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Abstract: It is an interesting question to investigate the integral solutions for the Egyptian fraction
equation a

p = 1
x + 1

y + 1
z , which is known as Erdős-Straus equation when a = 4. Recently, Lazar proved

that this equation has not integral solutions with xy <
√

z/2 and gcd(x, y) = 1 when a = 4. But his
method is difficult to get an analogous result for arbitrary a

p , especially when p and a are lager numbers.

In this paper, we extend Lazar’s result to arbitrary integer a with 4 ≤ a ≤ 1+
√

1+6p3

p , and release the
condition gcd(x, y) = 1. We show that a

p = 1
x + 1

y + 1
z has no integral solutions satisfying that xy <

√
lz,

where l ≤ (3p+a)p
a2 when p - y and l ≤ 3p2+a

pa2 when p | y. Besides, we extend Monks and Velingker’s
result to the case 4 ≤ a < p.
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1. Introduction

Let Z+ denote the set of positive integers. Egyptian fractions are rational numbers which can be
represented as the sum of positive unit fractions:

a
n

=
1
x1

+
1
x2

+ · · · +
1
xk
,

where a, n, x1, . . . , xk ∈ Z+, and they appeared in one of the oldest written mathematics, the Rhind
papyrus [3]. Since then numerous problems on Egyptian fractions have been introduced, and
unfortunately, many of them remain unsolved.

For a, n ∈ Z+, let f (n, a) stand for the number of ways to write a
n as the sum of three positive unit

fractions. Formally, f (n, a) is the number of positive integral solutions (x, y, z) ∈ Z3
+ of the Diophantine
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equation
a
n

=
1
x

+
1
y

+
1
z
. (1.1)

It is clear that f (n, 1) > 0, f (n, 2) > 0 and f (n, 3) > 0. However, whether f (n, 4) > 0 holds is a
well-known open problem [3].

Conjecture 1 (Erdős-Straus conjecture). It holds that f (n, 4) > 0 for all integers n with n ≥ 2.

Since Erdős and Straus proposed Conjecture 1, numerous number theorists studied it and have
already made progress to confirm its correctness for n being one of some (infinitely many) particular
integers. Straus [2], Chao Ko et al. [5], Jollenstein [4] and Salez [11], respectively, showed that this
conjecture holds for some range of n. A profound result in Mordell’s book [8] shows that Conjecture
1 is true if (n mod 840) < {12, 112, 132, 172, 192, 232}.

Furthermore, the Erdős-Straus conjecture has also stimulated number theorists to investigate its
variants. Substituting 5 for 4, Sierpiński [12] proposed a conjecture on f (n, 5) similar to Conjecture 1,
and his conjecture has already been proved to be true for 0 < n < 922321 [9] and also for
{0 < n < 1057438801 : n . 1 mod 278460} [10]. Recently, Elsholtz and Planitzer [1] proved that for
any a, n ∈ Z+ and ε > 0, there exists a constant c(ε) > 0 such that f (n, a) ≤ c(ε)nε(n3/a2)1/5. Note that
Conjecture 1 holds if and only if f (n, 4) > 0 for all primes p, i.e.,

4
p

=
1
x

+
1
y

+
1
z

(1.2)

is always solvable. Therefore, in the sequel we only consider the denominator in (1.1) as a prime p and
concentrate on the equation

a
p

=
1
x

+
1
y

+
1
z
. (1.3)

Additionally, in the rest of this paper, we always assume that x ≤ y ≤ z due to symmetry.
Since a complete answer to Conjecture 1 remains challenging, it is natural to study its solutions

under certain restrictions. On the one hand, via continued fraction Lazar [6] showed that (1.2) has no
integral solutions satisfying both gcd(x, y) = 1 and xy <

√
z/2. Naturally, Lazar expected a similar

result on (1.3), which is anyhow beyond the techniques in [6] and is still open. On the other hand,
Monks and Velingker [7] investigated (1.2) where y and z are of a special p-adic discrete valuation. Let
a ∈ Z+. For any given r, s ∈ Z+, let

αa (r, s) :=
ars − r − s

gcd(r, s) gcd
( ars−r−s

gcd(r,s) , gcd(r, s)
) .

