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1. Introduction

Interaction between discrete and continuous dynamics gives rise to hybrid models. This type of
mathematical models mainly appear when describing technological systems, where the continuous
dynamics comes from the physical process, while the discrete dynamics appears because of the
technological elements of the system [1]. These latter elements, often based upon logical and
software tools, are designed to take full control of the technological process [2, 3].

Traditionally, continuous dynamics has been mathematically described via differential equations
while automata and Petri nets have been commonly used to model the discrete dynamics. Apart from
technological applications, hybrid systems have also been considered to study the dynamics of diseases
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in epidemiology. In this setting, hybrid systems have been applied with switching parameters, and to
account different control strategies [4–6].

Although most of contributions in the theory of hybrid systems have been developed using
deterministic tools, it is natural to consider a stochastic approach, since real systems are affected by
uncertainties. The randomness comes from the sampled data used to conduct the corresponding study
or from the partial knowledge of the phenomenon under analysis due to inherent complexity that often
is present in real-world. This approach leads to stochastic/random hybrid systems where the term
hybrid is also motivated because of the combination of different types of uncertainties, whose nature
can be both continuous and discrete, and that may alter the dynamics of the system.

In dealing with differential equations with uncertainties, one mainly distinguishes two approaches,
namely, stochastic differential equations (SDEs) and random differential equations (RDEs) [7, p.
96–98]. SDEs are those where uncertainty is forced (preselected) via stochastic processes whose
trajectories or sample behaviour are very irregular, but following specific probabilistic patterns such
as the Gaussian Wiener process, whose realizations are nowhere differentiable. The solution of this
class of SDEs requires a special stochastic calculus, such as the Itô calculus [8]. RDEs are those in
which random effects are directly represented in their input parameters (coefficients, forcing term,
initial/boundary conditions). It is usually assumed that these inputs have regular behaviour (e.g.,
continuous trajectories) with respect to time and/or space [9]. A major advantage of RDEs is their
flexibility when assigning probabilistic distributions for each input parameter. This is a key point
when RDEs are used to model real-world problems, since we do not prefix the type of uncertainty that
appear in the mathematical model but it is determined using inverse probabilistic techniques to assign
appropriate distributions to each input parameter [7].

In the setting of hybrid models with uncertainties, SDEs have been widely used. In their
formulation these SDEs combine both continuous and discrete stochastic processes. As mentioned
before, such processes are previously chosen when formulating the SDEs, so this choice might
condition the suitability of the corresponding SDE to describe the specific problem under analysis.
This approach has been mainly applied by combining Wiener and Poisson processes [10]. The Wiener
process accounts the continuous dynamics as it has continuous trajectories, while the compound
Poisson process describes the discrete dynamics as its trajectories have jumps. Lévy-type processes
have also been considered as continuous and discrete stochastic terms of SDEs since both the Wiener
and the Poisson processes can be regarded as particular cases of the Lévy process [11]. In contrast, to
the best of our knowledge, there is a lack of contributions dealing with RDEs whose input parameters
combine hybrid uncertainties, i.e., continuous (like Gaussian, Beta, Gamma, etc.) and discrete (like
Binomial, Poisson, Geometric, etc.) random variables. In this paper, we tackle this interesting
scenario by studying a full randomization of an important dynamic model, namely, the
linear-quadratic logistic-type differential equation. As it will be seen later, for the sake of generality,
we will assume that model parameters (the coefficients and the initial condition) involve both discrete
and continuous random variables. From a stochastic standpoint, this fact confers the problem hybrid
nature.

It is important to stress that solving a SDE/RDE consists not only in obtaining, exactly or
approximately, the solution stochastic process, say X(t), but also its main probabilistic information,
usually given via the first moments, such as the mean (E[X(t)]), the variance (V[X(t)]), etc. However,
a more ambitious objective is determining the so called fidis (finite distributions) of the
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solution [9, Ch.3]. The first probability density function (1-PDF), fX(t)(x), is the simplest but the most
important fidis since from it one can calculate, by integration, all the one-dimensional moments,

E[(X(t))m] =

∫ ∞

−∞

xm fX(t)(x)dx, m = 1, 2, . . . , (1.1)

provided they exist. The 1-PDF also permits computing the probability that the solution lies within a
specific interval of interest,

P[x1 ≤ X(t) ≤ x2] =

∫ x2

x1

fX(t)(x)dx,

for every t. In the context of hybrid systems governed by SDEs, whose uncertainty is modelled by
combining both continuous and discrete processes, most contributions have focussed on SDEs driven
by a Wiener process (continuous uncertainty) and a Poisson process (discrete uncertainty). In such
case, the 1-PDF satisfies the forward generalized Kolmogorov partial differential equation [12]. The
exact solution of this partial differential equation can be obtained only under exceptional conditions
and, in general, numerical methods are required [13]. In the setting of RDEs, the following result,
called Random Variable Transformation (RVT) method, allows us to calculate the 1-PDF of RDEs
in the case the solution admits an explicit closed-form or when it can be represented via an analytic
expression. The RVT technique avoids solving the corresponding partial differential equation satisfied
by the 1-PDF of the solution stochastic process, which might be unaffordable. Moreover, the RVT
technique has demonstrated to be very useful to solve both ordinary RDEs [14, 15] and partial RDEs
[16, 17]. The RVT method is stated in the following theorem.

