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Abstract: Every nonzero integral ideal can be expressed as the product of finite prime ideals in
Dedekind domain. For each integral ideal A, it is essential to measure the multiplicity of its prime
ideal factors. We define λ(A) := log N(A)

log γ(A) to be the index of composition of A, where γ(A) =
∏
P|A N(P)

and N(A) is the norm of ideal A. In this paper, we obtain an Ω-result for the mean value of the index
of composition of integral ideal.
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1. Introduction

Let K be an algebraic number filed of degree d and OK be the ring of integers of K. For each
integral ideal A ∈ OK , A = P

e1
1 · · ·P

eg
g , where thePi(i = 1, ..., g) are prime ideals of OK , this expression

is unique up to the order of the factors. Motivated by [17], we define λ(A) := log N(A)
log γ(A) be the index of

composition ofA, where N(A) is the norm of idealA and γ(A) =
∏
P|A N(P). We write λ(A) = γ(A) = 1

if A = OK . The index of composition of an integral ideal measures the multiplicity of its prime factors.
Before stating our main results, we introduce some notations. The Dedekind zeta-function for the

field K is defined by

ζK(s) =
∑
A,0

1
N s(A)

=

∞∑
n=1

an

ns , <s > 1,

where an is the number of integral ideals of K with norm n. ζK(s) can be analytically continued to the
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whole complex plane, s = 1 is a simple pole with residue

ρK =
2r1(2π)r2RK

ωK
√
|d(K)|

,

where r1, r2 denote the number of real and complex places respectively, RK is the regular of K, d(K) is
the discriminant of K and ωK is the order of the group of units. We know that an ≤ (τ(n))d, where τ(n)
is the number of divisors of n. Let

C(x) :=
∑
n≤x

an = ρK x + ∆(x). (1.1)

Then (see [5, 8, 9, 11])
∆(x) = O(xθd+ε),

where

θd :=



131
416 , if d = 2,
43
96 , if d = 3,
1 − 2

d + 8
d(5d+2) , if d = 4, 5, 6,

1 − 2
d + 3

2d2 , if d ≥ 7.
1 − 3

d+6 , if d ≥ 10.

In [15], Zhang and Zhai obtained a series of results about the mean value of λ±k(A). The results
imply that the average order of λ(A) is ρK . Also they found that the mean value of λ−1(A) has a close
connection with the zero free region of ζK(s) and got that∑

N(A)≤x

λ−1(A) = ρK x + C1

∫ x

2

1
log z

dz + OK

(
xϑd+ε

)
,

where

ϑd :=


1
2 , if d = 2, 3
1 − 2

d + 8
d(5d+2) , if d = 4, 5, 6,

1 − 2
d + 3

2d2 , if d ≥ 7.

If K is a quadratic or cubic number field, Zhang and Zhai [16] proved the asymptotic formula∑
N(A)≤x

λ−1(A) = ρK x + C1

∫ x

2

1
log z

dz + C2

∫ x

2

z−
1
2

log z
dz + OK (R(x)) , (1.2)

where
R(x) = x

1
2 exp(−c log

1
3 x(log log x)−

1
3 ),

and C1,C2 are computable constants, c > 0 is a positive constant. Assuming the Riemann Hypothesis
for ζK(s) is true, Zhang and Zhai [16] used the estimation of exponential sum and convolution method
to get

R(x) =

x5/12+ε, if d = 2,
x73/156+ε, if d = 3.
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It is natural to consider how well the main term of
∑

N(A)≤x λ
−1(A) approximates it, that is, what can

be said about Ω- result (for example, see [6, 7, 18]). In this paper, we shall get the following result.

