
inequality, we gain

II ≤
C
|Q|

∫
Q

∣∣∣∣∣∣∣∣Tδ

∑
|β|=m

(DβA − (DβA)Q̃) f1

 (x)

∣∣∣∣∣∣∣∣ dx
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≤ C
∑
|β|=m

(
1
|Q|

∫
Q

∣∣∣∣Tδ

(
(DβA − (DβA)Q̃

)
f1)(x)

∣∣∣∣r dx
)1/r

≤ C|Q|−1/r
∑
|β|=m

||(DβA − (DβA)Q̃) f1||Ls

≤ C|Q|−1/r|| f1||Lp

∑
|β|=m

(
1
|Q|

∫
Q̃
|DβA(y) − (DβA)Q̃|

ps/(p−s)dy
)(p−s)/(ps)

|Q|(p−s)/(ps)

≤ C
∑
|β|=m

||DβA||BMOr−n/q|| fχQ̃||Lp

≤ C
∑
|β|=m

||DβA||BMO|| f ||Bδp .

To estimate III, we write

T Ã
δ ( f2)(x) − T Ã

δ ( f2)(0) =

∫
Rn

[
K(x, y)
|x − y|m

−
K(0, y)
|y|m

]
Rm(Ã; x, y) f2(y)dy

+

∫
Rn

K(0, y) f2(y)
|y|m

[Rm(Ã; x, y) − Rm(Ã; 0, y)]dy

−
∑
|β|=m

1
β!

∫
Rn

(
K(x, y)(x − y)β

|x − y|m
−

K(0, y)(−y)β

|y|m

)
DβÃ(y) f2(y)dy

:= III1 + III2 + III3.

By Lemma 2 and the following inequality (see [15])

|bQ1 − bQ2 | ≤ C log(|Q2|/|Q1|)||b||BMO f or Q1 ⊂ Q2,

we know that, for x ∈ Q and y ∈ 2k+1Q̃ \ 2kQ̃,

|Rm(Ã; x, y)| ≤ C|x − y|m
∑
|β|=m

(||DβA||BMO + |(DβA)Q̃(x,y) − (DβA)Q̃|)

≤ Ck|x − y|m
∑
|β|=m

||DβA||BMO.

Note that |x − y| ∼ |y| for x ∈ Q and y ∈ Rn \ Q̃, we obtain, by the condition of K,

|III1| ≤ C
∫

Rn

(
|x|

|y|m+n+1−δ +
|x|ε

|y|m+n+ε−δ

)
|Rm(Ã; x, y)|| f2(y)|dy

≤ C
∑
|β|=m

||DβA||BMO

∞∑
k=0

∫
2k+1Q̃\2kQ̃

k
(
|x|
|y|n+1−δ +

|x|ε

|y|n+ε−δ

)
| f (y)|dy

≤ C
∑
|β|=m

||DβA||BMO

∞∑
k=1

k(2−k + 2−εk)(2kr)−n(1/p−δ/n)|| fχ2kQ̃||Lp

≤ C
∑
|β|=m

||DβA||BMO

∞∑
k=1

k(2−k + 2−εk)|| f ||Bδp
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≤ C
∑
|β|=m

||DβA||BMO|| f ||Bδp .

For III2, by the formula (see [5]):

Rm(Ã; x, y) − Rm(Ã; x0, y) =
∑
|γ|<m

1
γ!

Rm−|γ|(DγÃ; x, x0)(x − y)γ

and Lemma 2, we have

|Rm(Ã; x, y) − Rm(Ã; x0, y)| ≤ C
∑
|γ|<m

∑
|β|=m

|x − x0|
m−|γ||x − y||γ|||DβA||BMO,

thus, similar to the estimates of III1, we get

|III2| ≤ C
∑
|β|=m

||DβA||BMO

∞∑
k=0

∫
2k+1Q̃\2kQ̃

|x|
|y|n+1−δ | f (y)|dy ≤ C

∑
|β|=m

||DβA||BMO|| f ||Bδp .

For III3, by Holder’s inequality, similar to the estimates of III1, we get

|III3| ≤ C
∑
|β|=m

∞∑
k=0

∫
2k+1Q̃\2kQ̃

(
|x|
|y|n+1−δ +

|x|ε

|y|n+ε−δ

)
|DβÃ(y)|| f (y)|dy

≤ C
∑
|β|=m

∞∑
k=1

(2−k + 2−εk)(2kr)−n(1/p−δ/n)
(
|2kQ̃|−1

∫
2kQ̃
|DβA(y) − (DβA)Q̃|

p′dy
)1/p′

|| fχ2kQ̃||Lp

≤ C
∑
|β|=m

||DβA||BMO

∞∑
k=1

(2−k + 2−εk)(2kr)−n(1/p−δ/n)|| fχ2kQ̃||Lp

≤ C
∑
|β|=m

||DβA||BMO|| f ||Bδp .

