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Abstract: Let G be a simple connected graph of order n with m edges. The energy ε(G) of G is
the sum of the absolute values of all eigenvalues of the adjacency matrix A. The Laplacian energy is
defined as LE(G) =

∑n
i=1 |µi −

2m
n |, where µ1, µ2, . . . , µn are the Laplacian eigenvalues of a graph G.

In this article, we obtain some upper and lower bounds on the energy and Laplacian energy of chain
graph. Finally, we attain the maximal Laplacian energy among all connected bicyclic chain graphs by
comparing algebraic connectivity.
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1. Introduction

In 2008, Bhattacharya et al. [5] and Bell et al. [4] discovered that bipartite chain graphs whose
largest eigenvalues within the connected bipartite graph is maximal, and named therein as double
nested graphs. After that, many scholars began to study some mathematical properties of chain graphs.
Andelic et al. provide that some upper and lower bounds on index of chain graphs [3]. And Alazemi
et al. proved that any chain graph has its least positive eigenvalue greater than 1

2 [2]. Hence Zhang et
al. proposed that upper bounds on Laplacian spectral radius of chain graphs [13]. Das et al. studied
the energy and Laplacian energy of chain graphs [8]. In this paper, we further study some bounds of
energy and Laplacian energy of chain graphs.

We consider finite undirected connected graphs without loops and multiple edges. Let G be a such
graph with vertex set V(G) = {v1, v2, . . . , vn} and edge set E(G), where |E(G)| = m. Let di be the
degree of the vertex vi for i = 1, 2, . . . , n. The minimum vertex degrees of G are denoted by δ(G). Let
NG(vi) be the adjacent set of the vertex vi, then di = |NG(vi)|. If G has distinct vertices vi and v j with
NG(vi) = NG(v j), then vi and v j are duplicates and (vi, v j) is a duplicate pair.

Let A(G) be the adjacency matrix of G, and rank(G) be the rank of the adjacency matrix A(G). Let
λ1 ≥ λ2 ≥ · · · ≥ λn the eigenvalues of A(G). We denote S (G) = {λ1, λ2, . . . , λn} as the spectrum of G.
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The energy of graph G is defined as [11]

ε(G) =

n∑
i=1

|λi|.

For its basic properties and application, including various lower and upper bounds, see the [17], the
recent paper [1, 7, 8, 11, 12, 20] and the references cited therein.

The Laplacian matrix of graph G is defined as L(G) = D(G) − A(G), where D(G) is the diagonal
matrix of vertex degrees. The matrix L(G) has non-negative eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn = 0,
and the Laplacian spectrum of graph G be denoted by LS (G) = {µ1, µ2, . . . , µn}. The Laplacian energy
of G is defined as [10]

LE(G) =

n∑
i=1

∣∣∣∣∣µi −
2m
n

∣∣∣∣∣ .
It can also be defined as

LE(G) = 2S σ(G) −
4mσ

n
, (1.1)

where σ (1 6 σ 6 n) be the largest positive integer such that µσ ≥ 2m
n and S k(G) =

k∑
i=1
µi.

For its basic properties, including various lower and upper bounds, see [7, 8, 10, 18, 19] and the
references cited therein. The Laplacian energy found applications not only in theoretical organic
chemistry [12, 21], but also in image processing [22] and information theory [16].

In the class of bipartite graphs of fixed order and size those having maximal spectral radius of
adjacency/Laplacian/signless Laplacian matrix are chain graphs. Thus, they can be significant in
modeling some bipartite networks with large spectral radius. Their applications involve ecological
networks, in which graphs with nested properties are considered [14] and are used in some applications
for economic network modeling.

We now introduce the structure of a (connected) chain graph. The vertex set of any chain graph
consists of two color classes, which are U and V . Both of them are divided into h non-empty units
U1,U2, . . . ,Uh and V1,V2, . . . ,Vh, respectively. All the vertices in Us are joined by edges to all vertices
in

⋃h+1−s
k=1 Vk, for s = 1, 2, . . . , h. Therefore, if ui ∈ Us+1 and u j ∈ Us, then NG(ui) ⊂ NG(u j), or if

vi ∈ Vt+1 and v j ∈ vt, then NG(vi) ⊂ NG(v j).

