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1. Introduction

Fractional differential equations is the generalized form of classical differential equations of integer
order. Fractional calculus is now a developed area and it has many applications in porous media,
electrochemistry, economics, electromagnetics, physical sciences, medicine etc., Progressively, the
role of fractional differential equations is very important in viscoelasticity, statistical physics, optics,
signal processing, control, defence, electrical circuits, astronomy etc. Some interesting articles provide
the main theoretical tools for the qualitative analysis of this area and also shows the interconnection
as well as the distinction between classical, integral models and fractional differential equations, see
[1,17,19,22-26,29,34,35].
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The Langevin equation is an excellent technique to describe some phenomena which can help
physicians, engineers, economists, etc., effectively to describe processes. The Langevin equation
(drafted for first by Langevin in 1908) is obtained to be an accurate tool to describe the development
of physical phenomena. These equations are used to described stochastic problems in physics,
defence system, image processing, chemistry, astronomy, mechanical and electrical engineering.
They are also used to describe Brownian motion when the random oscillation force is supposed to be
Gaussian noise. Fractional order differential equations are utilized for the removal of noise. For more
details, see [2,12,20,21,28].

Recently impulsive differential equations have been considered by many authors due to their
significant applications in various fields of science and technology. These equations describe the
evolution processes that are subjected to abrupt changes and discontinuous jumps in their states.
Many physical systems like the function of pendulum clock, the impact of mechanical systems,
preservation of species by means of periodic stocking or harvesting and the heart’s function, etc.
naturally experience the impulsive phenomena. Similarly in many other situations, the evolutional
processes have the impulsive behavior. For example, the interruptions in cellular neural networks, the
damper’s operation with percussive effects, electromechanical systems subject to relaxational
oscillations, dynamical systems having automatic regulations, etc., have the impulsive phenomena.
For detail study, see [5, 10, 13, 16, 18, 30, 38,40,42,45]. Due to its large number of applications, this
area has been received great importance and remarkable attention from the researchers.

At Wisconsin university, Ulam raised a question about the stability of functional equations in the
year 1940. The question of Ulam was: under what conditions does there exist an additive mapping near
an approximately additive mapping [36]. In 1941, Hyers was the first mathematician who gave partial
answer to Ulam’s question [14], over Banach space. Afterwards, stability of such form is known as
Ulam-Hyers stability. In 1978, Rassias [27], provided a remarkable generalization of the Ulam-Hyers
stability of mappings by considering variables. For more information about the topic, we refer the
reader to [6,15,31,33,37,43,44,46].

Recently, the existence, uniqueness and different types of fractional nonlinear differential equations
with Caputo fractional derivative have received a considerable attention, see [3,7-9,32,33].

Wang et al. [39], studied generalized Ulam-Hyers-Rassias stability of the following fractional
differential equation:

{“Dg,vx(u) = f(w,x(), veE,sl, i=01,....m O0<a<l,

x(v) = gi(v, x(v)), ve(si,vl, i=1,2,...,m

Zada et al. [41], studied existence, uniqueness of solutions by using Diaz-Margolis’s fixed point
theorem [11] and presented different types of Ulam-Hyers stability for a class of nonlinear implicit
fractional differential equation with non-instantaneous integral impulses and nonlinear integral
boundary conditions:

‘DjxW) = f(u, x(v), Dy, x(), vE (W, 8], i=0,1,....m 0<a<l1,ve(01],
x() =1 (&, x(V), v E (si-,uil, i=1,2,...,m,

1 T
x(0) = v fo (T — )" 'n(s, x(s))ds.
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Motivated by the aforesaid work, in this manuscript, we investigate the existence, uniqueness,
Ulam-Hyers, generalized Ulam-Hyers, Ulam-Hyers-Rassias and generalized Ulam-Hyers-Rassias
stability results for the following nonlinear implicit impulsive Langevin equation with two Hilfer
fractional derivatives:

DD + Dxv) = f(u,x(), D" Px(v)), veJ=[0,T], 0<aj,ar<1, 0<B<I,
Ax() = Li(x(vy), i=1,2,....m, (1.1)
173(0) = %0, ¥ = (@1 +a2)(1 =) +5,

where D# and D*# represents two Hilfer fractional derivatives, of order a; and a, respectively,
B determines to the type of initial condition used in the problem. Further f : /X R XR — R is
continuous and /; : R — R forall i = 1,2,...,m, represents impulsive nonlinear mapping and
Ax(v;) = x(v]) — x(v;), where x(v]") and x(v;) represent the right and the lift limits, respectively, at
v=vy;fori=1,2,...,m.

