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1. Introduction

Let E be a real Banach space with its dual space E∗. In this paper, we study the so-called monotone
inclusion problem:

find z ∈ E such that 0 ∈ (A + B)z, (1.1)

where A : E → E∗ is a single mapping and B : E → 2E∗ is a multi-valued mapping. The set of solutions
of the problem (1.1) is denoted by (A + B)−10 := {x ∈ E : 0 ∈ (A + B)x}. This problem draws much
attention since it stands at the core of many mathematical problems, such as: variational inequalities,
split feasibility problem and minimization problem with applications in machine learning, statistical
regression, image processing and signal recovery (see [17, 33, 44]).
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A classical method for solving the problem (1.1) in Hilbert space H, is known as forward-backward
splitting algorithm (FBSA) [15, 29] which generates iterative sequence {xn} by the following algorithm: x1 ∈ H,

xn+1 = JB
λ (I − λA)xn, ∀n ≥ 1,

(1.2)

where JB
λ := (I + λB)−1 is the resolvent operator of an operator B. Here, I denotes the identity operator

on H. It was proved that the sequence generated by (1.2) converges weakly to an element in (A + B)−10
under the assumption of the α-cocoercivity of the operator A, that is,

〈Ax − Ay, x − y〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ H

and λ is chosen in (0, 2α). In fact, FBSA includes, as special cases, the proximal point algorithm (when
A = 0) [11, 20, 34] and the gradient method [18].

In order to get strong convergence result, Takashashi et al. [41] introduced the following algorithm: x1, u ∈ H,

xn+1 = αnu + (1 − αn)JB
λn

(xn − λnAxn), ∀n ≥ 1,
(1.3)

where A is an α-cocoercive mapping on H. It was shown that if {λn} ⊂ (0,∞) and {αn} ⊂ (0, 1) satisfy
the following assumptions:

0 < a ≤ λn ≤ b < 2α,
∞∑

n=1

|λn+1 − λn| < ∞,

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and
∞∑

n=1

|αn+1 − αn| < ∞,

then the sequence {xn} defined by (1.3) converges strongly to an element in (A + B)−10.
In 2016, Cholamjiak [12] introduced the following FBSA in a uniformly convex and q-uniformly

smooth Banach space E: x1, u ∈ E,

xn+1 = αnu + βnxn + γnJB
λn

(xn − λnAxn), ∀n ≥ 1,
(1.4)

where JB
λn

:= (I +λnB)−1 is the resolvent operator of an m-accretive operator B and A is an α-cocoercive
mapping. He proved that the sequence generated by (1.4) converges strongly to a solution of the
problem (1.1) under the following assumptions:

{αn}, {βn}, {γn} ⊂ (0, 1) with αn + βn + γn = 1,

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and lim inf
n→∞

γn > 0,
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0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
(αq
κq

) 1
q−1 ,

where κq is the q-uniform smoothness coefficient of E.
In recent years, the FBSA for solving the monotone inclusion problem (1.1), when A is

α-cocoercive, was studied and modified by many authors in various settings (see,
e.g., [1, 9, 10, 13, 26, 27, 32, 37, 38, 46]). It is important to remark that the α-cocoercivity of the
operator A is a strong assumption. To relax this assumption, Tseng [45] introduced the following
so-called Tseng’s splitting method:

x1 ∈ H,

yn = JB
λn

(xn − λnAxn),
xn+1 = yn − λn(Ayn − Axn), ∀n ≥ 1,

(1.5)

where A is monotone and L-Lipschitz continuous with L > 0. It was proved that the sequence {xn}

generated by (1.5) converges weakly to an element in (A + B)−10 provided the step size λn is chosen in(
0, 1

L

)
. It is worth noting that Tseng’s splitting method is a requirement to know Lipschitz constant of

the mapping. Unfortunately, Lipschitz constants are often unknown or difficult to approximate.
Very recently, Shehu [37] extended Tseng’s result to Banach spaces. He proposed the following

iterative process for approximating a solution of the problem (1.1) in a 2-uniformly convex Banach
space E which is also uniformly smooth:

x1 ∈ E,

yn = JB
λn

J−1(Jxn − λnAxn),
xn+1 = Jyn − λn(Ayn − Axn), ∀n ≥ 1,

(1.6)

where A : E → E∗ is monotone and L-Lipschitz continuous, JB
λn

:= (J + λnB)−1J is the resolvent of B
and J is the duality mapping from E into E∗. He obtain weak convergence theorem to the solution of
the problem (1.1) provided the step size λn is chosen in

(
0, 1√

2µκL

)
, where µ is the 2-uniform convexity

constant of E and κ is the 2-uniform smoothness constant of E∗. At the same time, he also proposed a
variant of (1.6) with a linesearch for solving the problem (1.1). It is known that any algorithm with a
linesearch needs an inner loop with some stopping criterion over iteration.

In this paper, motivated by Shehu [37], we propose two modifications of Tseng’s splitting method
with non-monotone adaptive step sizes for solving the problem (1.1) in the framework of Banach
spaces. The step size of our methods does not require the prior knowledge of the Lipschitz constant of
operator and without any linesearch procedure. The remainder of this paper is organized as follows: We
recall some definitions and lemmas in Section 2. Our methods are presented and analyzed in Section
3. Theoretical applications to variational inequality problem and convex minimization problem are
considered in Section 4 and finally, in Section 5, we provide some numerical experiments to illustrate
the behaviour of our methods.

2. Preliminaries

Let R and N be the set of real numbers and the set of positive integers, respectively. Let E be a real
Banach space with its dual space E∗. We denote 〈x, f 〉 by the value of a functional f in E∗ at x in E,
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that is, 〈x, f 〉 = f (x). For a sequence {xn} in E, the strong convergence and the weak convergence of
{xn} to x ∈ E are denoted by xn → x and xn ⇀ x, respectively. Let S E = {x ∈ E : ‖x‖ = 1}. The space
E is said to be smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.1)

exists for all x, y ∈ S E. The space E is said to be uniformly smooth if the limit (2.1) converges uniformly
in x, y ∈ S E. It is said to be strictly convex if ‖(x + y)/2‖ < 1 whenever x, y ∈ S E and x , y. The space
E is said to be uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2], where δE is the modulus of
convexity of E defined by

δE(ε) = inf
{
1 − ‖x+y‖

2 : x, y ∈ S E, ‖x − y‖ ≥ ε
}

for all ε ∈ [0, 2]. Let p ≥ 2. The space E is said to be p-uniformly convex if there is a c > 0 such that
δE(ε) ≥ cε p for all ε ∈ (0, 2]. Let 1 < q ≤ 2. The space E is said to be q-uniformly smooth if there
exists a κ > 0 such that ρE(t) ≤ κtq for all t > 0, where ρE is the modulus of smoothness of E defined
by

ρE(t) = sup
{
‖x+ty‖+‖x−ty‖

2 − 1 : x, y ∈ S E

}
for all t ≥ 0. Let 1 < q ≤ 2 < p < ∞ with 1

p + 1
q = 1. It is observed that every p-uniformly convex

(q-uniformly smooth) space is uniformly convex (uniformly smooth) space. It is known that E is p-
uniformly convex (q-uniformly smooth) if and only if its dual E∗ is q-uniformly smooth (p-uniformly
convex) (see [2]). If E is uniformly convex then E is reflexive and strictly convex and if E is uniformly
smooth then E is reflexive and smooth (see [14]). Moreover, we know that for every p > 1, Lp and `p

are min{p, 2}-uniformly smooth and max{p, 2}-uniformly convex, while Hilbert space is 2-uniformly
smooth and 2-uniformly convex (see [4, 23, 47] for more details).