Figure 1. Structure of G(m1, . . . ,mh; n1, . . . , nh).
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If ns = |Us| and ms = |Vs| for s = 1, 2, . . . , h, then G is denoted by G(m1, . . . ,mh; n1, . . . , nh), as
shown in Figure 1. And

m = m1

h∑
i=1

ni + m2

h−1∑
i=1

ni + · · · + mhn1 =

h∑
i=1

aimi,

m = n1

h∑
i=1

mi + n2

h−1∑
i=1

mi + · · · + nhm1 =

h∑
i=1

bini,

where

ai =

h+1−i∑
k=1

nk, bi =

h+1−i∑
k=1

mk.

Moreover,

n =

h∑
k=1

mk +

h∑
k=1

nk.

The second smallest Laplacian eigenvalue of a graph is well known as the algebraic connectivity. It
has been proved that the second smallest Laplacian eigenvalue µn−1 = 0 if and only if G is disconnected.
The algebraic connectivity is often applied in theoretical chemistry, control theory, combinatorial
optimization and other fields [15].

As usual, Kn, Kp,q(p + q = n) and K1,n−1, denote, respectively, the complete graph, the complete
bipartite graph and the star on n vertices. For other undefined notations and terminology from graph
theory, the readers are referred to [6].

The paper is organized as follows. In Section 2, we list some previously known results. In Section
3, we get some upper and lower bounds on ε(G) of a chain graph G. In Section 4, we establish an
upper bound on LE(G) of the chain graphs in terms of vertex cover number. In Section 5, we attain the
maximal Laplacian energy of the bicyclic chain graph G by comparing the algebraic connectivity.

2. Preliminaries

This section lists some known results to be used in this paper.

Lemma 2.1. [8] Let B be a p × p real symmetric matrix and Bk be its leading k × k submatrix. Then
for i = 1, 2, . . . , k,

λp−i+1(B) 6 λk−i+1(Bk) 6 λk−i+1(B),

where λi(B) is the i-th largest eigenvalue of B.

Lemma 2.2. [9] Let G be a graph with vertices {v1, v2, . . . , vk} ⊆ V(G) having same set of adjacent
vertices, then G has at least k − 1 equal eigenvalues 0.

Lemma 2.3. [18] Let G � Kn. Then µn−1 6 δ(G).

Lemma 2.4. [10] Let A and B be real symmetric matrices of order n. Then for any 1 6 k 6 n,
k∑

i=1

λi(A + B) 6
k∑

i=1

λi(A) +

k∑
i=1

λi(B),

where λi(M) denotes the i-th largest eigenvalue of the matrix M.
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Lemma 2.5. [1] If G is a connected bipartite graph of rank r, then

ε(G) ≥
√

(r + 1)2 − 5.

Lemma 2.6. [11] If G is a connected bipartite graph of rank r, then

LE(G) ≥ 2 (ε(G) − r) .

Lemma 2.7. [8] Let G � G(m1, . . . ,mh; n1, . . . , nh) be a chain graph of order n. Then

ε(G) ≥ 2
√

n − 1,

with equation holds if and only if G � K1,n−1.

Lemma 2.8. [8] Let G be a graph with vertex set V(G) = {v1, v2, . . . , vn}. If G has k − 1 duplicate
pairs (vi, vi+1), where i = 1, 2, . . . , k− 1, then G has at least k− 1 equal Laplacian eigenvalues and they
are all equal to the cardinality of the neighbor set.

3. Bounds on the energy of chain graphs

Theorem 3.1. Let G � G(m1, . . . ,mh; n1, . . . , nh) be a chain graph of order n. Then

ε(G) 6 2
√

hm (3.1)

with equation holds if and only if G � Kn1,m1 , where n1 + m1 = n.