In the second section of this paper, we introduce some notations, definitions and auxiliary results.
In section 3, we give the existence, uniqueness results for the proposed model (1.1) obtained via the
Banach’s contraction. In Section 4, we investigate the Ulam-Hyers, generalized Ulam-Hyers, Ulam-
Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability of our proposed model (1.1).
Finally, we give an example which supports our main result.

2. Preliminaries

We recall some definitions of fractional calculus from [17,26] as follows.

Definition 2.1. The fractional integral of order a from O to x for the function f is

1

Ig,xf(-x) = @

f fo)(x—-¢)'dg, x>0, a>0,
0

where I'(:) is the Gamma function.

Definition 2.2. The Riemman-Liouville fractional derivative of fractional order « for f is

1 a (™
Lz)g’xf(x) — - f(g)

= )y Gogpmds *>0n-l<asn

Definition 2.3. The Caputo derivative of fractional order « for f is
Dy f(x) = ﬁ fo (rm G, wheren = [a] + 1.
Definition 2.4. The classical Caputo derivative of order a of f is
n-1 g
pp = L@g,x( Fx) - ka L f(")(O)), x>0, n-1<a<n

Definition 2.5. The Hilfer fractional derivative of order 0 < @ < 1 and 0 < 8 < 1 of function f(x) is

D f(x) = (PP DUA P (f))(x).
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The Hilfer fractional derivative is used as an interpolator between the Riemman-Liouville and Caputo
derivative.

Remark 2.1. (a) Operator D** also can be written as

Z)w’ﬁf(x) - (Iﬁ(l—a)z)(l(l—ﬁ)(l—a))) - Iﬁ(l—w)D)” y=a+B-ap.

(b) If B = 0, then D% = D is called Riemman—Liouville fractional derivative.
(¢) If B = 1, then D*F = I'"*D is called Caputo fractional derivative.

Remark 2.2. (i) If f(-) € C"([0, ), R), then

LAY,
I(m-a)Jy (x—g)ttm

ds =17 f™(x), x>0, m—1<a<m.

D f(x) =
(ii) In Definition 2.4, the integrable function f can be discontinuous. This fact can support us to
consider impulsive fractional problems in the sequel.

Lemma 2.1. [17] The fractional differential equation ‘D® f(x) = 0 with a« > 0, involving Caputo
differential operator ‘D have a solution in the following form:

f(x) =cyptcix+ c2x2 4ot Cm_lxm—l,

where c¢;€R, i=0,1,....m—-1 and m=]a]+1.
Lemma 2.2. [17] For arbitrary a > 0, we have

I(CDf(x)) = co + C1X + x> + -+ oy X1,

where c¢;eR, i=0,1,....m—1 and m=|[a]+ 1.

Lemma 2.3. [26] Leta > 0 and 8 > 0, f € L'([a, b)).
Then I°IPf(x) = I" f(x),“ D} (D}, f(x)) = "Dy P f(x)and "D f(x) = f(x), x € [a,b].

Let J = [09 T]9 JO = [Oa Ul]’ Jl = (vaZ]a JZ = (UZa U3]’ ey Jm—l = (Um_l,Um], Jm = (Uma T]a
J =J—{vy,v1,Va,...,U,). Also for convenience use the notation J; = (v;, U]

Theorem 2.1. [ [4](Banach’s fixed point theorem)]. Let B be a Banach space. Then any contraction
mapping N : B — B has a unique fixed point.

3. Existence and uniqueness

In this section, we investigate the existence, uniqueness of solutions to the proposed Langevin
equation using two Hilfer fractional derivatives.
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Lemma 3.1. Let f : J X R xR — R is a function such that f(-, x(-), D¥#x(-)) € Ci,[0,T] for all
x € Ci[0,T]. A function x € CT_y[O, T] is equivalent to the integral equation

1 U
%UV” *Ta a0 f W =)™ f(s, x(5), D" x(s))ds — m f =)™ ' x(¢)ds v € Jy,
X0 y-1 V(v - g)mrert a1 N (v — )t a1
_r(,)/)vl , T +a) J($, x(), D" x(¢))ds + . T tay f(, x(¢), D" x(¢)ds