Theorem 1 (Random Variable Transformation method). [9, page 25]. Let us consider
U = (U1, . . . ,Un) and V = (V1, . . . ,Vn) two n-dimensional absolutely continuous random vectors
defined on a complete probability space (Ω,F ,P). Let r : Rn → Rn be a one-to-one deterministic
transformation of U into V, i.e., V = r(U). Assume that r is continuous in U and has continuous
partial derivatives with respect to each Ui, 1 ≤ i ≤ n. Then, if fU(u) denotes the joint probability
density function of random vector U, and s = r−1 = (s1(v1, . . . , vn), . . . , sn(v1, . . . , vn)) represents the
inverse mapping of r = (r1(u1, . . . , un), . . . , rn(u1, . . . , un)), the joint probability density function of
random vector V is given by

fV(v) = fU (s(v)) |J| ,

where |J|, which is assumed to be different from zero, is the absolute value of the Jacobian defined by
the determinant

J = det
(
∂s
∂v

)
= det


∂s1(v1,...,vn)

∂v1
· · ·

∂sn(v1,...,vn)
∂v1

...
. . .

...
∂s1(v1,...,vn)

∂vn
· · ·

∂sn(v1,...,vn)
∂vn

 .
It is important to re¡mark that , in order to apply this results, the random vector U = (U1, . . . ,Un)

must be absolutely continuous, so having a PDF. To the best of our knowledge, in the contributions
where the RVT technique has been applied to determine the 1-PDF of the solution stochastic process
of ordinary/partial RDEs, all the inputs parameters are assumed to be absolutely continuous random
variables. However, the interesting case where both discrete and continuous random variables are
involved in the RDE, has not been already analysed. As we shall explain right-down, in this paper we
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tackle this situation by studying the following random initial value problem (IVP), based on a general
linear-quadratic logistic equation,{

X′(t) = CX(t)(N − X(t)) + D(N − X(t)),
X(0) = X0.

(1.2)

Here, X(t) is the unknown stochastic process, and C, D, X0 and N are random variables defined in a
common complete probability space (Ω,F ,P). This IVP can be applied to describe the dynamics of
many phenomena. For example, in Biology, X(t) represents the total population at the time instant
t, X0 > 0 is the initial condition, N > 0 is the carrying capacity, C > 0 is the logistic-growth rate
and D > 0 is the autonomous-growth rate. The above IVP generalizes the classical Verlhust model,
also termed logistic model, by including the linear term, D(N − X(t)), that represents the autonomous
growth of the population, X(t), at time instant t. Apart from Biology, the IVP (1.2) can also be used
to model the diffusion of a new technology in a market with N potential customers taking into account
the diffusion can be due both to contacts (encounters) between individuals who already use the new
technology and the non-users, and the effect of advertising among those who do not use the new
technology [18, 19]. Assuming that at the initial time instant, t = 0, there are X0 users of the new
technology, the instantaneous change of the number of new users at time t, given by X′(t), is calculated
as the sum of CX(t)(N − X(t)) and D(N − X(t). The first addend, CX(t)(N − X(t)), can be interpreted
as the part of instantaneous rate due to successful encounters (contagion) between those non-users,
N−X(t), and users, X(t), of the new technology, being C > 0, the contagion rate parameter. The second
addend, D(N − X(t)), models the part of instantaneous rate of new technology’s users because of their
autonomous decision (not being influenced by individuals that already use the new technology). For
instance, they might adopt the new technology because advertising campaigns. So, coefficient D > 0
can be interpreted as an autonomous-growth rate. In this illustrative example, is clear that parameters
C and D embed the factors that account for the transition rates from subpopulation N − X(t) to X(t)
due to contagion and to autonomous behaviour, respectively. These factors are not deterministically
known because of the difficulty to determine them. This motivates rates are treated as random variables
rather than deterministic quantities. Similarly, in real-world problems the number of users of a new
technology is usually estimated by sampling, so containing errors and uncertainties. This suggests to
consider the initial condition X0 as a random variable too. We will illustrate these issues in the last
example, where the IVP (1.2) will be applied to modelling the dynamics of Spotify users.

The quadratic logistic equation with uncertainties has been studied in recent contributions using
the RVT technique, but only in the case that its inputs are absolutely continuous random
variables [15, 20]. In this paper, we go further, and we first perform a full probabilistic study of the
aforementioned generalized version of the logistic model, and secondly, we consider hybrid
randomness in its formulation. To the best of our knowledge, this latter feature has not been dealt in
the extant literature. Henceforth, in order to conduct our probabilistic study, we will assume that X0 is
an absolutely continuous random variable with PDF, fX0(x0); (C,D) is an absolutely continuous
random vector with joint PDF, fC,D(c, d); and N is a discrete random variable such that
P[{ω ∈ Ω : N(ω) = ni}] = pi, i ∈ I, where

∑
i∈I pi = 1 and I is a discrete set that will be specified later.

We will further assume that X0, (C,D) and N are independent. This latter hypothesis is intuitive taking
into account the interpretation of model parameters and initial condition. In particular, observe that
random rates C and D are probabilistically related since both determine the transitions from
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subpopulation N − X(t) to X(t). Anyway, the case where all random variables X0, C, D and N are
independent, which is a more standard assumption, can be easily inferred from our analysis too. In
such scenario the PDFs of C and D are denoted by fC(c) and fD(d), respectively.