As shown in [7], for given j, k ∈ Z+, there exists at most one prime p such that the Diophantine equation

4
p

=
1
x

+
1
p j

+
1
pk

(1.4)

holds. Particularly, such a prime p exists if and only if α4 ( j, k) is prime, and in that case it was proved
p = α4 ( j, k). Also it was proved that the sequence {α4 ( j, k)}+∞k=1 contains infinitely many primes [7].

Because the integral solution for (1.3) is trivial when a = 1, 2, 3, and therefore in this paper, we
study Egyptian fractions of the form (1.3), where 4 ≤ a < p. Indeed, we have the following result.
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Theorem 1. Let p be a prime, and a be an integer with 4 ≤ a < p. Then for any positive real number
l ≤ G(a, p), (1.3) has no positive integral solutions satisfying xy <

√
lz, where G(a, p) =

3p2

a2 +
p
a if p|y

and G(a, p) =
3p
a2 + 1

ap if p - y.

The corollary below follows from Theorem 1.

Corollary 1. Let p be any prime number. If a is an integer satisfying 4 ≤ a ≤ 1+
√

1+6p3

p , then there are
no positive integral solutions to the Diophantine equation (1.3) satisfying xy <

√
z/2.

Corollary 1 extends the results in [6] in two aspects. One is that applying a = 4 in Corollary 1

derives Lazar’s result [6] since 4 < 1+
√

1+6p3

p for any prime p ≥ 3. The other is that our proof of Lazar’s
result [6] in this way releases the restricted condition gcd(x, y) = 1. Thus, we find an analog of the

Lazar’s main result for a
p instead of 4

p under the condition a ≤ 1+
√

1+6p3

p , and give a partial answer to
Lazar’s question proposed in [6].

In this paper, we also give a generalized result for the fraction a
p by Monks and Velingker [7].

Theorem 2. For any a, j, k ∈ Z+, and a ≥ 4, the following two statements on the Diophantine equation

a
p

=
1
x

+
1
p j

+
1
pk

(1.5)

hold:

(i). There exists a prime p such that (1.5) is solvable if and only if αa ( j, k) is prime.
(ii). There exists at most one prime p such that (1.5) holds for some x ∈ Z+. Additionally, for such a

prime p, αa ( j, k) = p.

Theorem 3. Let a ≥ 4 and j be positive integers. Then there exist infinitely many primes in the set
{αa ( j, k) : k ∈ Z+} .

Therefore, by Theorems 2 and 3 we come to the conclusion that for any a ∈ Z+ there are infinitely
many primes satisfying (1.3).

The rest of this paper is organized as follows. In Section 2, we present the proof of Theorem 1.
Consequently, the proofs of Theorems 2 and 3 are given in Section 3.

2. Proof of Theorem 1

In this section, we give the proof of Theorem 1. Given a prime p and a positive integer m, there
exist unique integers j and n, with p - j and n ≥ 0, such that m = pn j. The number n is called the
p-adic valuation of m, denoted by n = vp(m). To prove Theorem 1, we need the following two lemmas.

Lemma 1. ( [7]) Let p be a prime, and a be an integer with 4 ≤ a < p. Let (x, y, z) ∈ Z3
+ be a positive

integral solution to (1.3) with x ≤ y ≤ z. Then the following statements hold:

(i). Let q ∈ Z+ and p - q. If q divides one of x, y or z, then q divides the product of the remaining two.
(ii). p - x and p | z and x < p.

(iii). If max{vp(y), vp(z)} > 1, then vp(y) = vp(z).
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Lemma 1 comes from the Theorem 2.1 of [7], where (i) and (ii) are part (b) and (c), part (iii) comes
from the proof of part (d).

Lemma 2. Let p be a prime, and a be an integer with 4 ≤ a < p. Let (x, y, z) be a positive integral
solution to (1.3) with x ≤ y ≤ z. Then

λ >
3p2

a2

xy
z

+
p
a

x2y2

z2 , (2.1)

where λ := (xy)2

z .

Proof. Since (x, y, z) be a positive integral solution to (1.3) with x ≤ y ≤ z, one has a
p >

1
x and a

p >
2
y .