Definition 2.1. The normalized duality mapping J : E → 2E∗ is defined by

Jx = { f ∈ E∗ : 〈x, f 〉 = ‖x‖2 = ‖ f ‖2}, ∀x ∈ E,

where 〈·, ·〉 denotes the duality pairing between E and E∗.

If E is a Hilbert space, then J = I is the identity mapping on E. It is known that E is smooth if and
only if J is single-valued from E into E∗ and if E is a reflexive, smooth and strictly convex, then J−1

is single-valued, one-to-one, surjective and it is the duality mapping from E∗ into E. Moreover, if E is
uniformly smooth, then J is norm-to-norm uniformly continuous on bounded subsets of E (see [2, 14]
for more details). A duality mapping J from a smooth Banach space E into E∗ is said to be weakly
sequentially continuous if for any sequence {xn} ⊂ E such that xn ⇀ x implies that Jxn ⇀

∗ Jx.

Lemma 2.2. [39] Let E be a smooth Banach space and J be the duality mapping on E. Then 〈x −
y, Jx − Jy〉 ≥ 0 for all x, y ∈ E. Further, if E is strictly convex and 〈x − y, Jx − Jy〉 = 0, then x = y.

Definition 2.3. A mapping A : E → E∗ is said to be:
• α-cocoercive if there exists a constant α > 0 such that 〈x − y, Ax − Ay〉 ≥ α‖Ax − Ay‖2 for all

x, y ∈ E;
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• monotone if 〈x − y, Ax − Ay〉 ≥ 0 for all x, y ∈ E;
• L-Lipschitz continuous if there exists a constant L > 0 such that ‖Ax − Ay‖ ≤ L‖x − y‖ for all

x, y ∈ E;
• hemicontinuous if for each x, y ∈ E, the mapping f : [0, 1]→ E∗ defined by f (t) = A(tx + (1− t)y)

is continuous with respect to the weak∗ topology of E∗.

Remark 2.4. It is easy to see that if A is cocoercive, then A is monotone and Lipschitz continuous but
the converse is not true in general.

The next lemma can be found in [49] (see also [47]).

Lemma 2.5. (i) Let E be a 2-uniformly smooth Banach space. Then there exists a constant κ > 0 such
that

‖x − y‖2 ≤ ‖x‖2 − 2〈y, Jx〉 + κ‖y‖2, ∀x, y ∈ E.

(ii) Let E be a 2-uniformly convex Banach space. Then there exists a constant c > 0 such that

‖x − y‖2 ≥ ‖x‖2 − 2〈y, Jx〉 + c‖y‖2, ∀x, y ∈ E.

Remark 2.6. It is well-known that κ = c = 1 whenever E is a Hilbert space. Hence these inequalities
reduce to the following well-known polarization identity:

‖x − y‖2 = ‖x‖2 − 2〈x, y〉 + ‖y‖2.

Moreover, we refer to [49] for the exact values of constants κ and c.

Next, we recall the following Lyapunov function which was introduced in [3]:

Definition 2.7. Let E be a smooth Banach space. The Lyapunov functional φ : E × E → R is defined
by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2, ∀x, y ∈ E. (2.2)

If E is a Hilbert space, then φ(x, y) = ‖x − y‖2 for all x, y ∈ E. In addition, the Lyapunov function φ
has the following properties:

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2, ∀x, y ∈ E. (2.3)

φ(x, J−1(αJy + (1 − α)Jz) ≤ αφ(x, y) + (1 − α)φ(x, z), ∀x, y, z ∈ E, α ∈ [0, 1]. (2.4)

φ(x, y) = φ(x, z) − φ(y, z) + 2〈y − x, Jy − Jz〉, ∀x, y, z ∈ E. (2.5)

Lemma 2.8. [6] Let E be a 2-uniformly convex Banach space, then there exists a constant c > 0 such
that

c‖x − y‖2 ≤ φ(x, y),

where c is a constant in Lemma 2.5 (ii).
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We make use of the following functional V : E × E∗ → R studied in [3]:

V(x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2, ∀x ∈ E, x∗ ∈ E∗. (2.6)

Obviously, V(x, x∗) = φ(x, J−1x∗) for all x ∈ E and x∗ ∈ E∗.

Lemma 2.9. [3] Let E be a reflexive, strictly convex and smooth Banach space. Then the following
statement holds:

V(x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V(x, x∗ + y∗), ∀x ∈ E, x∗, y∗ ∈ E∗.

Let E be a reflexive, strictly convex and smooth Banach space. Let C be a closed and convex subset
of E. Then for any x ∈ E, there exists a unique element z ∈ C such that

φ(z, x) = min
y∈C

φ(y, x).

Such a mapping ΠC : E → C defined by z = ΠC(x) is called the generalized projection of E onto C. If
E is a Hilbert space, then ΠC is coincident with the metric projection denoted by PC.

Lemma 2.10. [3] Let E be a reflexive, strictly convex and smooth Banach space and C be a closed and
convex subset of E. Let x ∈ E and z ∈ C. Then the following statements hold:

(i) z = ΠC(x) if and only if 〈y − z, Jx − Jz〉 ≤ 0, ∀y ∈ C.
(ii) φ(y,ΠC(x)) + φ(ΠC(x), x) ≤ φ(y, x), ∀y ∈ C.

Lemma 2.11. [25] Let C be a closed and convex subset of a smooth and uniformly convex Banach
space E. Let {xn} be a sequence in E such that φ(p, xn+1) ≤ φ(p, xn) for all p ∈ C and n ≥ 1. Then the
sequence {ΠC(xn)} converges strongly to some element x∗ ∈ C.

Let B : E → 2E∗ be a multi-valued mapping. The effective domain of B is denoted by D(B) = {x ∈
E : Bx , ∅} and the range of B is also denoted by R(B) =

⋃
{Bx : x ∈ D(B)}. The set of zeros of B is

denoted by B−10 = {x ∈ D(B) : 0 ∈ Bx}. A multi-valued mapping B is said to be monotone if

〈x − y, u − v〉 ≥ 0, ∀x, y ∈ D(B), u ∈ Bx and v ∈ By.