The paper is organized as follows. In Section 2 we revise how to express the probability mass
function of a discrete random variable via a PDF using the Dirac delta function. This permits unifying
the treatment of discrete and continuous random variables. In Section 3, we determine a closed-form
expression, in terms of an expectation, of the 1-PDF of the solution stochastic process of the random
IVP (1.2). Section 4 is devoted to determine the PDF of a quantity of great interest in applications,
namely, time until a given population size is reached. To illustrate these theoretical findings, two
examples are included in Section 3 and 4. In these examples, the distributions of model inputs are
chosen just to carry out some illustrative simulations. In Section 5, we apply all the results established
in Sections 3 and 4 to describe the dynamics of the number of users of Spotify music streaming service
using real data. To this end, we use an inverse probabilistic technique, based on the Principle of
Maximum Entropy, to assign appropriate probability distributions to model parameters. Conclusions
are drawn in Section 6.

Finally, we point out that in order to facilitate the reading of the paper, a list of all mathematical
symbols and abbreviations appearing throughout the paper has been added at the end of the document.

2. Obtaining a PDF of a discrete random variable

For the sake of completeness, this section is addressed to explain how a probability mass function
associated to a discrete random variable can be represented as a PDF. This is convenient to jointly
handle both discrete and continuous random variables when computing the 1-PDF of the solution
stochastic process, X(t), of the IVP (1.2) via the RVT method. To apply this technique, the random
vector U, which will be defined as U = (X0,C,D,N), must have a PDF. As mentioned in Section 1,
X0 and (C,D) are absolutely continuous random variables, being fX0(x0) and fC,D(c, d) their respective
PDFs. Therefore, a PDF must be associated to the random variable N to legitimate the application of
Theorem 1. To do that, we will take advantage of Dirac delta distribution to express the probability
mass function of N in a generalized form that permits identifying it as a PDF.

The Dirac delta distribution (or generalized function) is defined by [21],

δx0(x) = δ(x − x0) =

{
∞, x = x0,

0, x , x0.

This function has the following two properties that will be used in our subsequent development,∫ ∞

−∞

δx0(x)dx = 1,
∫ b

a
h(x)δx0(x)dx =

{
h(x0), a < x0 < b,

0, otherwise,
−∞ ≤ a < b ≤ ∞. (2.1)

Let N be a discrete random variable taking a countable number of values, say ni, with associated
probability pi, i.e. having the following probability mass function

fN(n) =

{
fN(ni), i ∈ I,

0, otherwise,
where fN(ni) = P[{ω ∈ Ω : N(ω) = ni}] = pi ∈ [0, 1],

being I a countable set, and pi such that
∑

i∈I pi = 1.

AIMS Mathematics Volume 6, Issue 5, 4938–4957.



4943

Then, its probability mass function can be formally represented as

fN(n) =
∑
i∈I

fN(ni)δni(n) =
∑
i∈I

piδni(n), −∞ ≤ n ≤ ∞, (2.2)

since, using the first property of the Dirac delta function listed in (2.1),∫ ∞

−∞

fN(n)dn =

∫ ∞

−∞

∑
i∈I

piδni(n)dn =
∑
i∈I

pi

∫ ∞

−∞

δni(n)dn =
∑
i∈I

pi = 1.

Moreover, notice that fN(n) ≥ 0. Thereof, the probability mass function fN(n) can be regarded as a PDF.
Furthermore, using the second property of the Dirac delta function stated in (2.1) and the representation
of fN(n) given in (2.2), we can obtain the probability that N lies in a closed interval, say [nl, nu],

P[{ω ∈ Ω : nl ≤ N(ω) ≤ nu}] =

∫ nu

nl

fN(n)dn =

∫ nu

nl

∑
i∈I

fN(ni)δni(n)dn

=
∑
i∈I

∫ nu

nl

fN(ni)δni(n)dn =
∑
i∈I

fN(ni) =
∑
i∈I

nl≤ni≤nu

pi.

We shall use the above result to associate a PDF to random variable N, then we will can apply the RVT
method, stated in Theorem 1, to determine the PDF of the solution stochastic process of the random
IVP (1.2).

3. Computing the first probability density function of the solution stochastic process of the
random linear-quadratic logistic model

This section is addressed to compute the 1-PDF, fX(t)(x), of the solution stochastic process to random
IVP (1.2) taking advantage of RVT method.
First, using classical integration methods, it is easy to check that the solution of equation (1.2) is given
by

X(t) = −
D − e(D+CN)tN D+CX0

N−X0

C + e(D+CN)t D+CX0
N−X0

. (3.1)

Next, we fix t > 0. Then, we apply Theorem 1 taking U = (X0,C,D,N) to obtain the PDF of the
random vector V = (V1,V2,V3,V4), defined by the mapping r : R4 → R4, whose components r1, r2, r3

and r4 are defined by

v1 = r1(x0, c, d, n) = −
d − nedt+cnt

(
d+cx0
n−x0

)
c + edt+cnt

(
d+cx0
n−x0

) ,
v2 = r2(x0, c, d, n) = c,

v3 = r3(x0, c, d, n) = d,

v4 = r4(x0, c, d, n) = n.

To keep the same notation as in Theorem 1, the inverse mapping of r, s : R4 → R4, s = r−1 =

(s1, s2, s3, s4), is given by
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x0 = s1(v1, v2, v3, v4) =
v3v4 − v3v4e(v3+v2v4)t + v3v1e(v3+v2v4)t + v2v4v1

v3 + v2v4e(v3+v2v4)t + v2v1 − v2v1e(v3+v2v4)t ,

c = s2(v1, v2, v3, v4) = v2,

d = s3(v1, v2, v3, v4) = v3,

n = s4(v1, v2, v3, v4) = v4.