) =~ Ta )f (1 = ¢)"” 1X(g)dg—mf(v )" x(9)ds + L(x(w1)) v e,
X0

)(l] +an—1

X0 o Y (v - a8 f ar-1
oY +Z Ty 66 D x(eNds - Zr( S | @ 9m s

i=1 Y-l

+Z[i(x(v,~)) veld, i=12.....m
i=1

is the only solution of the problem (1.1) oy
Proof. Let x satisfies (1.1), then for any v € Jj, there exists a constant ¢ € R, such that
(- )a1+a2 1
x(v) = c+ f T oy (&) D" Px(s))ds ~ m f W=¢)" ' x(o)ds.  (3.2)
Using the condition I'~7x(0) = xo, Eq (3.2) yields that
x(v) = %vﬂ + OU (Umz)—ilmlf(g, x(6), D" x(¢))ds ~ m f =) 'x(e)ds, ve

Similarly for v € Ji, there exists a constant d; € R, such that

— 1 : _ ay+ar—1 1,5 _ f a—1
x(v) = d‘+—r(a1+a2) fv 1 (v-9) f(s, x(5), D" x(¢))ds Ty (v - 9)"  x(g)ds.

Using the condition, we get

B ~ ﬂ - U] (Uz g)<l|+<12 1 o B B f @11

x(vy) = (y)vl . T rm) f(s, x(5), D" x(s))ds —r( ) (vi — )" x(s)ds,

x(vy) = d,.
In view of
A x(v1) = x(v]) = x(vy) = Li(x(vy)),

we get

. ~ U] ( ; )al+az 1 o) .
x(v]) - x(vy) = d, - E v - i Urml—+f(§,X(§) D ﬂX(g))d§+r( 1)f i — §)" ' x(s)ds,
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U] aj+az—1
L(x() =dy - =] - Wi <) f(g, x(s), D" x(s))ds +

—_— U a;—1 d,
F() o TDla+a T )f( - )" x(¢)dg

d, =

X0 Moty fm wf(g, x(¢), D x(¢))dg —
r(,)/) 1 0 I"(a/1+ F( l)

For this value of d;, we have

f ;i — sV x(s)ds + I (x(v)).

U (U g,)(1/1+(l2 1

_ [y i s (- gt
X(U) = y F(CL’] . f(g, X(S‘) D x(g))dg_l_ 0 F( e

f (v, - s*)""lx(s*)dg - f (v—¢)™" 1X(§)d§ + = L))
0 v r( )

U] ( U; )a1+a/2 1

f(s, x(), D" P x(s))ds

" T(ay) I(ay)
Similarly for v € J;, we get

_ X0 a+an—1 1,8
xw) = oo Z—F(al e f (Wi = )" f(s, (), D" Px(6))ds

. Zl [(a) f (vi = &) x(6)ds + Zl L),

Conversely, let that x satisfies (3.1), then it can be easily proved that the solution x(v) given by (3.1)
satisfies (1.1). O

Consider some assumptions as follows:
(Hy) f € C(J xR XxR,R) is continuous.

(H,) There exists positive constants ., and E,, such that
|f(w, u,m)— f(w,v, n)| <Eslu—v|+Em—n|, foreach we J andall u,v,m,neR.

(H3) There exists ., > 0, such that
|I:(u) = L(v)| < Eylu—vl, foreach ve J;, i=1,2,...,m, and forallu,v € R.

(H,) There exists ¢ € PC(J,R") and 4, > 03 I“¢(v) < A,¢(v) foreach v e J
Theorem 3.1. Let assumptions (H,) — (H3) be satisfied and if

mk., ray mAkt., mA _
S L r— I L ) 3 ) <1, 3.3
(r(a1 FTart ) T(ar +as+ 1) T(a: + 1) . (3-3)
then (1.1) has a unique solution x in C,_,[0,T].
Proof. We define a mapping N : C,_,[0,T] — C,_,[0,T]

(U g)wﬁ—(zz 1 s ~ /l U B o
r(al—+f(§,x(§) D" x(g))ds Ty J, (v—-¢) " 'x(¢)ds v e Jy,

aj+ar—1 a1 B
(cx1+cx2)f Wi =) J(s, x(5), D x(§)ds

0
2
Zml f - X(S‘)d§+ZI(x(v)) veld, i=12,....m.
=1

(Nx)(v) = (y) 0 gty

(N)(v) =
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For any x,y € C,_,[0,T] and v € J;, consider the following