A monotone operator B on E is said to be maximal if its graph G(B) = {(x, y) ∈ E × E∗ : x ∈ D(B), y ∈
Bx} is not properly contained in the graph of any other monotone operator on E. In other words, the
maximality of B is equivalent to R(J + λB) = E∗ for all λ > 0 (see [5, Theorem 1.2]). It is known that
if B is maximal monotone, then B−10 is closed and convex (see [39]).

For a maximal monotone operator B, we define the resolvent of B by JB
λ (x) = (J + λB)−1Jx for

x ∈ E and λ > 0. It is also known that B−10 = F(JB
λ ).

Lemma 2.12. [5] Let E be a reflexive Banach space. Let A : E → E∗ be a monotone, hemicontinuous
and bounded operator and B : E → 2E∗ be a maximal monotone operator. Then A + B is maximal
monotone.

Lemma 2.13. ([48]) Assume that {an} is a sequence of nonnegative real sequences such that

an+1 ≤ (1 − γn)an + γnδn, ∀n ≥ 1,

where {γn} is a sequence in (0, 1) and {δn} is a sequence of real sequences such that
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(i)
∑∞

n=1 γn = ∞;
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=1 |γnδn| < ∞.

Then limn→∞ an = 0.

Lemma 2.14. ([30]) Let {Γn} be a sequence of real numbers that does not decrease at infinity in the
sense that there exists a subsequence {Γni} of {Γn} which satisfies Γni < Γni+1 for all ` ∈ N. Define the
sequence {σ(n)} of integers as follows:

σ(n) = max{k ≤ n : Γk < Γk+1},

for all n ≥ n0 (for some n0 large enough). Then {σ(n)}n≥n0 is a non-decreasing sequence such that
limn→∞ σ(n) = ∞, and it holds that

Γσ(n) ≤ Γσ(n)+1 and Γn ≤ Γσ(n)+1.

Lemma 2.15. ([42]) Assume that {λn} and {θn} are two nonnegative real sequences such that

λn+1 ≤ λn + θn, ∀n ≥ 1.

If
∑∞

n=1 θn < ∞, then lim
n→∞

λn exists.

3. Main results

In this section, we introduce two modified Tseng’s splitting algorithms for solving the monotone
inclusion problem in Banach spaces. In order to prove the convergence results of these algorithms, we
need make the following assumptions:

Assumption 3.1. (A1) The Banach space E is a real 2-uniformly convex and uniformly smooth.
(A2) The mappings A : E → E∗ is monotone and L-Lipschitz continuous, and B : E → 2E∗ is maximal

monotone.
(A3) The solution set of the problem (1.1) is nonempty, that is, (A + B)−10 , ∅.
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Algorithm 1: Tseng type splitting algorithm for monotone inclusion problem
Step 0. Given λ1 > 0 and µ ∈

(
0,

√ c
κ

)
. Choose a nonnegative real sequence {θn} such that∑∞

n=1 θn < ∞. Let x1 ∈ E be arbitrary. Set n = 1.
Step 1. Compute

yn = JB
λn

J−1(Jxn − λnAxn). (3.1)

If xn = yn, then stop and xn is a solution of the problem (1.1). Otherwise, go to Step 2.
Step 2. Compute

xn+1 = J−1(Jyn − λn(Ayn − Axn)), (3.2)

where the sizes are adaptively updated as follows:

λn+1 =

 min
{ µ‖xn − yn‖

‖Axn − Ayn‖
, λn + θn

}
if Axn − Ayn , 0,

λn + θn otherwise.
(3.3)

Set n := n + 1 and go to Step 1.

Lemma 3.2. Assume that Assumption 3.1 holds. Let {xn}, {yn} and {λn} be sequences generated by
Algorithm 1. Then the following statements hold:

(i) If xn = yn for all n ∈ N, then xn ∈ (A + B)−10.
(ii) lim

n→∞
λn = λ ∈

[
min{ µL , λ1}, λ1 + θ

]
, where θ =

∑∞
n=1 θn. Moreover

‖Axn − Ayn‖ ≤
µ

λn+1
‖xn − yn‖, ∀n ≥ 1.

Proof. (i) If xn = yn, then xn = JB
λn

J−1(Jxn − λnAxn). It follows that xn = (J + λnB)−1J ◦ J−1(J − λnA)xn,
that is, Jxn − λnAxn ∈ Jxn + λnBxn, which implies that 0 ∈ (A + B)xn. Hence xn ∈ (A + B)−10.

(ii) In the case Axn − Ayn , 0, using the Lipschitz continuity of A, we have

µ‖xn − yn‖

‖Axn − Ayn‖
≥
µ‖xn − yn‖

L‖xn − yn‖
=
µ

L
.

From (3.3) and mathematical induction, we have the sequence {λn} has upper bound λ1 + θ and lower
bound min{ µL , λ1}. From Lemma 2.15, we have lim

n→∞
λn exists and we denote λ = lim

n→∞
λn. It is obvious

that λ ∈
[

min{ µL , λ1}, λ1 + θ
]
. By the definition of λn, we have

λn+1 = min
{ µ‖xn − yn‖

‖Axn − Ayn‖
, λn + θn

}
≤

µ‖xn − yn‖

‖Axn − Ayn‖
.

This implies that

‖Axn − Ayn‖ ≤
µ

λn+1
‖xn − yn‖, ∀n ≥ 1. (3.4)

�
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Lemma 3.3. Assume that Assumption 3.1 holds. Let {xn} be a sequence generated by Algorithm 1.
Hence

φ(z, xn+1) ≤ φ(z, xn) −
(
1 −

κµ2

c
λ2

n

λ2
n+1

)
φ(yn, xn), ∀z ∈ (A + B)−10, (3.5)

where c and κ are constants in Lemma 2.5.

Proof. Let z ∈ (A + B)−10. From Lemma 2.5 (i) and (2.5), we have

φ(z, xn+1) = φ(z, J−1(Jyn − λn(Ayn − Axn)))
= V(z, Jyn − λn(Ayn − Axn))
= ‖z‖2 − 2〈z, Jyn − λn(Ayn − Axn)〉 + ‖Jyn − λn(Ayn − Axn)‖2

≤ ‖z‖2 − 2〈z, Jyn〉 + 2λn〈z, Ayn − Axn〉 + ‖Jyn‖
2 − 2λn〈yn, Ayn − Axn〉 + κ‖λn(Ayn − Axn)‖2

= ‖z‖2 − 2〈z, Jyn〉 + ‖yn‖
2 − 2λn〈yn − z, Ayn − Axn〉 + κλ2

n‖Ayn − Axn‖
2

= φ(z, yn) − 2λn〈yn − z, Ayn − Axn〉 + κλ2
n‖Ayn − Axn‖

2

= φ(z, xn) − φ(yn, xn) + 2〈yn − z, Jyn − Jxn〉 − 2λn〈yn − z, Ayn − Axn〉 + κλ2
n‖Ayn − Axn‖

2

= φ(z, xn) − φ(yn, xn) + κλ2
n‖Ayn − Axn‖

2 − 2〈yn − z, Jxn − Jyn − λn(Axn − Ayn)〉. (3.6)

Combining (3.4) and (3.6), we have

φ(z, xn+1) ≤ φ(z, xn) − φ(yn, xn) + κλ2
n
µ2

λ2
n+1

‖yn − xn‖
2

−2〈yn − z, Jxn − Jyn − λn(Axn − Ayn)〉. (3.7)

By Lemma 2.8, we have

φ(z, xn+1) ≤ φ(z, xn) −
(
1 −

κµ2

c
λ2

n

λ2
n+1

)
φ(yn, xn)

−2〈yn − z, Jxn − Jyn − λn(Axn − Ayn)〉. (3.8)

Now, we will show that

〈yn − z, Jxn − Jyn − λn(Axn − Ayn)〉 ≥ 0.