To construct the PDF of the random vector V, via the RVT method, it is also required to obtain the
absolute value of the Jacobian of s,

|J| =

∣∣∣∣∣∂s1(v1, v2, v3, v4)
∂v1

∣∣∣∣∣ =
(v3 + v2v4)2 e(v3+v2v4)t(

v3 + v2
(
e(v3+v2v4)t(v4 − v1)

)
+ v1

)2 , 0.

Observe that |J| , 0 with probability one (w.p. 1), since v2, v3 and v4 represent arbitrary realizations
of random variables, C = C(ω), D = D(ω) and N = N(ω), which are positive for every ω ∈ Ω.
Furthermore the denominator defining the value of |J| is different from zero, w.p. 1, since it is defined
by absolutely continuous random variables.

Applying Theorem 1, the PDF of V is given by

fV1,V2,V3,V4(v1, v2, v3, v4)

= fX0,C,D,N

(
v3v4 − v3v4e(v3+v2v4)t + v3v1e(v3+v2v4)t + v2v4v1

v3 + v2v4e(v3+v2v4)t + v2v1 − v2v1e(v3+v2v4)t , v2, v3, v4

)
·

(v3 + v2v4)2 e(v3+v2v4)t(
v3 + v2

(
e(v3+v2v4)t(v4 − v1)

)
+ v1

)2 .

As it has been indicated in Section 1, X0, (C,D) and N are assumed to be independent, thereof the
PDF of the random vector U = (X0,C,D,N) can be expressed as
fU(u) = fX0,C,D,N(x0, c, d, n) = fX0(x0) fC,D(c, d) fN(n). As a consequence,

fV1,V2,V3,V4(v1, v2, v3, v4)

= fX0

(
v3v4 − v3v4e(v3+v2v4)t + v3v1e(v3+v2v4)t + v2v4v1

v3 + v2v4e(v3+v2v4)t + v2v1 − v2v1e(v3+v2v4)t

)
fC,D (v2, v3) fN (v4)

·
(v3 + v2v4)2 e(v3+v2v4)t(

v3 + v2
(
e(v3+v2v4)t(v4 − v1)

)
+ v1

)2 .

So far, the PDF of the random vector V has been computed. To determine the 1-PDF of the solution
to random IVP (3.1), which is given by V1, we now marginalize with respect to V2 = C, V3 = D and
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V4 = N,

fX(t)(x) =

∫
D(C,D)

∫
D(N)

fX0

(
dn − dne(d+cn)t + dxe(d+cn)t + cnx

d + cne(d+cn)t + cx − cxe(d+cn)t

)
fC,D (c, d) fN (n)

·
(d + cn)2 e(d+cn)t(

d + c
(
e(d+cn)t(n − x)

)
+ x

)2 dn dc dd

=

∫
D(C,D)

∫
D(N)

fX0

(
dn − dne(d+cn)t + dxe(d+cn)t + cnx

d + cne(d+cn)t + cx − cxe(d+cn)t

)
fC,D (c, d)

∑
i∈I

piδni (n)


·

(d + cn)2 e(d+cn)t(
d + c

(
e(d+cn)t(n − x)

)
+ x

)2 dn
 dc dd

=

∫
D(C,D)

∑
i∈I

pi

∫ ∞

−∞

fX0

(
dn − dne(d+cn)t + dxe(d+cn)t + cnx

d + cne(d+cn)t + cx − cxe(d+cn)t

)
fC,D (c, d)

·
(d + cn)2 e(d+cn)t(

d + c
(
e(d+cn)t(n − x)

)
+ x

)2 δni (n) dn
 dc dd.

(3.2)

Applying the second property in (2.1) with a = −∞ and b = ∞, the above expression can be simplified
as

fX(t)(x) =

∫
D(C,D)

∑
i∈I

pi fX0

(
dni − dnie(d+cni)t + dxe(d+cni)t + cnix

d + cnie(d+cni)t + cx − cxe(d+cni)t

)
fC,D (c, d)

·
(d + cni)2 e(d+cni)t(

d + c
(
e(d+cni)t(ni − x)

)
+ x

)2

 dc dd

=
∑
i∈I

pi

∫
D(C,D)

fX0

(
dni − dnie(d+cni)t + dxe(d+cni)t + cnix

d + cnie(d+cni)t + cx − cxe(d+cni)t

)
fC,D (c, d)

·
(d + cni)2 e(d+cni)t(

d + c
(
e(d+cni)t(ni − x)

)
+ x

)2 dc dd.

(3.3)

It is interesting to observe that the last double integral can be expressed in terms of the expectation,
EC,D[·], of random vector (C,D),

fX(t)(x) =
∑
i∈I

piEC,D

 fX0

(
Dni − Dnie(D+Cni)t + Dxe(D+Cni)t + Cnix

D + Cnie(D+Cni)t + Cx −Cxe(D+Cni)t

)
(D + Cni)2 e(D+Cni)t(

D + C
(
e(D+Cni)t(ni − x)

)
+ x

)2

 .
(3.4)

This expression is also useful to compute the 1-PDF of X(t) via simulations.

Remark 1. In the particular case that (C,D) are independent random variables, the factor fC,D (c, d)
appearing in formulas (3.2) and (3.3) writes fC(c) fD(d).

Now, we show a numerical example where the previous theoretical findings are illustrated.