Theorem 1.1. Let K be a quadratic or cubic number field. Then we have

∑
N(A)≤x

λ−1(A) =ρK x + C1

∫ x

2

1
log z

dz + C2

∫ x

2

z−
1
2

log z
dz

+ C3

∫ x

2

z−
2
3

log z
dz + R0(x),

where Ci(i = 1, 2, 3) are computable constants and the error term R0(x) satisfies∫ Y

1
R0(x)dx = Ω

 Y
5
4

log Y

 . (1.3)

Remark. In order to prove Theorem 1.1, we will follow the line in Pintz [12] and Nowak [10],
using Mellin transform and constructing an auxiliary function g(s) with some properties. Because
λ(A) is not multiplicative, it is not easy to get the generating series of λ−1(A). Instead we shall study
the mean value of

∑
N(A)≤x log γ(A). In fact, as a function of z, γz(A) is regular for |z| ≤ ε, then we can

differentiate it and set z = 0 to get the mean value and generating series for log γ(A). Theorem 1.1 can
follows from the lower bound for the error term of

∑
N(A)≤x log γ(A).

It is easy to see that (1.3) implies the following Ω-result.

Theorem 1.2. Let K be a quadratic or cubic number field. Then we have

R0(x) = Ω

(
x1/4

log x

)
.

Notation. Throughout the paper ε always denotes a fixed but sufficiently small positive constant. We
write f (x) � g(x), or f (x) = O(g(x)), to mean that | f (x)| ≤ Cg(x).

∑
n∼N denote that the sum over

N < n ≤ 2N. f (x) = Ω(g(x)) means that there exists a suitable constant C > 0 such that | f (x)| > Cg(x)
holds for a sequence x = xn such that lim

n→∞
xn = ∞.

2. The mean value of log γ(A)

In this section, suppose ε > 0 is a small positive constant, z is a complex number such that |z| ≤ ε.
Let s = σ + it be a complex number with<(s − z) > 1. Define

G(s, z) :=
∑
A

γz(A)N−s(A).

Lemma 2.1. For |z ≤ ε, we have

G(s, z) =
ζK(s − z)ζK(2s − z)ζK(3s − z)ζK(4s − z)ζK(4s − 3z)

ζK(2s − 2z)ζK(3s − 2z)ζK(4s − 2z)
G1(s, z),

where G1(s, z) can be expanded into a Dirichlet series of s, which is absolutely convergent forσ > 1
5 +ε.
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Proof. By Euler product representation, we have

G(s, z) =
∏
P

(
1 +

Nz(P)
N s(P)

+
Nz(P)
N2s(P)

+
Nz(P)
N3s(P)

+ · · ·

)
= ζK(s − z)G∗(s, z),

where ζK(s) is the Dedekind ζ-function, and

G∗(s, z) : =
∏
P

(
1 −

Nz(P)
N s(P)

)∏
P

(
1 +

Nz(P)
N s(P)

+
Nz(P)
N2s(P)

+
Nz(P)
N3s(P)

+ · · ·

)
= ζK(2s − z)G∗1(s, z),

where

G∗1(s, z) =
∏
P

(
1 −

N2z(P)
N2s(P)

−
N2z(P)
N4s(P)

+
N3z(P)
N4s(P)

− · · ·

)
.

Arguing similarly, we can get

G(s, z) =
ζK(s − z)ζK(2s − z)ζK(3s − z)ζK(4s − z)ζK(4s − 3z)

ζK(2s − 2z)ζK(3s − 2z)ζK(4s − 2z)
G1(s, z),

where

G1(s, z) =
∏
P

(
1 +

Nz(P)
N5s(P)

−
N2z(P)
N5s(P)

+
N3z(P)
N5s(P)

− · · ·

)
.

By the similar method as before, we know that G1(s, z) can be written as the product of Dedekind ζ-
functions. If we note that |z| ≤ ε, then G1(s, z)can be expanded to a Dirichlet series, which is absolutely
convergent for<s > 1/5 + ε. �

To obtain the mean value of
∑

N(A)≤x log γ(A), we need the following Lemma.