From the definition of yn, we note that Jxn−λnAxn ∈ Jyn +λnByn. Since B is maximal monotone, there
exists vn ∈ Byn such that Jxn − λnAxn = Jyn + λnvn, we have

vn =
1
λn

(
Jxn − Jyn − λnAxn

)
. (3.9)

Since 0 ∈ (A + B)z and Ayn + vn ∈ (A + B)yn, it follows from Lemma 2.12 that A + B is maximal
monotone. Hence

〈yn − z, Ayn + vn〉 ≥ 0. (3.10)

AIMS Mathematics Volume 6, Issue 5, 4873–4900.



4882

Substituting (3.9) into (3.10), we have

1
λn
〈yn − z, Jxn − Jyn − λnAxn + λnAyn〉 ≥ 0.

Hence

〈yn − z, Jxn − Jyn − λn(Axn − Ayn)〉 ≥ 0. (3.11)

Combining (3.8) and (3.11), thus this lemma is proved. �

Theorem 3.4. Assume that Assumption 3.1 holds. Suppose, in addition, that J is weakly sequentially
continuous on E. Then the sequence {xn} generated by Algorithm 1 converges weakly to an element in
(A + B)−10.

Proof. Since limn→∞ λn exists and µ ∈
(
0,

√ c
κ

)
, it follows that limn→∞

(
1 − κµ2

c
λ2

n
λ2

n+1

)
= 1 − κµ2

c > 0. Thus

there exists n0 ∈ N such that

1 −
κµ2

c
λ2

n

λ2
n+1

> 0, ∀n ≥ n0. (3.12)

Combining (3.5) and (3.12), we have

φ(z, xn+1) ≤ φ(z, xn), ∀n ≥ n0.

This show that limn→∞ φ(z, xn) exists and hence {φ(z, xn)} is bounded. Applying Lemma 2.8, we also
have {xn} is bounded. From (3.5), we have(

1 −
κµ2

c
λ2

n

λ2
n+1

)
φ(yn, xn) ≤ φ(z, xn) − φ(z, xn+1). (3.13)

Thus we have

lim
n→∞

φ(yn, xn) = 0.

Applying Lemma 2.8, we also have

lim
n→∞
‖xn − yn‖ = 0. (3.14)

Since J is norm-to-norm uniformly continuous on bounded subsets of E, we have

lim
n→∞
‖Jxn − Jyn‖ = 0. (3.15)

Using the fact that A is Lipschitz continuous, we have

lim
n→∞
‖Axn − Ayn‖ = 0. (3.16)
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By the boundedness of {xn}, there exists a subsequence {xnk} of {xn} such that xnk ⇀ x∗ ∈ E.
From (3.14), we have ynk ⇀ x∗. We will show that x∗ ∈ (A + B)−10. Let (v,w) ∈ G(A + B), we have
w − Av ∈ Bv. From the definition of ynk , we note that

Jxnk − λnk Axnk ∈ Jynk + λnk Bynk ,

which implies that

1
λnk

(
Jxnk − Jynk − λnk Axnk

)
∈ Bynk .

By the maximal monotonicity of B, we have〈
v − ynk ,w − Av −

1
λnk

(
Jxnk − Jynk − λnk Axnk

)〉
≥ 0

and by the monotonicity of A, we have

〈v − ynk ,w〉 ≥
〈
v − ynk , Av +

1
λnk

(
Jxnk − Jynk − λnk Axnk)

〉
= 〈v − ynk , Av − Axnk〉 +

1
λnk

〈v − ynk , Jxnk − Jynk〉

= 〈v − ynk , Av − Aynk〉 + 〈v − ynk , Aynk − Axnk〉 +
1
λnk

〈v − ynk , Jxnk − Jynk〉

≥ 〈v − ynk , Aynk − Axnk〉 +
1
λnk

〈v − ynk , Jxnk − Jynk〉.

Since limk→∞ λnk = λ > 0 and ynk ⇀ x∗, it follows from (3.15) and (3.16) that

〈v − x∗,w〉 ≥ 0.

By the monotonicity of A+B, we get 0 ∈ (A+B)x∗, that is, x∗ ∈ (A+B)−10. Hence x∗ ∈ (A+B)−10. Note
that (A + B)−10 is closed and convex. Put un = Π(A+B)−10(xn). It follows from Lemma 2.11 that there
exists x∗ ∈ (A + B)−10 such that un → x∗. Finally, we show that xn ⇀ x∗. Let {xnk} be a subsequence of
{xn} such that xnk ⇀ x̂ ∈ (A + B)−10. Then we have

〈x̂ − unk , Jxnk − Junk〉 ≤ 0

for all k ∈ N. Since un → x∗, xnk ⇀ x̂ and J is weakly sequentially continuous, we have

〈x̂ − x∗, Jx̂ − Jx∗〉 ≤ 0.

By the strict monotonicity of J, we obtain x∗ = x̂. In summary, we have shown that every
subsequence of {xn} has a further subsequence which converges weakly to x∗. We conclude that
xn ⇀ x∗ = limn→∞Π(A+B)−10(xn). This completes the proof. �
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Algorithm 2: Halpern-Tseng type splitting algorithm for monotone inclusion problem
Step 0. Given λ1 > 0 and µ ∈

(
0,

√ c
κ

)
. Choose a nonnegative real sequence {θn} such that∑∞

n=1 θn < ∞. Let u, x1 ∈ E be arbitrary. Set n = 1.
Step 1. Compute

yn = JB
λn

J−1(Jxn − λnAxn). (3.17)

If xn = yn, then stop and xn is a solution of the problem (1.1). Otherwise, go to Step 2.
Step 2. Compute

zn = J−1(Jyn − λn(Ayn − Axn)). (3.18)

Step 3. Compute

xn+1 = J−1(αnJu + (1 − αn)Jzn), (3.19)

where the step sizes are adaptively updated as follows:

λn+1 =

 min
{ µ‖xn − yn‖

‖Axn − Ayn‖
, λn + θn

}
if Axn − Ayn , 0,

λn + θn otherwise.
(3.20)

Set n := n + 1 and go to Step 1.