m

U (Ui _ g.)0{1+(Yz—1 N N
I((N0)(@) = (Ny)()| < Z T 1oy V6:x6).D Yx(6) = fls, y(6), D" Py(6))lds
=1 YVi-1 (al + (IZ)
m 1 v m
- f Wi = )" 1x(6) = ¥(©)lds + D Ii(x(w) = LG @)l
= T Ju, i=1
= Zm: T f - 9" S) - ¥ s
T AT+ @) Jy,
m Lg fvi
+ v, — aj+ar—1 Dal,ﬁx _ Dal,ﬁ d
Zl Farvay J, @m0 xe) - D (olds
Sy A [ =9 - sods + S 1) - (0
i=1 Ia) Ju., i=1
= Zm: o va f (- 9 () - ¥l
T AT+ @) Jy,
" Zm: o o f (= 9 D) - ¥(6)lds
LiT(a +a2)
Sy A [ wim e - xods + S 1) - (o)
= Tan) J,, i=1
mb (v —vi)"™™? mAb, (v — v )" mA )
= + - i —vi-)" + mb -
‘( T(a) +as + 1) Mt + ) Tl ¢ D V) ke @) =)
mk., v mAkL., mA
L _qevery T _qerey DT oy ) — W)
(Harhn+1) Tarwm+D T Tamen, -yl
Now since
L AL
( m f a1+a) m 8 T(1/1+(1/2 + m/l T(ll—l + mLk) < 1
I'la; +ar+ 1) I'lag +ar + 1) I'lay + 1)

Hence x is a contraction according to Banach’s contraction theorem and so it has only one fixed point,
which is the only one solution of (1.1). O

4. Ulam-Hyers stability analysis

Lete > 0and ¢ : J — R* be a continuous function. Consider

[ DUA( D2 + Dz(v) — f(u, z2(v), D"Pz(v)| <&, ved, i=1,2,...,m, 41

A z) - Lzw)) <& i=12,....m, @1
|DUB(D2E + Dz(v) — f(v, 2(v), DYPz )| < o), vET, i=1,2,...,m, 42)
A z(v) = LGzw)| <y, i=1,2,....m, )
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and

{ DD + A)2(v) — f(0,2), D P < ep(v), vE T, i=1.2,....m,

Az(v) - L) <ey, i=1,2,...,m. .3)

Definition 4.1. The problem (1.1) is Ulam-Hyers stable if there exists a real number Cy,; , » such that
for each solution € > 0 and for each solution z € C,_,[0,T] of the inequality (4.1), there exists a
solution x € C,_,[0, T] of the problem (1.1) such that

lz2(v) = x(W| £ Cyigo € VE 4.4)

Definition 4.2. The problem (1.1) is generalized Ulam-Hyers stable if there exists ¢¢; .- € C1-[0,T],
¢1iq.0(0) = 0 and € > 0 such that for each solution z € Ci_yjo 1| of the inequality (4.1), there exists a
solution x € C1_,[0,T] of the problem (1.1) such that

lz(v) = x(V)| < ¢figo € VEJ 4.5)

Remark 4.1. Keep in mind that Definition 4.1 = Definition 4.2.

Definition 4.3. The problem (1.1) is Ulam-Hyers-Rassias stable with respect to (@, ) if there exists
Ctigoe > 0 such that for each € > 0 and for each solution z € C,_,[0, T] of inequality (4.3) there is a
solution x € C,_,[0, T] of the problem (1.1) with

l2(v) = x(V)| < Cyigopele) + ) & v EJ (4.6)

Definition 4.4. The problem (1.1) is generalized Ulam-Hyers-Rassias stable with respect to (¢, ) if
there exists Cy 4, > 0 such that for each solution z € C,_,[0, T] of inequality (4.2) there is a solution
x € Ci_[0,T] of the problem (1.1) with

l2(V) = (V)| < Crigoplp) +¥) & vEJ 4.7)
Remark 4.2. It should be noted that Definition 4.3 implies Definition 4.4.

Remark 4.3. A function z € C,_,[0,T] is a solution of the inequality (4.1) < there exists a function
g € C1,[0,T] and a sequence g;,i = 1,2,...,m, depending on g, such that

@ lgwl<e lgl<eveld,i=12,...,m,
(b) Dmﬁ(@azﬁ + ﬂ)Z(U) = f(U, Z(U),Z)a"'gZ(U)) + g(v)’ veld, i= 1,2,....m,
(©) Ax(v) = li(x(v) + g, veJ, i=12,...,m.