Lemma 2.2. If σ > 1, then
ζK(s) � log(|t| + 2). (2.1)

Let k ≥ 0 be an integer. Uniformly for 1
2 ≤ σ ≤ 1, we have

ζ(k)
K (s) � (|t| + 2)

d
3 (1−σ) logk+1(|t| + 2), (2.2)

where ζ(k)
K (s) is the k-th derivative of ζK(s).

Proof. The order of ζK(s) can be found in [16, Lemma 2.3]. For the cases k ≥ 1 of (2.2), we use the
Cauchy derivative formula to get

ζ(k)
K (s) =

k!
2πi

∫
|z−s|=R

ζK(z)
(z − s)k+1 dz.

Let z = s + Reiθ and R = 1/ log(|t| + 2). Then the above formula can be written as

ζ(k)
K (s) =

k!
2π

∫ 2π

0

ζK(s + Reiθ)
(Reiθ)k dθ � logk(|t| + 2)|ζK(s + Reiθ)|.

Therefore Lemma 2.2 follows from the order of ζK(s) (k = 0 in (2.2)). �
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Proposition 2.3. We have∑
N(A)≤x

log γ(A) = ρK x log x + c1x + c2x
1
2 + c3x

1
3 + E0(x),

where ci (1 ≤ i ≤ 3) are computable constants, and for Y → ∞, the error term E0(x) satisfies

∫ Y

1
|E0(x)|dx � Y

5
4 .

Proof. By Lemma 2.1, we have

G(s, z) =
∑
A

γz(A)N−s(A)

=
ζK(s − z)ζK(2s − z)ζK(3s − z)ζK(4s − z)ζK(4s − 3z)

ζK(2s − 2z)ζK(3s − 2z)ζK(4s − 2z)
G1(s, z).

(2.3)

Firstly, we take the first partial derivative with respect to z form both sides of (2.3), and put z = 0 to get

∂G(s, z)
∂z

∣∣∣∣∣
z=0

=
∑
A

γz(A) log γ(A)
N s(A)

∣∣∣∣∣
z=0

=
∑
A

log γ(A)
N s(A)

=
ζK(s)ζK(4s)G1(s, 0){ζ

′

K(2s)ζK(3s) + ζK(2s)ζ
′

K(3s)}
ζK(2s)ζK(3s)

+ G2(s),

where

G2(s) = ζK(s)ζK(4s)G
′

1(s, 0) − ζ
′

K(s)ζK(4s)G1(s, 0) − 2ζK(s)ζ
′

K(4s)G1(s, 0),

and G1(s, 0) is absolutely convergent for <s > 1
5 + ε. We can easily see that

∑
A

log γ(A)
N s(A) has a pole of

order 2 at s = 1 and poles of order 1 at s = 1
2 ,

1
3 , which prompts us to consider that

∑
N(A)≤x log γ(A)

should have the following asymptotic formula∑
N(A)≤x

log γ(A) = ρK x log x + c1x + c2x
1
2 + c3x

1
3 + E0(x),

where E0(x) = O(x
1
4 +ε).

Following the idea of Pintz [12] and Nowak [10], we use the Mellin transform to get

H(s) :=
∫ ∞

1
E0(x)x−s−1dx

=

∫ ∞

1

 ∑
N(A)≤x

log γ(A) − ρK x log x + c1x + c2x
1
2 + c3x

1
3


× x−s−1dx

(2.4)
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for<s > 1. Now we deal with the first term of (2.4). By the partial integration and (2.4), we have∫ ∞

1

∑
N(A)≤x

log γ(A)
xs+1 dx

= −
1
s

 ∑
N(A)≤x

log γ(A)x−s
∣∣∣∣∣∞
1
−

∫ ∞

1
x−sd

 ∑
N(A)≤x

log γ(A)




=
1
s

∑
A

log γ(A)
N s+1(A)

=
ζK(s)ζK(4s)G1(s, 0)(ζ

′

K(2s)ζK(3s) + ζ(2s)ζ
′

K(3s))
sζK(2s)ζK(3s)

+
G2(s)

s
.