Theorem 3.5. Assume that Assumption 3.1 holds. If {αn} ⊂ (0, 1) with limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
then the sequence {xn} generated by Algorithm 2 converges strongly to x∗ ∈ (A + B)−10.

Proof. We will show that {xn} is bounded. Let z ∈ (A + B)−10. Using the same arguments as in the
proof of Lemma 3.3, we can show that

φ(z, zn) ≤ φ(z, xn) −
(
1 −

κµ2

c
λ2

n

λ2
n+1

)
φ(yn, xn). (3.21)

Since limn→∞ λn exists and µ ∈
(
0,

√ c
κ

)
, it follows that limn→∞

(
1 − κµ2

c
λ2

n
λ2

n+1

)
= 1 − κµ2

c > 0. Thus there

exists n0 ∈ N such that

1 −
κµ2

c
λ2

n

λ2
n+1

> 0, ∀n ≥ n0. (3.22)

Combining (3.21) and (3.22), we have

φ(z, zn) ≤ φ(z, xn), ∀n ≥ n0. (3.23)

By (2.4), we have

φ(z, xn+1) = φ(z, J−1(αnJu + (1 − αn)Jzn))
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≤ αnφ(z, u) + (1 − αn)φ(z, zn)
≤ αnφ(z, u) + (1 − αn)φ(z, xn)
≤ max{φ(z, u), φ(z, xn)}
...

≤ max{φ(z, u), φ(z, xn0)}.

This implies that {φ(z, xn)} is bounded. Applying Lemma 2.8, we also have {xn} is bounded.
Let x∗ = Π(A+B)−10(u). From (3.21), we have

φ(x∗, xn+1) = φ(x∗, J−1(αnJu + (1 − αn)Jzn))
≤ αnφ(x∗, u) + (1 − αn)φ(x∗, zn)

≤ αnφ(x∗, u) + (1 − αn)φ(x∗, xn) − (1 − αn)
(
1 −

κµ2

c
λ2

n

λ2
n+1

)
φ(yn, xn).

This implies that

(1 − αn)
(
1 −

κµ2

c
λ2

n

λ2
n+1

)
φ(yn, xn) ≤ φ(x∗, xn) − φ(x∗, xn+1) + αnK, (3.24)

where K = supn∈N{|φ(x∗, u) − φ(x∗, xn)|}.
Now, we will divide the rest of the proof into two cases.

Case 1. Suppose that there exists N ∈ N such that φ(x∗, xn+1) ≤ φ(x∗, xn) for all n ≥ N. Hence
limn→∞ φ(x∗, xn) exists. By our assumptions, we have from (3.24) that

lim
n→∞

φ(yn, xn) = 0

and hence

lim
n→∞
‖xn − yn‖ = 0. (3.25)

Since J is norm-to-norm uniformly continuous on bounded subsets of E, we have

lim
n→∞
‖Jxn − Jyn‖ = 0. (3.26)

Using the fact that A is Lipschitz continuous, we have

lim
n→∞
‖Axn − Ayn‖ = 0.

Then from (3.18), we have

‖Jzn − Jyn‖ = λn‖Axn − Ayn‖ → 0. (3.27)

Moreover from (3.26) and (3.27), we obtain

‖Jxn+1 − Jxn‖ ≤ ‖Jxn+1 − Jzn‖ + ‖Jzn − Jyn‖ + ‖Jyn − Jxn‖
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= αn‖Ju − Jzn‖ + ‖Jzn − Jyn‖ + ‖Jyn − Jxn‖

→ 0.

Since J−1 is norm-to-norm uniformly continuous on bounded subset of E∗, we have

lim
n→∞
‖xn+1 − xn‖ = 0. (3.28)

By the boundedness of {xn}, there exists a subsequence {xnk} of {xn} such that xnk ⇀ x̂ ∈ E and

lim sup
n→∞

〈xn − x∗, Ju − Jx∗〉 = lim
k→∞
〈xnk − x∗, Ju − Jx∗〉,

where x∗ = Π(A+B)−10(u). By a similar argument to that of Theorem 3.4, we can show that x̂ ∈ (A+B)−10.
Thus we have

lim sup
n→∞

〈xn − x∗, Ju − Jx∗〉 = 〈x̂ − x∗, Ju − Jx∗〉 ≤ 0.

From (3.28), we also have

lim sup
n→∞

〈xn+1 − x∗, Ju − Jx∗〉 ≤ 0. (3.29)

Finally, we show that xn → x∗. From Lemma 2.9, we have

φ(x∗, xn+1) = φ(x∗, J−1(αnJu + (1 − αn)Jzn))
= V(x∗, αnJu + (1 − αn)Jzn)
≤ V(x∗, αnJu + (1 − αn)Jzn − αn(Ju − Jx∗)) + 2αn〈xn+1 − x∗, Ju − Jx∗〉

= V(x∗, αnJx∗ + (1 − αn)Jzn) + 2αn〈xn+1 − x∗, Ju − Jx∗〉

= αnφ(x∗, x∗) + (1 − αn)φ(x∗, zn) + 2αn〈xn+1 − x∗, Ju − Jx∗〉

≤ (1 − αn)φ(x∗, xn) + 2αn〈xn+1 − x∗, Ju − Jx∗〉. (3.30)

This together with (3.29) and (3.30), so we can conclude by Lemma 2.13 that φ(x∗, xn)→ 0. Therefore
xn → x∗.
Case 2. Suppose that there exists a subsequence {Γni} of {Γn} such that Γni < Γni+1 for all i ∈ N. In this
case, we define σ : N→ N by

σ(n) = max{k ≤ n : Γk < Γk+1}

for all n ≥ n0 (for some n0 large enough). From Lemma 2.14, we have σ(n) is non-decreasing such
that limn→∞ σ(n) = ∞ and the following inequalities hold for all n ≥ n0:

Γσ(n) < Γσ(n)+1 and Γn ≤ Γσ(n)+1. (3.31)

Put Γn = φ(x∗, xn) for all n ∈ N. As proved in the Case 1, we obtain

(1 − ασ(n))
(
1 −

κµ2

c

λ2
σ(n)

λ2
σ(n)+1

)
φ(yσ(n), xσ(n)) ≤ φ(x∗, xσ(n)) − φ(x∗, xσ(n)+1) + ασ(n)K
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≤ ασ(n)K,

where K = supn∈N{|φ(x∗, u) − φ(x∗, xσ(n))|}. By our assumptions, we have

lim
n→∞

φ(yσ(n), xσ(n)) = 0

and hence

lim
n→∞
‖xσ(n) − yσ(n)‖ = 0.