Example 1. Let us consider that X0 is a Beta distribution with parameters 2 and 3, i.e. X0 ∼ Be(2, 3).
Let N be a Beta Binomial distribution with parameters 20, 0.1 and 3, i.e. N ∼ Bi(20, p), being
p ∼ Be(0.1, 3). The random vector (C,D) has been chosen as a Gaussian copula of dependent Gamma
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distributions with parameters 0.2, 0.4 and 0.1, 0.3, respectively, and with correlation factor ρ = 0.5,
i.e. (C,D) ∼ (Ga(0.2, 0.4), Ga(0.1, 0.3), ρ = 0.5) [22].

Figure 1 shows the 1-PDF given in (3.3) at different time instants t ∈ {5, 7, 10, 12, 15, 17}. As a
consequence of considering hybrid uncertainty (N is a discrete random variable), from these plots we
can observe the peaks of the curves when x takes non-negative entire values.
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Figure 1. 1-PDF, fX(t)(x), of solution stochastic process of random IVP (1.2) where X0 ∼

Be(2, 3), (C,D) ∼ (Ga(0.2, 0.4),Ga(0.1, 0.3), ρ = 0.5) and N ∼ Bi(20, Be(0.1, 3)) at different
time instants t ∈ {5, 7, 10, 12, 15, 17}. The 1-PDF has been computed by (3.3). Example 1.

4. Computing the PDF of time until a given population size is reached

Once the 1-PDF of the solution stochastic process of IVP (3.1) has been determined, an important
additional information is the PDF of the time, T , until a given population size, say x, has been reached.
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To this end, we fix x and we consider the expression of the solution while T is regarded as a random
variable,

x = −
D − e(D+CN)T N D+CX0

N−X0

C + e(D+CN)T D+CX0
N−X0

. (4.1)

Solving for T yields

T =
1

D + CN
ln

(
(xC + D)(N − X0)
(D + CX0)(N − x)

)
.

We will determine the PDF of T applying the RVT method. Let r be the transformation of U =

(X0,C,D,N) into a random vector V, defined as follows

v1 = r1(x0, c, d, n) =
1

d + cn
ln

(
(xc + d)(n − x0)
(d + cx0)(n − x)

)
,

v2 = r2(x0, c, d, n) = c,

v3 = r3(x0, c, d, n) = d,

v4 = r4(x0, c, d, n) = n.

The inverse mappings s of r, s = r−1, s : R4 → R4 has the following components, si, 1 ≤ i ≤ 4,

x0 = s1(v1, v2, v3, v4) =
v3v4 − v3v4e(v3+v2v4)v1 + v3xe(v3+v2v4)v1 + v2v4x

v3 + v2v4e(v3+v2v4)v1 + v2x − v2xe(v3+v2v4)v1
,

c = s2(v1, v2, v3, v4) = v2,

d = s3(v1, v2, v3, v4) = v3,

n = s4(v1, v2, v3, v4) = v4.

Now, we calculate the absolute value of the Jacobian of transformation s,

|J| =

∣∣∣∣∣∂s1(v1, v2, v3, v4)
∂v1

∣∣∣∣∣ =

∣∣∣∣∣∣− (v3 + v2v4)2 (v4 − x)(v3 + v2x)e(v3+v2v4)v1(
v3 + v2

(
e(v3+v2v4)v1(v4 − x) + x

))2

∣∣∣∣∣∣ , 0, w.p. 1.

Applying Theorem 1, we obtain the PDF of random vector V,

fV1,V2,V3,V4(v1, v2, v3, v4)

= fX0,C,D,N

(
v3v4 − v3v4e(v3+v2v4)v1 + v3xe(v3+v2v4)v1 + v2v4x

v3 + v2v4e(v3+v2v4)v1 + v2x − v2xe(v3+v2v4)v1
, v2, v3, v4

)
·

∣∣∣∣∣∣− (v3 + v2v4)2 (v4 − x)(v3 + v2x)e(v3+v2v4)v1(
v3 + v2

(
e(v3+v2v4)v1(v4 − x) + x

))2

∣∣∣∣∣∣
= fX0

(
v3v4 − v3v4e(v3+v2v4)v1 + v3xe(v3+v2v4)v1 + v2v4x

v3 + v2v4e(v3+v2v4)v1 + v2x − v2xe(v3+v2v4)v1

)
fC,D (v2, v3) fN (v4)

·

∣∣∣∣∣∣− (v3 + v2v4)2 (v4 − x)(v3 + v2x)e(v3+v2v4)v1(
v3 + v2

(
e(v3+v2v4)v1(v4 − x) + x

))2

∣∣∣∣∣∣ ,
where in the last step we have used that X0, (C,D) and N are independent.
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Since T is the first component, V1, of random vector V, in order to compute the PDF of T , we
marginalize with respect to V2 = C, V3 = D and V4 = N and we also use the representation (2.2) of the
discrete random variable N via a PDF,

fT (t, x) =

∫
D(C,D)

∫
D(N)

fX0

(
dn − dne(d+cn)t + dxe(d+cn)t + cnx

d + cne(d+cn)t + cx − cxe(d+cn)t

)
fC,D (c, d) fN (n)

·

∣∣∣∣∣∣− (d + cn)2 (n − x)(d + cx)e(d+cn)t(
d + c

(
e(d+cn)t(n − x) + x

))2

∣∣∣∣∣∣ dn dc dd

=

∫
D(C,D)

∫
D(N)

fX0

(
dn − dne(d+cn)t + dxe(d+cn)t + cnx

d + cne(d+cn)t + cx − cxe(d+cn)t

)
fC,D (c, d)

∑
i∈I

piδni (n)


·

∣∣∣∣∣∣− (d + cn)2 (n − x)(d + cx)e(d+cn)t(
d + c

(
e(d+cn)t(n − x) + x

))2

∣∣∣∣∣∣ dn dc dd

=

∫
D(C,D)

∑
i∈I

pi

∫ ∞

−∞

fX0

(
dn − dne(d+cn)t + dxe(d+cn)t + cnx

d + cne(d+cn)t + cx − cxe(d+cn)t

)
fC,D (c, d)

·

∣∣∣∣∣∣− (d + cn)2 (n − x)(d + cx)e(d+cn)t(
d + c

(
e(d+cn)t(n − x) + x

))2

∣∣∣∣∣∣ δni (n)
 dn dc dd.