So one obtains that

x >
p
a
, y >

2p
a
. (2.2)

It then follows from (1.3) and (2.2) that

a
p
−

1
z

=
1
x

+
1
y

=
x + y

xy
>

3p
a

1
√
λz

=
3p
a

xy
λz
. (2.3)

By (2.3), we get that

λa2 − pa
x2y2

z2 − 3p2 xy
z
> 0,

which implies that (2.1) holds. �

In what follows, we present the proof of Theorem 1.

Proof of Theorem 1. Assume that the Diophantine equation (1.3) has a positive integral solution (x, y, z)
with x ≤ y ≤ z. Let λ =

(xy)2

z . By Lemma 1 (ii), we have p | z. Let z = pvp(z)s. So vp(z) ≥ 1 and
gcd(p, s) = 1. Thus by Lemma 1 (i), we know that

s | xy. (2.4)

Now we consider the following two cases.
Case i: p | y. In this case, we let y = pvp(y)t. Then vp(y) ≥ 1 and gcd(p, t) = 1. We claim that

vp(y) = vp(z). Note that max{vp(y), vp(z)} ≥ 1. Clearly, if vp(y) = vp(z) = 1, then the Claim is true. If
vp(y) > 1 or vp(z) > 1, then by Statement (iii) of Lemma 1 we obtain that vp(y) = vp(z). The Claim is
proved.

From gcd(p, s) = 1, xy = xpvp(y)t and (2.4), we deduce that s|xt. This implies that s ≤ xt. It then
follows from the Claim that

z = pvp(z)s ≤ xpvp(z)t = xy. (2.5)

Applying (2.5) in (2.1), we have

λ >
3p2

a2

xy
z

+
p
a

x2y2

z2 ≥
3p2

a2 +
p
a
. (2.6)
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Thus by (2.6), we conclude that if p | y and

l ≤
3p2

a2 +
p
a
,

then (1.3) has no positive integral solution satisfying λ < l (i.e. xy <
√

lz). Case I is proved.
Case ii: p - y. In this case, we know that vp(y) = 0. So by the Lemma 1 (iii), we get vp(z) ≤ 1. But

vp(z) ≥ 1. Then vp(z) = 1 and so z = ps. By (2.4), we have s ≤ xy. It then follows that

z = ps ≤ pxy. (2.7)

Using (2.7) and (2.1), we deduce that

λ >
3p2

a2

xy
z

+
p
a

x2y2

z2 ≥
3p
a2 +

1
ap
. (2.8)

By (2.8), we derive that if p - y and

l ≤
3p
a2 +

1
ap
,

then (1.3) has no positive integral solution satisfying xy <
√

lz. Case II is proved.
This completes the proof of Theorem 1. �

Proof of Corollary 1. Since a ≤ 1+
√

1+6p3

p , we have ap − 1 ≤
√

1 + 6p3 and so pa2 − 2a ≤ 6p2. It then
follows that

1
2
≤

3p2 + a
pa2

Clearly 3p2+a
pa2 < (3p+a)p

a2 . This implies that 1
2 ≤ G(a, p), where G(a, p) is defined as in Theorem 1. Using

Theorem 1 with l = 1
2 , we derive that (1.3) has no positive integral solutions satisfying xy <

√ z
2 as

desired.
Corollary 1 is proved. �

3. Proof of Theorem 2 and Theorem 3

In this section we need the following three lemmas.

Lemma 3. Let a, j, k ∈ Z+ and a ≥ 4. Then (a jk − j − k) - gcd( j, k)2 and αa ( j, k) , 1.

Proof. Since a ≥ 4, we have

a jk − j − k ≥ 4 jk − j − k = 2 jk + j(k − 1) + k( j − 1) ≥ 2 jk > gcd( j, k)2.

The last inequality is true since gcd( j, k)2 | jk. This means that (a jk − j − k) - gcd( j, k)2.
Suppose that αa ( j, k) = 1, that is

αa ( j, k) =
a jk − j − k

gcd( j, k) gcd(a jk− j−k
gcd( j,k) , gcd( j, k))

= 1.