Using the same arguments as in the proof of Case 1, we can show that

lim
n→∞
‖xσ(n)+1 − xσ(n)‖ = 0

and

lim sup
n→∞

〈xσ(n)+1 − x∗, Ju − Jx∗〉 ≤ 0.

From (3.30) and (3.31), we have

φ(x∗, xσ(n)+1) ≤ (1 − ασ(n))φ(x∗, xσ(n)) + ασ(n)〈xσ(n)+1 − x∗, Ju − Jx∗〉

≤ (1 − ασ(n))φ(x∗, xσ(n)+1) + ασ(n)〈xσ(n)+1 − x∗, Ju − Jx∗〉.

This implies that

φ(x∗, xn) ≤ φ(x∗, xσ(n)+1) ≤ 〈xσ(n)+1 − x∗, Ju − Jx∗〉.

Hence lim supn→∞ φ(x∗, xn) = 0 and so limn→∞ φ(x∗, xn) = 0. Therefore xn → x∗. This completes the
proof. �

4. Theoretical applications

4.1. The case of variational inequality problem

Let C be a nonempty, closed and convex subset of E. Let A : C → E∗ be a mapping. The variational
inequality problem is to find x∗ ∈ C such that

〈y − x∗, Ax∗〉 ≥ 0, ∀y ∈ C. (4.1)

The set of solutions of the problem (4.1) is denoted by VI(C, A). In particular, if A is a continuous and
monotone mapping, then VI(C, A) is closed and convex (see [7, 24]). Recall that the indicator function
of C given by

iC(x) =

{
0, if x ∈ C,
∞, if x < C.

It is known that iC is proper convex, lower semicontinuous and convex function with its subdifferential
∂iC is maximal monotone (see [35]). From [2], we know that

∂iC(v) = NC(v) = {u ∈ E∗ : 〈y − v, u〉 ≤ 0, ∀y ∈ C},
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where NC is the normal cone for C at a point v. Thus we can define the resolvent of ∂iC for λ > 0 by

J∂iC
λ (x) = (J + λ∂iC)−1Jx, ∀x ∈ E.

As shown in [40], for any x ∈ E and z ∈ C, z = J∂iC
λ (x) ⇐⇒ z = ΠC(x), where ΠC is the generalized

projection from E onto C.

Lemma 4.1. [36] Let C be a nonempty, closed convex subset of a Banach space E. Let A : C → E∗ be
a monotone and hemicontinuous operator and T : E → 2E∗ be an operator defined as follows:

Tv =

 Av + NC(v) if v ∈ C,

∅ if v < C.

Then T is maximal monotone and T−10 = VI(C, A).

If we set B = ∂iC, then we obtain the following results regarding the problem (4.1).

Assumption 4.2. (A1) The feasible set C is a nonempty, closed and convex subset of a real 2-uniformly
convex and uniformly smooth Banach space E.

(A2) The mapping A : E → E∗ is monotone and L-Lipschitz continuous.
(A3) The solution set of the problem (4.1) is nonempty, that is, VI(C, A) , ∅.

Algorithm 3: Tseng type splitting algorithm for variational inequality problem
Step 0. Given λ1 > 0 and µ ∈

(
0,

√ c
κ

)
. Choose a nonnegative real sequence {θn} such that∑∞

n=1 θn < ∞. Let x1 ∈ C be arbitrary. Set n = 1.
Step 1. Compute

yn = ΠC J−1(Jxn − λnAxn). (4.2)

Step 2. Compute

xn+1 = J−1(Jyn − λn(Ayn − Axn)), (4.3)

where the step sizes are adaptively updated as follows:

λn+1 =

 min
{ µ‖xn − yn‖

‖Axn − Ayn‖
, λn + θn

}
if Axn − Ayn , 0,

λn + θn otherwise.
(4.4)

Set n := n + 1 and go to Step 1.

Theorem 4.3. Assume that Assumption 4.2 holds. Suppose, in addition, that J is weakly sequentially
continuous on E. Then the sequence {xn} generated by Algorithm 3 converges weakly to an element in
(A + B)−10.
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Algorithm 4: Halpern-Tseng type splitting algorithm for variational inequality problem
Step 0. Given λ1 > 0 and µ ∈

(
0,

√ c
κ

)
. Choose a nonnegative real sequence {θn} such that∑∞

n=1 θn < ∞. Let u, x1 ∈ C be arbitrary. Set n = 1.
Step 1. Compute

yn = ΠC J−1(Jxn − λnAxn). (4.5)

Step 2. Compute

zn = J−1(Jyn − λn(Ayn − Axn)). (4.6)

Step 3. Compute

xn+1 = J−1(αnJu + (1 − αn)Jzn), (4.7)

where the step sizes are adaptively updated as follows:

λn+1 =

 min
{ µ‖xn − yn‖

‖Axn − Ayn‖
, λn + θn

}
if Axn − Ayn , 0,

λn + θn otherwise.
(4.8)

Set n := n + 1 and go to Step 1.

Theorem 4.4. Assume that Assumption 4.2 holds. If {αn} ⊂ (0, 1) with limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
then the sequence {xn} generated by Algorithm 4 converges strongly to x∗ ∈ VI(C, A).

4.2. The case of convex minimization problem

Let f : E → R be a convex function and g : E → R be a convex, lower semicontinuous and
non-smooth function. We consider the following convex minimization problem:

min
x∈E

f (x) + g(x). (4.9)

By Fermat’s rule, we know that above problem is equivalent to the problem of finding x ∈ E such that

0 ∈ ∇ f (x) + ∂g(x), (4.10)

where ∇ f is the gradient of f and ∂g is the subdifferential of g. In this situation, we assume that f
is a convex and differentiable function with its gradient ∇ f is L-Lipschitz continuous. Further, ∇ f
is cocoercive with a constant 1/L (see [31, Theorem 3.13]). This implies that ∇ f is monotone and
Lipschitz continuous. Moreover, ∂g is maximal monotone (see [35, Theorem A]). In this point of view,
we set A = ∇ f and B = ∂g, then we obtain the following results regarding the problem (4.9).

Assumption 4.5. (A1) The Banach space E is real 2-uniformly convex and uniformly smooth Banach
space.

(A2) The functions f : E → R is convex and differentiable and its gradient ∇ f is L-Lipschitz
continuous and g : E → R is convex and lower semicontinuous which f + g attains a minimizer.
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Algorithm 5: Tseng type splitting algorithm for convex minimization problem
Step 0. Given λ1 > 0 and µ ∈

(
0,

√ c
κ

)
. Choose a nonnegative real sequence {θn} such that∑∞

n=1 θn < ∞. Let x1 ∈ E be arbitrary. Set n = 1.
Step 1. Compute

yn = J∂g
λn

J−1(Jxn − λn∇ f (xn)). (4.11)

Step 2. Compute

xn+1 = J−1(Jyn − λn(∇ f (yn) − ∇ f (xn))), (4.12)

where the step sizes are adaptively updated as follows:

λn+1 =

 min
{ µ‖xn − yn‖

‖∇ f (yn) − ∇ f (xn)‖
, λn + θn

}
if ∇ f (yn) − ∇ f (xn) , 0,

λn + θn otherwise.
(4.13)

Set n := n + 1 and go to Step 1.