(4.2)

Now, we apply the second property in (2.1) with a = −∞ and b = ∞,

fT (t, x) =

∫
D(C,D)

∑
i∈I

pi fX0

(
dni − dnie(d+cni)t + dxe(d+cni)t + cnix

d + cnie(d+cni)t + cx − cxe(d+cni)t

)
fC,D (c, d)

·

∣∣∣∣∣∣− (d + cn)2 (n − x)(d + cx)e(d+cn)t(
d + c

(
e(d+cn)t(n − x) + x

))2

∣∣∣∣∣∣
 dc dd

=
∑
i∈I

piEC,D

[
fX0

(
Dni − Dnie(D+Cni)t + Dxe(D+Cni)t + Cnix

D + Cnie(D+Cni)t + Cx −Cxe(D+Cni)t

)
·

∣∣∣∣∣∣− (D + CN)2 (N − x)(D + Cx)e(D+CN)t(
D + C

(
e(D+CN)t(N − x) + x

))2

∣∣∣∣∣∣
 .

(4.3)

Again, the Remark 1 applies to express (4.2) and (4.3) in terms of the marginal distributions fC(c) and
fD(d) of C and D, respectively, when (C,D) are independent random variables.

Now, we shall illustrate the results by means of an example.

Example 2. Let us consider the random IVP (1.2), where the initial condition has a Beta distribution
of parameters, (2, 3), i.e. X0 ∼ Be(2, 3). Let C and D be independent random variables with Uniform
distributions in the interval [0.2, 0.25], i.e. C,D ∼ U([0.2, 0.25]), and N has a shifted binomial
distribution with shift 20 and binomial parameters, (10, 0.5), i.e N ∼ 20 + Bi(10, 0.5). In Figure 2, we
have plotted the PDF of T for different values of x. From these graphical representations, we can
observe that the mean and the variance of T increase as x does.
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Figure 2. PDF of solution stochastic process described in (4.3) considering X0 ∼ Be(2, 3),
C,D ∼ U([0.2, 0.25]) and N ∼ 20 + Bi(10, 0.5) at different values of x = 3, 7, 10, 13, 17, 19.
Example 2.

5. Modelling Spotify users with uncertainty in the data

So far, we have illustrated the theoretical results by choosing arbitrary distributions to model
parameters, however when dealing with real-world problems such distributions must be carefully
determined so that the model properly captures data uncertainty. This is a critical point which
requires inverse estimation techniques [23, Chapter 2]. In this section, we tackle this very interesting
problem to studying the dynamics of Spotify’s users from the random IVP (1.2), assuming that X0, C,
D and N are independent random variables. We will use the yearly data about Spotify’s users
(measured in million of individuals) during the period 2015–2019.

At this point, it is important to stress the meaning of the above sentence: “properly captures output
uncertainty”. Indeed, most of the contributions focus on computing the model parameters by fitting the
expectation of solution stochastic process to sampled data. To this end, some specific goodness-of-fit
measure is minimized (typically, the mean square error). Then, confidence intervals are built to capture
data uncertainty. Therefore, this approach is based on the punctual information contained in the the
expectation to perform the fitting, and then one calculates the standard deviation to build confidence
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intervals. In our example, we will perform the model fitting using a more complete information that
the one based only on the two first moments, since we will determine the distribution of each model
parameter. This will be done by minimizing a goodness-of-fit measure, that will be specified later,
based on the 1-PDF of the solution stochastic process, fX(t)(x), given by (3.3) (or, equivalently, (3.4)).
In this manner, as we directly work with the 1-PDF of the solution stochastic process, our model fitting
is more complete since it takes into account more information of the solution than only the expectation.

To perform the aforementioned fitting via the 1-PDF, fX(t)(x), we will apply the methodology
recently developed in [24]. This approach takes extensively advantage of the Principle of Maximum
Entropy (PME) to assign reasonable distributions to sample data and model inputs.

Given a real random variable, say Y , the PME is an efficient method to assign it a probabilistic
distribution using all the available statistical information of Y , such as its support, moments, etc. For
instance, if Y is an absolutely continuous random variable with support, D(Y), and its two first
moments, m1 = E[Y] and m2 = E[Y2], are known, then the PME looks for an approximation, fY , of the
true PDF of Y that maximizes the Shanonn’s entropy

S( fY) = −

∫
D(Y)

fY(y) ln( fY(y))dy,

subject to the following constraints∫
D(Y)

fY(y)dy = 1,
∫
D(Y)

y fY(y)dy = m1,

∫
D(Y)

y2 fY(y)dy = m2. (5.1)

As fY must represent a PDF, the first restriction indicates the normalization condition that guarantees
it integrates the unit over the whole real line. Using the variational formulation of method of Lagrange
multipliers, it can be seen that the PDF of Y has the following form [25]

fY(y) = 1D(Y)e−1−λ0−λ1y−λ2y2
,

where 1D(Y) denotes the characteristic function on the domain D(Y), and parameters, λi, i ∈ {0, 1, 2},
are calculated by solving the constraints given in (5.1).