This means gcd( a jk− j−k
gcd( j,k) , gcd( j, k)) =

a jk− j−k
gcd( j,k) , and therefore we have a jk− j−k

gcd( j,k) | gcd( j, k). It then follows
that (a jk − j − k) | gcd( j, k)2. This contradicts to (a jk − j − k) - gcd( j, k)2. Then we obtain that
αa ( j, k) , 1. Lemma 3 is proved. �
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Lemma 4. Let a, p, j, k ∈ Z+ and a ≥ 4. Then (1.5) holds for some x ∈ Z+ if and only if (a jk − j − k) |
p gcd( j, k)2.

Proof. Note that the Diophantine equation (1.5) is solvable if and only if

x =
1

a
p −

1
p j −

1
pk

=
p jk

a jk − j − k
(3.1)

is an integer. Write g = gcd( j, k).
On one hand, if (a jk − j − k) | pg2, then (a jk − j − k) | p jk and hence the right hand of (3.1) is an

integer.
On the other hand, suppose x in (3.1) is an integer, i.e.,

(a jk − j − k) | p jk. (3.2)

Let j = j′g and k = k′g. Substituting j′g (resp. k′g) for j (resp. k) in (3.2), we have

(ag j′k′ − j′ − k′) | pg j′k′. (3.3)

Note that gcd( j′, k′) = 1, we get

gcd( j′, ag j′k′ − j′ − k′) = gcd(k′, ag j′k′ − j′ − k′) = 1. (3.4)

Then by (3.3) and (3.4), we obtain that (ag j′k′ − j′ − k′) | pg, i.e., (ak j − k − j) | pg2.
Summing up the above two aspects finishes the proof of Lemma 4. �

Lemma 5. Let a, j, k ∈ Z+ and a ≥ 4. Let p be a prime. Then (a jk − j − k) | p gcd( j, k)2 if and only if
αa ( j, k) = p.

Proof. Denote g = gcd( j, k). By the definition of αa ( j, k), we get

a jk − j − k = αa ( j, k) g gcd(
a jk − j − k

g
, g). (3.5)

This implies that gcd(αa ( j, k) , g) = gcd(
a jk− j−k

g

gcd( a jk− j−k
g ,g)

, g) = 1. It then follows from (3.5) that (a jk− j−k) |

pg2 if and only if αa ( j, k) |p. Furthermore, as αa ( j, k) , 1 by Lemma 3, αa ( j, k) | p holds if and only
if αa ( j, k) = p.

The proof of lemma 5 is completed. �

Proof of Theorem 2. First, statement (i) of Theorem 2 follows directly from Lemmas 4 and 5.
Now we prove statement (ii) of Theorem 2 by reductio ad absurdum.
Assume that there exist two different primes p1 and p2 such that a

p1
= 1

x + 1
p1 j +

1
p1k and a

p2
= 1

x + 1
p2 j +

1
p2k

for some x ∈ Z+. Then by Lemma 4, we have

(a jk − j − k) | pi gcd( j, k)2, i = 1, 2. (3.6)

Because gcd(p1, p2) = 1, (3.6) derives (a jk − j − k) | gcd( j, k)2, which is ridiculous by Lemma 3.
Therefore, our assumption above is not true and statement (ii) is proved.

�
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Proof of Theorem 3. Consider the arithmetic sequence {(a j − 1)k − j}+∞k=1. First of all, since gcd(a j −
1, j) = 1, by the Dirichlet’s theorem, the sequence {(a j − 1)k − j}+∞k=1 contains infinitely many primes.

Now, we claim that a prime number (a j − 1)k − j for some k ∈ Z+ should also occur as αa ( j, k)
in {αa ( j, k) : k ∈ Z+}. Note that αa ( j, k) is a divisor of a jk − j − k. If a jk − j − k is prime, then
either αa ( j, k) = a jk − j − k or αa ( j, k) = 1. However, αa ( j, k) , 1 by Lemma 3. Thus, we have
αa ( j, k) = a jk − j − k if a jk − j − k is prime. The claim holds.

To sum up the above two points, the set {αa ( j, k) : k ∈ Z+} contains infinitely many primes. �
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7. M. Monks, A. Velingker, On the Erdős-Straus conjecture: Properties of solutions to
its underlying diophantine equation, 2008. Available from: https://pdfs.semanticscholar.org/

b65e/60f1528dfc9751ee4d7b3240dd6dd8e3fbc2.pdf.

8. L. J. Mordell, Diophantine equations, London: Academic Press, 1969, 287–290.
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