Let K(s) = ζK(s)ζK(4s)G1(s, 0)(ζ
′

K(2s)ζK(3s) + ζ(2s)ζ
′

K(3s)). After computing another four terms
of (2.4), we can get

H(s) =
K(s)

sζK(2s)ζK(3s)
+

G2(s)
s
−

ρK

(s − 1)2 −
c1

s − 1
−

c2

s − 1
2

−
c3

s − 1
3

=
F(s)

s(s − 1)2ζK(2s)ζK(3s)(2s − 1)2(3s − 1)2(4s − 1)2 ,

where

F(s) ={K(s) + G2(s)ζK(2s)ζK(3s)}(s − 1)2(2s − 1)2(3s − 1)2(4s − 1)2

− sζK(2s)ζK(3s)(2s − 1)(3s − 1)(4s − 1)2M(s),

here M(s) = (2s − 1)(3s − 1) (ρK + c1(s − 1)) + (s − 1)2 (2c2(3s − 1) + 3c3(2s − 1)). It is easy to see
that F(s) is an entire function for<s > 1

5 + ε. We choose z0 = 1
4 + iβ0, according to the results of [1]

(or [2–4,13,14]), we get 2z0 is a single zero of the Dedekind ζ-function and ζK(z0)ζK(3z0)G1(z0, 0) , 0.
In addition,

ζ′K(2z0) , 0, ζK(4z0) = ζK(1 + i4β0) , 0.

We write

g(s) :=
s(s − 1)2ζK(2s)(2s − 1)2ζK(3s)(3s − 1)2(4s − 1)2

(s − z0)(s + 2)13 ,

which is regular in<s > −2, and

g(s)H(s) =
F(s)

(s − z0)(s + 2)13

is regular in<s > 1
5 + ε apart from a simple pole at s = z0, since

F(z0) =ζK(z0)ζ′K(2z0)ζK(3z0)ζK(4z0)G1(z0, 0)
× (z0 − 1)2(2z0 − 1)2(3z0 − 1)2(4z0 − 1)2 , 0.

Using the order of ζK(s) and ζ′K(s) (Lemma 2.2), we know that the integrals∫ β+i∞

β−i∞
|g(s)|ds,

∫ β+i∞

β−i∞
|g(s)H(s)|ds

AIMS Mathematics Volume 6, Issue 5, 4979–4988.
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converge for β ∈ {15 , 2} as |t| → ∞. Now, for η > 0, we define a weight function

ω(η) :=
∫ 2+i∞

2−i∞
g(s)ηs+1ds

which satisfies

ω(η) =

O(1), η ≥ 1,
0, if 0 < η < 1.

(2.5)

Therefore,

V(Y) : =
1
Y

∫ ∞

1
E0(x)ω

(Y
x

dx
)

=
1
Y

∫ ∞

1
E0(x)

(∫ 2+i∞

2−i∞
g(s)

(Y
x

)s+1

ds
)

dx

=

∫ 2+i∞

2−i∞
g(s)Y s

(∫ ∞

1
E0(x)x−s−1dx

)
ds

=

∫ 2+i∞

2−i∞
g(s)H(s)Y sds.

For Y large, we shift the line of integration to<s = 1
5 , then we have

V(Y) = 2πiRess=z0(g(s)H(s)Y s) +

∫ 1
5 +i∞

1
5−i∞

g(s)H(s)Y sds

= 2πiα0Yz0 + O(Y
1
5 ),

where

α0 =
F(z0)

(z0 + 2)13

=
ζK(z0)ζ′K(2z0)ζK(3z0)ζK(4z0)G1(z0, 0)(z0 − 1)2(2z0 − 1)2(3z0 − 1)2(4z0 − 1)2

(z0 + 2)13 .