Remark 4.4. A function z € C,_,[0, T] satisfies (4.2) & there exists g € C1_,[0,T] and a sequence
gi,i=1,2,...,m, depending on g, such that

@ g <o), lgl<y veld,i=12,...,m,
(b) DUA(DYP + Dz(v) = f(v, z2(v), D"Pz(v)) + gv), ve T, i=1,2,...,m,
(© Ax(v) =Li(x(v))+gi, veJ,i=12,...,m.

AIMS Mathematics Volume 6, Issue 5, 4915-4929.



4923

Remark 4.5. A function z € C,_,[0, T] satisfies (4.2) & there exists g € C1_,[0,T] and a sequence
gi,i=1,2,...,m, depending on g, such that

@) g < ep(v), gl <ep ve,i=12,....m
(b) D" H(D™F + )z(v) = f(v,2(1), D" Pz(V)) + gw), veE T, i=12,....m
(©) Ax(v) =li(x(v) + g, veJ, i=12,....m

Theorem 4.1. If the assumptions (H1) — (H3) and the inequality (3.3) hold, then Eq (1.1) is Ulam—
Hyers stable and consequently generalized Ulam—Hyers stable.

Proof. Lety € C,_,[0, T] satisfies (4.1) and let x be the only one solution of
DD P + )x(v) = f(u, x(), D"Px(v) veJ=[0,T],0<a;,an <1, 0<B<I,
A x(uvy) = 1,(x(vy), i=1,2,...,m
I'7%(0) = xo, ¥ = (a1 + @)1 -p) +B.

By Lemma 3.1, we have for each v € J;

X0 _ = 1 v a1 +an— Q1
x(v) = %van;m fv 71(Ui_§) 'f(s, x(s), D" Px(s))ds

m 1 U; m
-y — W - )" 'x(o)ds + Y Lx(v)) veld, i=12,...,m.
; I'(ay) f Z

Since y satisfies inequality (4.1), so by Remark 4.3, we get
DD + yw) = fu,y@), D"Pyw) + g veJ=[0,T], 0<aj,ar <1, 0<B<I,
A x(vy) = L,y(un) +gi, 1=1,2,...,m, (4.8)
I'y0) =yo, y=(a1+a)1-p)+p.

Obviously the solution of (4.8), will be

AU ;f” _ o)artar-l [0 st dc — f a1 d

r(y)v +F(a1 o) Jo v -9) [, y(s), v(s))ds iy (v —¢)""y(s)ds
; Y _ ~\arta—1 _ a1

+F(al+az)fo(v S) 8i(§)ds Ty )f( )" gil)ds v e Jy,

m _ )011+(12—1

Xo ! (- B B f -l
y) = (T 2 ), Ty Ty 66D s ;r(al) =9 eds

Ui-1

1 Vi m 1 Vi
- L \artax—1 dec — -l d
+Z TS f vi—¢) 8i($)ds ;—F(al) fvil(u, )" gi(¢)ds

+Zl(x(v))+2gl, vel, i=12,...,m.

Therefore, for each v € J;, we have the following
m Ui ( ;= g)m+az—1

el < 3 ) a1 a6 X6, D) = (5, (), Dy lds
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m 1 Vi B m 1 i ]
- [ @ - d e — i — a)+ar—1 ; d
; T(a) f 71(0 )" x(e) — y($)lds + Z‘ CETS f 71(v <) gi(¢)ds

“ A vi m m
Bl Z T(a)) f (W; = )" gi(s)ds + Z IL:(x(vy)) = Ly(vy)| + Z gi
i=1 Vi-1 P —

m

Vi (v = g)mre! 5 vi .
Z 1 o WIX(S‘) - y(9)lds - ,Z‘ Ty f i — )" 'x(s) — ¥(o)lds

IA

Z —F(al ) f (v; — )M LD x(¢) — y(¢)lds + £ Z |x(v) — y(v)|

€ aj+ar—1 _ S a1
+;mﬁl(vi_§) dg Z e )f (v; = ¢) d§+z

i=1

mb(T)" " mAL, mi
+ Tm+a2_—Ta1+ L) _
(F(an +a+ 1) T(ap+ay+ 1)( ) T(a, + 1)( )™+ mbg |lx() = y@)
me med
44— (TH®tex _ ) + ’
F(Ozl + ay + 1)( ) r(all + 1)( ) me

which implies that

m w1+a; a
F((11+a2+1)(T) - F((y1+l)(T) t+m
lx(v) —y@)| < & P " T "
— a (04 _ 5 a (0% a
(F(a1+az+1)(T) T+ e (DT = +1)(T) 1 +mLk)
Thus
|x(v) — y(U)l < 8Cf,g’(¥1,02’
where
a1+ a
3 Mo (D7 = 5 (M +m
Cf’g’al’az a _ mk.s (T)‘““’Z + mak, (T)a1+a2 _ (T)(zl + mkL )
(a1 +az+1) (a1 +az+1) F(a +1) k