Proof. By Lemma 2.2, the eigenvalue 0 with multiplicity
h∑

i=1
(ni + mi − 2) of A(G), and the remaining

eigenvalues are the eigenvalues of the following matrix,

C =



0 0 · · · 0 0 m1 m2 · · · mh−1 mh

0 0 · · · 0 0 m1 m2 · · · mh−1 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 0 0 m1 m2 · · · 0 0
0 0 · · · 0 0 m1 0 · · · 0 0
n1 n2 · · · nh−1 nh 0 0 · · · 0 0
n1 n2 · · · nh−1 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

n1 n2 · · · 0 0 0 0 · · · 0 0
n1 0 · · · 0 0 0 0 · · · 0 0



.

Let λ1 ≥ λ2 ≥ · · · ≥ λ2h be the eigenvalues of C. Then

ε(G) =

2h∑
i=1

|λi|.
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Since G be a bipartite graph, we have λi and −λi are eigenvalues of G. Thus we have

ε(G) = 2
h∑

i=1

λi.

Obviously,
2h∑
i=1

λ2
i = Tr(C2) = 2

h∑
i=1

h−i+1∑
j=1

m jni = 2m,

that is,
h∑

i=1

λ2
i =

h∑
i=1

h−i+1∑
j=1

m jni = m.

So

ε(G) = 2

√√√ h∑
i=1

λ2
i + 2

∑
16i< j6h

λiλ j

≤ 2

√√
h∑

i=1

λ2
i +

h∑
i=1

(h − 1)λ2
i

= 2

√√
h

h∑
i=1

λ2
i

= 2
√

hm.

First we assume that h = 1. Then G � Kn1,m1 , where n1 + m1 = n. So S (G) = {±
√

m1n1, 0, · · · , 0}
and ε(G) = 2

√
m1n1 = 2

√
m. Hence the equation holds in (3.1).

Next we assume that h ≥ 2. By the definition of chain graph, G(1, 1; 1, 1), that is, P4 is an induced
subgraph of G. By Lemma 2.1, we get λ2(G) ≥ λ2(P4) > 0. Since G is connected, by Perron-Frobenius

theorem we have λ1(G) > λ2(G). Hence the inequality 2
∑

16i< j6h
λiλ j ≤

h∑
i=1

(h − 1)λ2
i is strict. This

completes the proof. �

Theorem 3.2. Let G � G(m1, . . . ,mh; n1, . . . , nh) be a chain graph of order n. Then

ε(G) ≥
√

(2h + 1)2 − 5. (3.2)

Proof. By calculating the matrix C in the proof of Theorem 3.1, we get

det(C) = (−1)h
h∏

i=1

mini , 0.

Therefore, all the eigenvalues of matrix C are non-zero. Hence r(G) = 2h. Using Lemma 2.5, we
can get result in (3.2). �

AIMS Mathematics Volume 6, Issue 5, 4847–4859.



4852

4. Bounds on the Laplacian energy of chain graphs

In this section, we give an upper bound on LE(G) of chain graphs in terms of vertex cover
number. Also, the lower bound follows from a known lower bound for Laplacian energy of any graph
in terms of rank and energy.

Theorem 4.1. Let G � G(m1, . . . ,mh; n1, . . . , nh) be a chain graph of order n, and a1 ≥ b1. Then

LE(G) ≤
{

2(m + b1) − 4m
n , if 2m

n ≥ b1,

2b1(n − 2) − 2m + 8m
n , if 2m

n < b1,
(4.1)

with equation holds if and only if G � K1,n−1.

Proof. Let Γ = {v11, v12, . . . , v1m1 , v21, v22, . . . , v2m2 , . . . , vh1, vh2, . . . , vhmh} be a vertex cover set of the
graph G, where vi j is the j-th vertex in Vi. Hence {vi1, vi2, . . . , vimi} ∈ Vi. We can assume that Gi j are
spanning subgraphs of G such that V(G) = V(Gi1) = V(Gi2) = · · · = V(Gimi), and the edge set of Gi j is
defined as

E(Gi j) =
{
vi jUk : Uk ⊆ NG(vi j)

}
.