(2.6)

By (2.6), we can evident that
|V(Y)| � |Yz0 | = Y

1
4

as Y → ∞. On the other hand, by (2.5), we can obtain

|V(Y)| =

∣∣∣∣∣∣ 1Y
∫ Y

1
E0(x)ω

(Y
x

)
dx

∣∣∣∣∣∣ � 1
Y

∫ Y

1
E0(x)dx.

Consequently, for Y → ∞, we have

1
Y

∫ Y

1
|E0(x)|dx � Y

1
4 .

�
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3. Proof of Theorem 1.1

Now we prove Theorem 1.1. From Proposition 2.3, we get∑
N(A)≤x

log(γ(A)) = ρK x log x + c1x + c2x
1
2 + c3x

1
3 + E0(x), (3.1)

with ∫ Y

1
|E0(x)|dx � Y

5
4 ,

where Y → ∞. Using partial integration, we get

∑
N(A)≤x

λ−1(A) =
∑

2≤N(A)≤x

log γ(A)
log N(A)

=

∫ x

2−

1
log t

d

 ∑
2≤N(A)≤t

log γ(A)


=ρK x + C1

∫ x

2

1
log t

dt + C2

∫ x

2

t−
1
2

log t
dt

+ C3

∫ x

2

t−
2
3

log t
dt + R0(x),

where

R0(x) =

∫ x

2

dE0(t)
log t

=

∫ x

2

E′0(t)
log t

dt. (3.2)

Taking the derivative of the above formula we get E′0(x) = R′0(x) log x. Integrating both sides with
respect to x, we have

E0(x) =

∫ x

1
R′0(t) log tdt = R0(x) log x −

∫ x

1

R0(t)
t

dt. (3.3)

And also ∫ Y

1
|E0(x)|dx =

∫ Y

1

∣∣∣∣∣R0(x) log x −
∫ x

1

R0(t)
t

dt
∣∣∣∣∣ dx

≤

∫ Y

1
|R0(x) log x|dx +

∫ Y

1

∣∣∣∣∣∫ x

1

R0(t)
t

dt
∣∣∣∣∣ dx.

(3.4)

We prove Theorem 1.1 by contradiction. Suppose that∫ Y

1
|R0(x)|dx ≤ ε

Y
5
4

log Y
, (3.5)

where ε is a small constant. Thus we have∫ Y

1
|E0(x)|dx ≤ log Y

∫ Y

1
|R0(x)|dx +

∫ Y

1

(∫ x

1

R0(t)
t

dt
)

dx

≤ εY
5
4 +

∫ Y

1

(∫ x

1

|R0(t)|
t

dt
)

dx.
(3.6)
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We use dyadic arguments to the inner integral to get∫ x

1

|R0(t)|
t

dt =

log x
2−1∑

j=0

∫ 2− j x

2− j−1 x

|R0(t)|
t

dt

≤

log x∑
j=0

1
2− j−1x

∫ 2− j x

2− j−1 x
|R0(t)|dt.

(3.7)

By (3.5), we can obtain ∫ x

1

|R0(t)|
t

dt ≤
log x∑
j=0

ε

2− j−1x
·

(2− jx)
5
4

log(2− jx)
≤ εx

1
4 . (3.8)

Inserting (3.8) into (3.6), we have ∫ Y

1
|E0(x)|dx ≤ εY

5
4 ,

which contradict with Proposition 2.3. Then we have∫ Y

1
|R0(x)|dx = Ω

 Y
5
4

log Y

 .
4. Conclusions

For each integral ideal A, it is essential to measure the multiplicity of its prime ideal factors. In
this paper, we define λ(A) := log N(A)

log γ(A) to be the index of composition of A and consider how well the
main term of

∑
N(A)≤x λ

−1(A) approximates it, that is, what can be said about Ω-results for the index of
composition of integral ideal. The results imply that the average order of λ(A) is ρK .
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