Roughly speaking and using the interpretation of entropy, the PME method seeks for the PDF, fY ,
that corresponds to the maximal uncertainty (based on the Shannon’s entropy measure) and the minimal
quantity of information (based on the available statistical moments).

Now, we explain how the PME is applied to assign a PDF to sampled data for the number of
Spotify’s users. These data are collected in third column of Table 1 and considered as the mean of
sampled distribution, [26]. For convenience, hereinafter, we will denote by Xt the random variable
that represents the number of Spotify’s users at the time instant t. In our setting, t is measured in
months. Since the number of Spotify’s users is known yearly during the period 2015–2019, the data is
determined at t ∈ T = {0, 12, 24, 36, 48} (see second column of Table 1). To construct the constraints
required to apply the PME, we proceed as follows. On the one hand, we will assume that sampled data
represent the mean or expectation, m1,t, of random variable Xt. On the other hand, since sampled data
are rounded-off to million units, we will assume they contain an intrinsic sampling error depending
on the number of users in every time instant. Thereof, we will take as standard deviation 1% of each
sampled data, i.e. σt = 0.01m1,t. This allows us to compute the second-order moment, m2,t = m2

1,t + σ2
t
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(see last column in Table 1). Notice that, by means of this reasoning, we are implicitly considering
that, at every time instant t ∈ T , each sampled data comes from a random variable, Xt, whose mean
(m1,t) and second moment (m2,t) are listed in Table 1.

Random Variable Months Mean (m1,t) 2nd moment (m2,t)
X0 t = 0 (December 2015) 91 8.281e+03
X12 t = 12 (December 2016) 123 1.513e+04
X24 t = 24 (December 2017) 160 2.560e+04
X36 t = 36 (December 2018) 207 4.285e+04
X48 t = 48 (December 2019) 271 7.344e+04

Table 1. Number of Spotify’s users, at different time instants t (in months), represented by
random variable Xt, with the mean, m1,t, and second-order momen, m2,t, [26].

With this information, we apply the PME to assign a PDF, fXt , of each random variable Xt of the
form

fXt(x) = 1D(Xt)e
−1−λt

0−λ
t
1 x−λt

2 x2
, (5.2)

where D(Xt) denotes its domain and, the parameters λt
0, λt

1 and λt
2, are calculated by numerically

solving the following system of nonlinear equations∫
D(Xt)

fXt(x)dx = 1,
∫
D(Xt)

x fXt(x)dx = m1,t,

∫
D(Xt)

x2 fXt(x)dx = m2,t, (5.3)

where m1,t and m2,t are given in Table 1. The results are shown in Table 2.

Months λt
0 λt

1 λt
2

t = 0 1867.722 -41.045 0.226
t = 12 2175.312 -35.370 0.144
t = 24 1941.066 -24.269 0.076
t = 36 1849.090 -17.872 0.043
t = 48 1811.340 -13.376 0.025

Table 2. Values of λt
0, λ

t
1 and λt

2 obtained after solving the system of nonlinear equations
given in (5.3) for every t.

Once reliable PDFs have been assigned to sampled data, we proceed to assign suitable distributions
for every model parameters so that the 1-PDF of the logistic model, given by (3.2), fits the PDFs of data
detailed above at t ∈ {0, 12, 24, 36, 48}. To do that for, X0, C and D, we will apply the PME method
again. First observe that, for consistency, the PDF of X0 is given by (see values of λt=0

0 , λt=0
1 and λt=0

2 in
Table 2)

fX0(x0) = e−1−1867.22+14.045x0−0.226x2
0 , x0 ∈ [x0,1, x0,2] = [0, 119.6182]. (5.4)

To determine the endpoints, x0,1 and x0,2, we have used the σ-rule [27, page 122]. Specifically, we
have taken x0,1 = max{0,m1,t=0 − kσt=0} (as X0 must be positive) and x0,2 = m1,t=0 + kσt=0 with k = 30.
This guarantees the interval [x0,1, x0,2] embraces more than 99.9% of the probability regardless the
distribution of X0. As m1,t=0 − 30σt=0 < 0 and m1,t=0 + 30σt=0 = 119.6182, this results [x0,1, x0,2] =

[0, 119.6182].
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The PDFs, fC(c) and fD(d), of random variables C and D, respectively, are constructed via PME
method taking into account that their corresponding domains are non-negative, since they represent
growth-rates. Then, they have the following form

fC(c) = e−1−λC
0 −λ

C
1 c−λC

2 c2
, c ∈ [0, c2], (5.5)

and

fD(d) = e−1−λD
0 −λ

D
1 d−λD

2 d2
, d ∈ [0, d2]. (5.6)

Finally, the probability mass function of discrete random variable, N, is modelled by a shifted Binomial
distribution, with parameters n1, n2 and νN , i.e., N ∼ n1 + Bi(n2, νN), where

pi = P[{ω ∈ Ω : N(ω) = n1 + i}] =
n2!

i!(n2 − i)!
(νN)i(1 − νN)n2−i, i ∈ I = {0, 1, . . . , n2}. (5.7)

At this point, the parameters λC
0 , λC

1 , λC
2 , c2 λ

D
0 , λD

1 , λD
2 , d2, n1, n2 and νN need to be calculated. This

will be done by fitting the 1-PDF, fX(t)(x), calculated in (3.3) (or equivalently (3.4)), to the PDF, fXt(x),
given by (5.2), at the time instants t ∈ T = {0, 12, 24, 36, 48}. Notice that fX(t)(x) depends on fX0(x0),
fC(c), fD(d) and pi, where fX0(x0) is completed determined in (5.4); fC(c) depends on λC