Since |NG(vi1)| = |NG(vi2)| = · · · = |NG(vimi)| = ai,

Gi j = K1,ai ∪ (n − ai − 1)K1,

we have
E(Kmi,ai) = E(Gi1) ∪ E(Gi2) ∪ · · · ∪ E(Gim1),

so
L(Kmi,ai) = L(Gi1) + L(Gi2) + · · · + L(Gim1), i = 1, 2, . . . , h.

By Figure 1,
E(G) = E(Km1,a1) ∪ E(Km2,a2) ∪ · · · ∪ E(Kmi,ai),

then we can see easily that

L(G) = L(Km1,a1) + L(Km2,a2) + · · · + L(Kmi,ai).

Note that
S k(Gi1) = S k(Gi2) = · · · = S k(Gimi) ≤ ai + k,

where S k(G) is the sum of the k largest Laplacian eigenvalues of graph G.
By Lemma 2.4, we get

S k(G) ≤ m1S k(G11) + m2S k(G21) + · · · + mhS k(Gh1)
≤ m1(a1 + k) + m2(a2 + k) + · · · + mh(ah + k)

=

h∑
i=1

miai + k
h∑

i=1

mi

= m + kb1.
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So from (1.1), we get

LE(G) = 2S σ(G) −
4mσ

n
≤ 2 (m + σb1) −

4mσ
n

= 2m + 2σ
(
b1 −

2m
n

)
.

Since G is connected, 1 ≤ σ ≤ n − 1. So it suffices to consider the following two cases.
Case1. 2m

n ≥ b1.
Then we have

LE(G) ≤ 2m + 2b1 −
4m
n

= 2(m + b1) −
4m
n
.

Case2. 2m
n < b1.

By Lemma 2.3, we get µn−1 ≤ δ(G) ≤ 2m
n . Thus it must be 1 ≤ σ ≤ n − 2. Hence

LE(G) ≤ 2m + 2(n − 2)
(
b1 −

2m
n

)
= 2b1(n − 2) − 2m +

8m
n
.

Next we prove that the equality holds.
If G � K1,n−1, we get b1 = m1 = 1, n1 = n − 1, and S (G) = {0, 1n−2, n}. Then

LE(K1,n−1) =

n∑
i=1

∣∣∣∣∣µi −
2m
n

∣∣∣∣∣ = 2n −
4(n − 1)

n
= 2(m + b1) −

4m
n
. �

Theorem 4.2. Let G � G(m1, . . . ,mh; n1, . . . , nh) be a chain graph of order n. Then

LE(G) ≥ 4(
√

n − 1 − h). (4.2)

Proof. By Theorem 3.2, we get r(G) = 2h. Using Lemmas 2.6 and 2.7, we get result in (4.2). �

5. Laplacian energy of bicyclic chain graphs

Let G be a connected bicyclic chain graph. We have m = n + 1, and h = 2 or h = 3. If h = 2, then
G � G(1, 1; 3, n − 5) or G � G(1, 2; 2, n − 5). If h = 3, then G � G(1, 2, k − 3; 1, 1, n − k − 2), where
4 ≤ k ≤ n − 3 (Figure 2). In this section, we will attain the maximal Laplacian energy of all connected
bicyclic chain graphs.

Figure 2. Graphs G(1, 1; 3, n − 5), G(1, 2; 2, n − 5) and G(1, 2, k − 3; 1, 1, n − k − 2).
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Lemma 5.1. Let G be a connected bicyclic chain graph (n ≥ 8).
(1) If G � G(1, 1; 3, n − 5), then LE(G) = 6 +

2(n−4)(n+1)
n − 2µn−1.

(2) If G � G(1, 2; 2, n − 5), then LE(G) = 10 +
2(n−6)(n+1)

n − 2µn−1.
(3) If G � G(1, 2, k − 3; 1, 1, n − k − 2), where 4 ≤ k ≤ n − 3, then LE(G) = 10 +

2(n−6)(n+1)
n − 2µn−1.