Thus
III ≤ C

∑
|β|=m

||DβA||BMO|| f ||Bδp ,

which together with the estimates for I and II yields the desired result. This finishes the proof of
Theorem 1.

Proof of Theorem 2. Let f ∈ HK̇p(Rn), by Lemma 1, f =
∑∞

j=−∞ λ ja j, where a′js are the central
(n(1 − 1/p), p)-atom with suppa j ⊂ B j = B(0, 2 j) and || f ||HK̇p

≈
∑

j |λ j|. We write

||T̃ A
δ ( f )||K̇α

q
=

∞∑
k=−∞

2kn(1−1/p)||χkT̃ A
δ ( f )||Lq

≤

∞∑
k=−∞

2kn(1−1/p)
k−1∑

j=−∞

|λ j|||χkT̃ A
δ (a j)||Lq +

∞∑
k=−∞

2kn(1−1/p)
∞∑
j=k

|λ j|||χkT̃ A
δ (a j)||Lq

= J + JJ.
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For JJ, by the (Lp, Lq)-boundedness of T̃ A
δ for 1/q = 1/p − δ/n, we get

JJ ≤ C
∞∑

k=−∞

2kn(1−1/p)
∞∑
j=k

|λ j|||a j||Lp ≤ C
∞∑

k=−∞

2kn(1−1/p)
∞∑
j=k

|λ j|2 jn(1/p−1)

≤ C
∞∑

j=−∞

|λ j|

j∑
k=−∞

2(k− j)n(1−1/p) ≤ C
∞∑

j=−∞

|λ j| ≤ C|| f ||HK̇p
.

To obtain the estimate of J, we denote that Ã(x) = A(x) −
∑
|β|=m

1
β! (D

βA)2B j x
β. Then Qm(A; x, y) =

Qm(Ã; x, y) and Qm+1(A; x, y) = Rm(A; x, y) −
∑
|β|=m

1
β! (x − y)βDβA(x). We write, by the vanishing

moment of a and for x ∈ Ck with k ≥ j + 1,

T̃ A
δ (a j)(x) =

∫
Rn

K(x, y)Rm(A; x, y)
|x − y|m

a j(y)dy −
∑
|β|=m

1
β!

∫
Rn

K(x, y)DβÃ(x)(x − y)β

|x − y|m
a j(y)dy

=

∫
Rn

[
K(x, y)
|x − y|m

−
K(x, 0)
|x|m

]
Rm(Ã; x, y)a j(y)dy

+

∫
Rn

K(x, 0)
|x|m

[Rm(Ã; x, y) − Rm(Ã; x, 0)]a j(y)dy

−
∑
|β|=m

1
β!

∫
Rn

[
K(x, y)(x − y)β

|x − y|m
−

K(x, 0)xβ

|x|m

]
DβÃ(x)a j(y)dy.

Similar to the proof of Theorem 1, we obtain

|T̃ A
δ (a j)(x)| ≤ C

∫
Rn

[
|y|

|x|m+n+1−δ +
|y|ε

|x|m+n+ε−δ

]
|Rm(Ã; x, y)||a j(y)|dy

+C
∑
|β|=m

∫
Rn

[
|y|
|x|n+1−δ +

|y|ε

|x|n+ε−δ

]
|DβÃ(x)||a j(y)|dy

≤ C
∑
|β|=m

||DβA||BMO

[
2 j

2k(n+1−δ) +
2 jε

2k(n+ε−δ)

]
+ C

∑
|β|=m

[
2 j

2k(n+1−δ) +
2 jε

2k(n+ε−δ)

]
|DβÃ(x)|,

thus

J ≤ C
∑
|β|=m

||DβA||BMO

∞∑
k=−∞

2kn(1−1/p)
k−1∑

j=−∞

|λ j|

[
2 j

2k(n+1−δ) +
2 jε

2k(n+ε−δ)

]
2kn/q

+C
∑
|β|=m

∞∑
k=−∞

2kn(1−1/p)
k−1∑

j=−∞

|λ j|

[
2 j

2k(n+1−δ) +
2 jε

2k(n+ε−δ)

] (∫
Bk

|DβÃ(x)|qdx
)1/q

≤ C
∑
|β|=m

||DβA||BMO

∞∑
k=−∞

2kn(1−δ/n)
k−1∑

j=−∞

|λ j|

[
2 j

2k(n+1−δ) +
2 jε

2k(n+ε−δ)

]

≤ C
∑
|β|=m

||DβA||BMO

∞∑
j=−∞

|λ j|

∞∑
k= j+1

[2 j−k + 2( j−k)ε]
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≤ C
∑
|β|=m

||DβA||BMO

∞∑
j=−∞

|λ j|

≤ C
∑
|β|=m

||DβA||BMO|| f ||HK̇p
.