Theorem 4.6. Assume that Assumption 4.5 holds. Suppose, in addition, that J is weakly sequentially
continuous on E. Then the sequence {xn} generated by Algorithm 5 converges weakly to a minimizer
of f + g.

Algorithm 6: Halpern-Tseng type splitting algorithm for convex minimization problem
Step 0. Given λ1 > 0 and µ ∈

(
0,

√ c
κ

)
. Choose a nonnegative real sequence {θn} such that∑∞

n=1 θn < ∞. Let u, x1 ∈ E be arbitrary. Set n = 1.
Step 1. Compute

yn = J∂g
λn

J−1(Jxn − λn∇ f (xn)). (4.14)

Step 2. Compute

zn = J−1(Jyn − λn(∇ f (yn) − ∇ f (xn))). (4.15)

Step 3. Compute

xn+1 = J−1(αnJu + (1 − αn)Jzn), (4.16)

where the step sizes are adaptively updated as follows:

λn+1 =

 min
{ µ‖xn − yn‖

‖∇ f (yn) − ∇ f (xn)‖
, λn + θn

}
if ∇ f (yn) − ∇ f (xn) , 0,

λn + θn otherwise.
(4.17)

Set n := n + 1 and go to Step 1.
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Theorem 4.7. Assume that Assumption 4.5 holds. If {αn} ⊂ (0, 1) with limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
then the sequence {xn} generated by Algorithm 6 converges strongly to a minimizer of f + g.

5. Numerical experiments

In this section, we provide some numerical experiments to illustrate the behaviour of our methods
and compare them with some existing methods.

Example 5.1. We consider the HpHard problem which is taken from [22]. Let A : Rm → Rm be an
operator defined by Ax = Mx + q with q ∈ Rm and

M = NNT + S + D,

where N is an m ×m matrix, S is an m ×m skew-symmetric matrix and D is an m ×m positive definite
diagonal matrix. The feasible set is C = R+

m. It is clear that A is monotone and Lipschitz continuous
with L = ‖M‖. In this experiments, we compare our Algorithm 3 and Algorithm 4 with the extragradient
method (EGM) proposed in [28] and the subgradient extragradient method (SEGM) proposed in [8].
The parameters are chosen as follows:
• Algorithm 3: λ1 = 0.4/‖M‖ and µ = 0.9;
• Algorithm 4: λ1 = 0.4/‖M‖, µ = 0.9, αn = 1

10000(n+2) and u = x1;
• EGM and SEGM: λ = 0.4/‖M‖.
All entries of N and S are generated randomly in (−5, 5), of D are in (0, 0.3), of q uniformly

generated from (−500, 0). For every m, we have generated two random samples with different choices
of M and q. We perform the numerical experiments with three different cases of m
(m = 100, 500, 1000). We take the starting point x1 = (1, 1, 1, . . . , 1)T ∈ Rm and use stopping criterion
‖xn − yn‖ ≤ ε = 10−6. The numerical results are reported in Table 1.

Table 1. Numerical results for Example 5.1.

m Algorithm 3 Algorithm 3 Algorithm 4 Algorithm 4 EGM SEGM
(θn = 0) (θn = 100/n1.1) (θn = 0) (θn = 100/n1.1)

iter. time iter. time iter. time iter. time iter. time iter. time
100 2454 0.02 1162 0.01 35112 1.31 25204 0.65 2454 0.03 2454 0.04

1920 0.04 917 0.02 35072 1.48 25203 0.66 1920 0.03 1920 0.05
500 2275 0.95 1104 0.29 35010 7.28 25201 5.12 2275 0.50 2275 0.65

2291 0.93 1107 0.43 34989 7.20 25198 5.06 2291 0.47 2291 0.59
1000 2027 8.08 996 4.25 34993 113.2 25200 78.2 2027 7.83 2027 7.96

2017 7.80 987 3.87 35003 109.8 25200 78.0 2017 7.01 2017 7.16

Example 5.2. We consider the problem (4.1) in L2([0, 2π]) with the inner product 〈x, y〉 =
∫ 2π

0
x(t)y(t)dt

and the norm ‖x‖ =

( ∫ 2π

0
x2(t)dt

)1/2

for all x, y ∈ L2([0, 2π]). Let A : L2([0, 2π]) → L2([0, 2π]) be an

operator defined by

(Ax)(t) =
1
2

max{0, x(t)}
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for all x ∈ L2([0, 2π]) and t ∈ [0, 2π]. It can be easily verified that A is monotone and Lipschitz
continuous with L = 1 (see [50, 51]). The feasible set is C = {x ∈ L2([0, 2π]) :

∫ 2π

0
(t2 + 1)x(t)dt ≤ 1}.

Observe that 0 ∈ VI(C, A) and so VI(C, A) , ∅. In this numerical experiment, we take all parameters
αn, λn and µ are the same as in Example 5.1. We perform numerical experiments with three different
cases of starting point x1 and use stopping criterion ‖xn − yn‖ ≤ ε = 10−3. The numerical results are
reported in Table 2.

Table 2. Numerical results for Example 5.2.

x1 Algorithm 3 Algorithm 3 Algorithm 4 Algorithm 4
(θn = 0) (θn = 0.001/(1.01)n) (θn = 0) (θn = 0.001/(1.01)n)

iter. time iter. time iter. time iter. time
1

100 sin(t) 7 9.9 7 8.9 7 9.8 7 10.1
1
3 t2e−4t 5 0.4 5 0.3 5 0.3 5 0.3

1
70 (1 − t2) 6 3.2 6 2.5 6 2.7 6 2.7

Example 5.3. Consider the minimization problem:

min
x∈R3
‖x‖1 + 2‖x‖22 + (−1, 2, 5)x + 1,

where x = (w1,w2,w3)T ∈ R3. Let f (x) = 2‖x‖22 + (−1, 2, 5)x + 1 and g(x) = ‖x‖1. Thus we have
∇ f (x) = 4x + (−1, 2, 5)T . It is easy to check that f is a convex and differentiable function and its
gradient ∇ f is Lipschitz continuous with L = 4. Moreover, g is a convex and lower semicontinuous
function but not differentiable on R3. From [21], we know that

J∂g
λ (x) = (I + λ∂g)−1(x)

=
(

max{|w1| − λ, 0}sgn(w1),max{|w2| − λ, 0}sgn(w2),max{|w3| − λ, 0}sgn(w3)
)T

for λ > 0. In this experiments, we compare our Algorithm 5 and Algorithm 6 with Algorithm (1.4) of
Cholamjiak [12]. The parameters are chosen as follows:

• Algorithm 5: λ1 = 0.1 and µ = 0.9;

• Algorithm 6: λ1 = 0.1, µ = 0.9, αn = 1
10000(n+1) and u = x1;

• Algorithm (1.4): all parameters αn, λn, δn, rn and en are the same as Example 4.2 in [12], and
u = x1.