Proof. (1) Let G � G(1, 1; 3, n−5). By Lemma 2.8, we conclude that 2, 2, 1, 1, · · · , 1︸      ︷︷      ︸
n−6

are the Laplacian

eigenvalues of G and the remaining Laplacian eigenvalues of G are satisfying the equation f1(x) = 0,
where f1(x) is the characteristic polynomial of the matrix

A1 =


n − 2 0 −3 5 − n

0 3 −3 0
−1 −1 2 0
−1 0 0 1

 ,
that is, f1(x) = x

(
x3 − (4 + n)x2 + (5n − 2)x − 3n

)
.

Let h1(x) = x3 − (4 + n)x2 + (5n − 2)x − 3n. Then we obtain h1(0) = −3n < 0, h1(1) = n − 5 > 0,
h1(2) = 3n − 12 > 0, h1(n − 1) = −3 < 0 and lim

x→∞
h1(x) = ∞. Thus the Laplacian eigenvalues of G are

µ1, µ2, 2, 2, 1, 1, . . . , 1︸      ︷︷      ︸
n−6

, µn−1, 0, where µ1 ≥ n − 1, 2 ≤ µ2 ≤ n − 1, µn−1 < 1 and µ1 + µ2 + µn−1 = n + 4.

Therefore

LE(G) =

n∑
i=1

∣∣∣∣∣µi −
2(n + 1)

n

∣∣∣∣∣ = 6 +
2(n − 4)(n + 1)

n
− 2µn−1. (5.1)

(2) Let G � G(1, 2; 2, n − 5). By Lemma 2.8, we conclude that 3, 2, 1, 1, · · · , 1︸      ︷︷      ︸
n−6

are the Laplacian

eigenvalues of G and the remaining Laplacian eigenvalues of G are satisfying the equation f2(x) = 0,
where f2(x) is the characteristic polynomial of the matrix

A2 =


n − 3 0 −2 5 − n

0 2 −2 0
−1 −2 3 0
−1 0 0 1

 ,
that is, f2(x) = x

(
x3 − (3 + n)x2 + (5n − 8)x − 2n

)
.

Let h2(x) = x3 − (3 + n)x2 + (5n − 8)x − 2n. Then we obtain h2(0) = −2n < 0, h2(1) = 2n − 10 > 0,
h2(3) = 4n − 24 > 0, h2(n − 2) = −4 < 0 and lim

x→∞
h2(x) = ∞. Thus the Laplacian eigenvalues of G are

µ1, µ2, 3, 2, 1, 1, . . . , 1︸      ︷︷      ︸
n−6

, µn−1, 0, where µ1 ≥ n − 2, 3 ≤ µ2 ≤ n − 2, µn−1 < 1 and µ1 + µ2 + µn−1 = n + 3.

Therefore

LE(G) =

n∑
i=1

∣∣∣∣∣µi −
2(n + 1)

n

∣∣∣∣∣ = 10 +
2(n − 6)(n + 1)

n
− 2µn−1. (5.2)

(3) Let G � G(1, 2, k − 3; 1, 1, n − k − 2). When 4 ≤ k ≤ dn
2e, by Lemma 2.8, we conclude that

2, 1, 1, · · · , 1︸      ︷︷      ︸
n−7

are the Laplacian eigenvalues of G and the remaining laplacian eigenvalues of G are

AIMS Mathematics Volume 6, Issue 5, 4847–4859.
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satisfying equation f3(x) = 0, where f3(x) is the characteristic polynomial of the matrix

A3 =



n − k 0 0 −1 −1 2 + k − n
0 2 0 −1 −1 0
0 0 1 −1 0 0
−1 −2 3 − k k 0 0
−1 −2 0 0 3 0
−1 0 0 0 0 1


,

that is

f3(x) = x(x − 1)
(
x4 − (n + 6)x3 + (kn + 5n − k2 + 10)x2 − (4kn + 5n − 4k2 + 12)x + 6n