This completes the proof of Theorem 2.
Proof of Theorem 3. For any cube Q = Q(0, r) with r > 1, let f ∈ Bδ

p and Ã(x) = A(x) −∑
|β|=m

1
β! (D

βA)Q̃xβ. We write, for f = fχ4Q + fχ(4Q)c = f1 + f2 and z ∈ 3Q \ 2Q,

T̃ A
δ ( f )(x) = T̃ A

δ ( f1)(x) +

∫
Rn

Rm(Ã; x, y)
|x − y|m

K(x, y) f2(y)dy

−
∑
|β|=m

1
β!

(DβA(x) − (DβA)Q)(Tδ,β( f2)(x) − Tδ,β( f2)(z))

−
∑
|β|=m

1
β!

(DβA(x) − (DβA)Q)Tδ,β( f2)(z)

= I1(x) + I2(x) + I3(x, z) + I4(x, z),

where Tδ,β is the singular integral operator with the kernel (x−y)β

|x−y|m K(x, y) for |β| = m. Note that
(I4(·, z))Q = 0, we have

T̃ A
δ ( f )(x) − (T̃ A

δ ( f ))Q = I1(x) − (I1(·))Q + I2(x) − I2(z) − [I2(·) − I2(z)]Q − I3(x, z) + (I3(x, z))Q − I4(x, z).

By the (Lp, Lq)-bounded of T̃ A
δ , we get

1
|Q|

∫
Q
|I1(x)|dx ≤

(
1
|Q|

∫
Q
|T̃ A
δ ( f1)(x)|qdx

)1/q

≤ C|Q|−1/q|| f1||Lp ≤ C|| f ||Bδp .

Similar to the proof of Theorem 1, we obtain

|I2(x) − I2(z)| ≤ C|| f ||Bδp

and
1
|Q|

∫
Q
|I3(x, z)|dx ≤ C|| f ||Bδp .

Then integrating in x on Q and using the above estimates, we obtain the equivalence of the estimate

1
|Q|

∫
Q
|T̃ A
δ ( f )(x) − (T̃ A

δ ( f ))Q|dx ≤ C|| f ||Bδp

and the estimate
1
|Q|

∫
Q
|I4(x, z)|dx ≤ C|| f ||Bδp .

This completes the proof of Theorem 3.
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4. Applications

In this section we shall apply the theorems of the paper to some particular operators such as the
Calderón-Zygmund singular integral operator and fractional integral operator.

Application 1. Calderón-Zygmund singular integral operator.
Let T be the Calderón-Zygmund operator defined by (see [10,11,15])

T ( f )(x) =

∫
Rn

K(x, y) f (y)dy,

the multilinear operator related to T is defined by

T A( f )(x) =

∫
Rn

Rm+1(A; x, y)
|x − y|m

K(x, y) f (y)dy.

Then it is easily to see that T satisfies the conditions in Theorems 1–3, thus the conclusions of
Theorems 1–3 hold for T A.

Application 2. Fractional integral operator with rough kernel.
For 0 < δ < n, let Tδ be the fractional integral operator with rough kernel defined by (see [2,7])

Tδ f (x) =

∫
Rn

Ω(x − y)
|x − y|n−δ

f (y)dy,

the multilinear operator related to Tδ is defined by

T A
δ f (x) =

∫
Rn

Rm+1(A; x, y)
|x − y|m+n−δ Ω(x − y) f (y)dy,

where Ω is homogeneous of degree zero on Rn,
∫

S n−1 Ω(x′)dσ(x′) = 0 and Ω ∈ Lipε(S n−1) for some
0 < ε ≤ 1, that is there exists a constant M > 0 such that for any x, y ∈ S n−1, |Ω(x) −Ω(y)| ≤ M|x − y|ε.
Then Tδ satisfies the conditions in Theorem 1. In fact, for supp f ⊂ (2Q)c and x ∈ Q = Q(x0, d), by the
condition of Ω, we have (see [16])∣∣∣∣∣Ω(x − y)

|x − y|n−δ
−

Ω(x0 − y)
|x0 − y|n−δ

∣∣∣∣∣ ≤ C
(
|x − x0|

ε

|x0 − y|n+ε−δ
+
|x − x0|

|x0 − y|n+1−δ

)
,

thus, the conclusions of Theorems 1–3 hold for T A
δ .
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