So Eq (1.1) is Ulam-Hyers stable and if we set ¢(g) = £Cy 4 4,.,0,> #(0) = 0, then Eq (1.1) is generalized
Ulam-Hyers stable. O

Theorem 4.2. If the assumptions (H,) — (H4) and the inequality (3.3) are satisfied, then the problem
(1.1) is Ulam-Hyers-Rassias stable with respect to (¢,¥), consequently generalized
Ulam-Hyers-Rassias stable.

Proof. Lety € C,_,[0, T] be a solution of the inequality (4.3) and let x be the only one solution of the
following problem

DD + Dx(v) = f(u, x(), D"Px(v)) veJ=[0,T], 0<a,an <1, 0<B<1,
A -x(Um) = Im(X(Um)), i = la 2, .., m
I'"7x(0) = x, v = (a1 +a)(1-p)+p.
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From Theorem 4.1, VY v € J;, we get

m

Ui (Ui _ S,)(l/1+(lz—1
_ < s , ,z)a]ﬁ _ ) , z)m,ﬁ d
x() - yW)| < Z‘ e £ (5, x(5), D" Px(6)) — f(5,3(5), D Py())lds

- Zm] o f 0= ") ~ Ml + zm] —— f - o g (o)
- Z o f (v - 1" gi(6)ds + Z () - L) + Z &
< Z m f Wi — )" x(s) — ¥(s)lds
s Z] e f = DG - s
- i ré - f (0= 9" x(6) ~ ¥(©lds + Z —— f - o (o)

_Z T(a))

(@i " ple)s + By Z (@) - yw)| + Z v

Ui-1

< (mLf(Ui v mAk, (v — Ui—l)(”m2 _ mA(v; - Ui—l)al

+ + mLk) x(v) — y(v
T(a + @+ 1) T +a+ 1) T, + 1) (@) =)l
med, p(v) med,p(v)A
A(Uz’ — Ui - L(Ui - vi)" + mey,
I'a;+ar+ 1) I'a; +1)
which implies that
(V) App()A
N S L LY R
lx() -y < & > o LT o
~ (Farraarn (Vi = Vi)™ + "S5 — — i Wi~ U™+ mEy)
mi, - miy A
< ( Moo (7" ~ Far (D" +m )s(so(w +y)
- mb ¢ mAk, :
- (F(a1+a2+1)(T)al+a2 + F(a1+a2+1)(T)al+az T T +1)(T)a1 +mky)
Thus
|X(U) - y(U)| < Cf,g,al,az,w,d/g(‘;o(v) + lr//)a
where
+ miyd
C - ( e (D — g +m )
f,gﬂlﬂz,‘ﬁ»w - ij
1- (F(aq+a/2+l)(T)m+a + r(a1+az+1)(T)mm2 T T +1)(T)0[I + mLk)

Hence (1.1) is Ulam-Hyers-Rassias stable and is obviously generalized Ulam-Hyers-Rassias stable.
]

Finally we give an example to illustrate our main result.
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Example 4.1.

x(v) + DD x(v)|
8+ eV + 12
1 A (4.9)

)= 20+ (DI
I'""x(0) =0, y=(a;+ar)(1-p)+p,

Let Jo=[0,3. Ji=[31] ey =3 ax=3 A=A, =3 b, =b =55 and m=T = 1.
Obviously

1 1

(L S A B A N )

Iy +ay+ 1) Iy +ay+1) I, +1)

Thus, thanks to Theorem 3.1, the given problem (4.9) has a unique solution. Further the conditions of
Theorem 4.1 are satisfied so the solution of the given problem (4.9) is Ulam-Hyers stable and
generalized Ulam-Hyers stable. Further it is also easy to check the conditions of Theorem 4.2 hold
and thus the problem (4.9) is Ulam-Hyers-Rassias stable and consequently generalized
Ulam-Hyers-Rassias stable.

5. Conclusions

In this article, we consider a class of implicit impulsive Langevin equation with Hilfer fractional
derivative. Some conditions are made to beat the hurdles to investigate the existence, uniqueness and
to discuss different types of Ulam-Hyers stability of our considered model, using Banach’s fixed point
theorem. We give an example which supports our main result.
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