0 , λC
1 , λC

2 and
c2 (see (5.5)); fD(d) depends on λD

0 , λD
1 , λD

2 and d2 (see (5.6)), and pi depends on n1, n2 and νN (see
(5.7)). Similarly as in the algorithm recently described in Steps 7 and 8 in [24, Sec. 5], we take as
goodness-of-fit function

E =
∑
t∈T

Et, Et =

N∑
i=0

∣∣∣ fX(t)(xi) − fXt(xi)
∣∣∣

fXt(xi)
, T = {0, 12, 24, 36, 48}, (5.8)

where xi is a mesh on a domain determined by the PDF, fXt(x), of sampled data (see further details in
Step 3 in [24, Sec. 5]). Notice that E0 = 0 since by construction fX(0) = fX0 .

We have used Particle Swarm Optimization [28], to find the values of λC
0 , λC

1 , λC
2 , c2 λ

D
0 , λD

1 , λD
2 , d2,

n1, n2 and νN that minimize the function E functional defined in (5.8). In Table 3, we show the obtained
values. To carry out these computations, the 1-PDF fX(t)(x) has been evaluated via the expectation given
in (3.4). To this end, we firstly fix t ∈ T . Secondly, we obtain a simulation of each random variable
C and D (recall that, according to (5.5) and (5.6)), we know their respective PDF. Thirdly, we evaluate
the argument of the expectation. This process is repeated many times and the results are averaged. This
permits approximating fX(t)(x). More details of this computational procedure can be seen in [24, Sec.
5].

From figures listed in Table 3, and using expressions (5.5), (5.6) and (5.7), we have calculated the
distributions fC(c), fD(d) and fN(n), respectively. In Figure 3, we show the graphical representations
of these distributions and of fX0 from expression (5.4).
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Parameters Values
λC

0 −11.4520
λC

1 −136.6524
λC

2 151.444
c2 7.7305e − 05
λD

0 −10.3465
λD

1 −105.6717
λD

2 1.1367e + 03
d2 8.6869e − 05
n1 1353
n2 15
νN 0.8818

Table 3. Values of parameters λC
0 , λC

1 , λC
2 , c2 λ

D
0 , λD

1 , λD
2 , d2, n1, n2 and νN that define the

distributions for random variables C, D and N.
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Figure 3. PDFs assigned to random model parameters X0, C and D and probability mass
function for N according to the obtained values of Table 3.

To better compare the obtained results, in Figure 4 we plot the PDFs associated to sampled data
(red lines) and the PDFs of the solution stochastic process, given by (3.3), at the time instants t ∈
T = {0, 12, 24, 3, 6, 48}. Red and blue points, plotted on the horizontal axis represent, respectively, the
sampled data of Spotify’s users listed in the second column (m1,t) of Table 1 and the expectation of the
solution stochastic process calculated by means of expression (1.1) with m = 1 where fX(t)(x) is given
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by (3.3). From these plots we can see the fitting via the PDFs is very good.
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Figure 4. Comparison between the PDF assigned to each sampled data (red dashed lines)
via the PME according to (5.2) and the PDF (blue lines), given by (3.3) and constructed via
the RVT method. This comparison is shown at the time instants t ∈ T = {0, 12, 24, 26, 48}
(in months). Red and blue points, plotted on the horizontal axis, represent, respectively, the
sampled data of Spotify’s users and the expectation of the solution stochastic process.

6. Conclusions

In this paper we have performed a probabilistic study of a generalized version of the random
logistic differential equation which has a linear term in its formulation. This additional term describes
the autonomous behaviour that affects the model dynamics. For the sake of generality, in our analysis
we have assumed that all model parameters and the initial condition are random variables having
arbitrary distributions. The randomness is treated from a hybrid standpoint in the sense we consider a
combination of discrete and continuous random variables for model inputs. The key tools to conduct
our study are, on the one hand, the Dirac delta function to unify the treatment of discrete and
continuous random variables with their respective probability density functions and, on the other
hand, the Random Variable Transformation method that permits computing the density of certain
differentiable mappings that act onto absolutely continuous random vectors. We have included a
number of examples that illustrate different cases where our theoretical findings can be applied
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including the application of a model using real-world data. Nevertheless, we must point out that our
approach relies on two critical points, first the availability of a closed-form expression of the solution
stochastic process of the general linear-quadratic differential equation and, secondly, the exact
computation of the inverse of the mapping defined when applying the Random Variable
Transformation method. In other models, where some of the above exact expressions are not
available, the method can still be applied using numerical approximations, which certainly will
increase the computational burden. Finally, we think that approach proposed in this paper may open
new avenues in the analysis of problems formulated by means of differential equations with hybrid
(discrete-continuous) randomness.
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Nomenclature

(Ω,F ,P) complete probability space.
E[X] mean of the random variable X.
V[X] variance of the random variable X.
fX(x) probability density function of the random variable X.
δx0(x) Dirac delta function at value x0.
1[a,b] characteristic function on the interval [a, b].
fidis finite distributions.
IVP initial value problem.
PDF probability density function.
1-PDF first probability density function.
PME Principle of Maximum Entropy.
RDE random differential equation.
RVT Random Variable Transformation.
SDE stochastic differential equation.
w.p. 1 with probability one.
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