We perform the numerical experiments with four different cases of starting point x1 and use stopping
criterion ‖xn+1 − xn‖ ≤ ε = 10−12. The numerical results are reported in Table 3.
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Table 3. Numerical results for Example 5.3.

x1 Algorithm 5 Algorithm 5 Algorithm 6 Algorithm 6 Algorithm (1.4)
(θn = 0) (θn = 100/n1.1) (θn = 0) (θn = 100/n1.1)

iter. time iter. time iter. time iter. time iter. time
(1, 2, 4)T 101 0.003 284 0.003 27818 0.10 25263 0.08 263957 0.33

(1,−7, 3)T 103 0.002 288 0.003 27809 0.12 25264 0.08 314417 0.38
(−100, 100, 50)T 111 0.004 315 0.004 27802 0.11 25252 0.09 1313442 1.58

(−1000,−5000,−800)T 127 0.005 356 0.01 27787 0.11 25241 0.07 8004199 9.4

Example 5.4. In signal processing, compressed sensing can be modeled as the following
under-determinated linear equation system:

y = Dx + ε, (5.1)

where x ∈ RN is a vector with m nonzero components to be recovered, y ∈ RM is the observed or
measured data with noisy ε, and D : RN → RM(M < N) is a bounded linear operator. It is known that
to solve (5.1) can be seen as solving the LASSO problem:

min
x∈RN

1
2
‖Dx − y‖22 + λ‖x‖1, (5.2)

where λ > 0. Following [19], we define Ax := ∇
(

1
2‖Dx − y‖22

)
= DT (Dx − y) and Bx := ∂(λ‖x‖1).

It is known that A is ‖D‖2-Lipschitz continuous and monotone. Moreover, B is maximal monotone
(see [35]).

In this experiment, the sparse vector x ∈ RN is generated from uniform distribution in the
interval [−2, 2] with m nonzero elements. The matrix D ∈ RM×N is generated from a normal
distribution with mean zero and one invariance. The observation y is generated by white Gaussian
noise with signal-to-noise ratio (SNR)=40. The restoration accuracy is measured by the mean squared
error (MSE) as follows:

En =
1
N
‖xn − x‖22 < 10−4, (5.3)

where xn is an estimated signal of x.
We compare our proposed Algorithm 1 and Algorithm 2 with the forward-backward splitting

algorithm (FBSA) (1.2), the Tseng’s splitting algorithm (TSA) (1.5) and the contraction
forward-backward splitting algorithm (CFBSA) proposed in ([43, Algorithm 3.1]). The parameters
are chosen as follows:
• Algorithm 1: θn = 0, λ1 = 0.0013 and µ = 0.5;
• Algorithm 2: θn = 0, λ1 = 0.0013, µ = 0.5, αn = 1

200n+5 and u = (1, 1, . . . , 1)T ;
• CFBSA: αn = 1

200n+5 , µ = 0.5, δ = 0.5, l = 0.5, γ = 0.45 and f (x) = x
5 ;

• TSA: λn = 0.2
‖D‖2 ;

• FBSA: λ = 2 × 10−5.
The starting points x1 of all methods are randomly chosen in RN . We perform the numerical test

with the following three cases:
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Case 1: N = 512, M = 256 and m = 20;
Case 2: N = 1024, M = 512 and m = 30;
Case 3: N = 2048, M = 1024 and m = 60;
The numerical results for all test are reported in Figures 1–6.

Original signal ( N=512, M=256, 20 spikes )
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Figure 1. Comparison of recovered signal by using different algorithms in Case 1.
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Figure 2. The plotting of MSE versus number of iterations in Case 1.
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Original signal ( N=1,024, M=512, 30 spikes )
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Figure 3. Comparison of recovered signal by using different algorithms in Case 2.
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Figure 4. The plotting of MSE versus number of iterations in Case 2.
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Original signal ( N=2,048, M=1,024, 60 spikes )
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Figure 5. Comparison of recovered signal by using different algorithms in Case 3.
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Figure 6. The plotting of MSE versus number of iterations in Case 3.
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6. Conclusions

In this paper, we propose Tseng’s splitting algorithms with non-monotone adaptive step sizes for
finding zeros of the sum of two monotone operators in the framework of Banach space. Under some
suitable conditions, we prove the weak and strong convergence results of the algorithms without the
knowledge of the Lipschitz constant of the mapping. Some applications related to the obtained results
are presented. Finally, several numerical experiments are performed to illustrate the convergence of
our algorithms and compared with many known methods.
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Functionals in Banach Spaces, Abstr. Appl. Anal., 2008 (2008), 192679.

7. F. Browder, Nonlinear monotone operators and convex sets in Banach spaces, Bull. Am. Math. Soc.,
71 (1965), 780–785.

8. Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational
inequalities in Hilbert space, J. Optim. Theory Appl., 148 (2011), 318–335.

9. S. S. Chang, C. F. Wen, J. C. Yao, Generalized viscosity implicit rules for solving quasi-inclusion
problems of accretive operators in Banach spaces, Optimization, 66 (2017), 1105–1117.

AIMS Mathematics Volume 6, Issue 5, 4873–4900.



4898

10. S. S. Chang, C. F. Wen, J. C. Yao, A generalized forward-backward splitting method for solving a
system of quasi variational inclusions in Banach spaces, RACSAM, 113 (2019), 729–747.

11. G. H. Chen, R. T. Rockafellar, Convergence rates in forward-backward splitting, SIAM J. Optim.,
7 (1997), 421–444.

12. P. Cholamjiak, A generalized forward-backward splitting method for solving quasi inclusion
problems in Banach spaces, Numer. Algorithms, 71 (2016), 915–932.

13. P. Cholamjiak, N. Pholasa, S. Suantai, P. Sunthrayuth, The generalized viscosity explicit rules for
solving variational inclusion problems in Banach spaces, Optimization, 2020. Available from:
https://doi.org/10.1080/02331934.2020.1789131.

14. I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Dordrecht:
Kluwer Academic, 1990.

15. P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale
Model. Simul., 4 (2005), 1168–1200.

16. I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint, Commun. Pure Appl. Math., 57 (2004), 1413–1457.

17. J. Duchi, Y. Singer, Efficient online and batch learning using forward-backward splitting, J. Mach.
Learn. Res., 10 (2009), 2899–2934.

18. J. C. Dunn, Convexity, monotonicity, and gradient processes in Hilbert space, J. Math. Anal. Appl.,
53 (1976), 145–158.

19. A. Gibali, D. V. Thong, Tseng type methods for solving inclusion problems and its applications,
Calcolo, 55 (2018), 49.
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