)
. (5.3)

Let g(x) = x4 − (n + 6)x3 + (kn + 5n − k2 + 10)x2 − (4kn + 5n − 4k2 + 12)x + 6n. Then we
obtain g(0) = 6n > 0, g(1) = 3k2 − 3kn + 5n − 7 < 0, g(2) = 4(k − 2)(2 + k − n) < 0, g(k) =

−(k−2)(k−3)(2k−n) ≥ 0. Since when n is odd, g(x) is same for k = d n
2e and k = b n

2c, we take a smaller
value k = b n

2c. g(n − k) = (2 + k − n)(2k − n)(−n + 3 + k) ≤ 0 and lim
x→∞

g(x) = ∞. Thus the Laplacian
eigenvalues of G are µ1, µ2, µ3, 2, 1, 1, · · · , 1︸      ︷︷      ︸

n−7

, µn−1, 0, where µ1 ≥ n − k, k ≤ µ2 ≤ n − k, 2 < µ3 < k,

µn−1 < 1.

Since
n∑

i=1
µi = 2m = 2(n+1) = 2n+2, we get µ1+µ2+µ3+µn−1 = n+6, that is, µ1+µ2+µ3 = n+6−µn−1.

Therefore

LE(G) =

n∑
i=1

∣∣∣∣∣µi −
2(n + 1)

n

∣∣∣∣∣ = 10 +
2(n − 6)(n + 1)

n
− 2µn−1. (5.4)

When d n
2e < k < n − 3, letting k = n − k in the Eq (5.3) we get the same characteristic polynomial,

so it is equal to the Laplacian energy when 4 ≤ k ≤ dn
2e.

When k = n − 3, f3(x) = x(x − 1)(x − 3)
(
x3 − (3 + n)x2 + (5n − 8)x − 2n

)
, so it is equal to the

Laplacian energy of G(1, 2; 2, 5).
This completes the proof. �

Lemma 5.2. Let Gn,k � G(1, 2, k − 3; 1, 1, n − k − 2), where 4 ≤ k ≤ dn
2e. Then µn−1(Gn,k) ≥

µn−1

(
G(1, 2, d n

2e − 3; 1, 1, b n
2c − 2)

)
, with equation holds if and only if k = d n

2e. In particular, if n is

odd, then µn−1

(
G(1, 2, d n

2e − 3; 1, 1, b n
2c − 2)

)
= µn−1

(
G(1, 2, d n

2e − 4; 1, 1, b n
2c − 1)

)
.

Proof. If k = d n
2e, then µn−1(Gn,k) = µn−1

(
G(1, 2, d n

2e − 3; 1, 1, b n
2c − 2)

)
. By Lemma 5.1, we obtain that

µ1, µ2, µ3, µn−1 are the roots of the equation P(Gn,k, x) = 0, where

P(Gn,k, x) = x4 − (n + 6)x3 + (kn + 5n − k2 + 10)x2 − (4kn + 5n − 4k2 + 12)x + 6n,

and µ1 ≥ n − k, k ≤ µ2 ≤ n − k, 2 < µ3 < k, µn−1 < 1.
We need to prove that

µn−1(Gn,k) > µn−1

(
G(1, 2, d

n
2
e − 3; 1, 1, b

n
2
c − 2)

)
, f or 4 ≤ k ≤ d

n
2
e − 1.
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Since
P(Gn,k+1, x) − P(Gn,k, x) = x(x − 4)(n − 2k − 1), f or 0 < x < 1,

we get P(Gn,k+1, x)− P(Gn,k, x) ≤ 0. Hence P(Gn,k+1, x) ≤ P(Gn,k, x). So when n is odd and k = d n
2e − 1,

the equation holds.
Thus we have µn−1(Gn,k) > µn−1(Gn,k+1), that is,

µn−1(Gn,4) > µn−1(Gn,5) > · · · > µn−1(Gn,d n
2 e−1) ≥ µn−1(Gn,d n

2 e
). (5.5)

Hence µn−1(Gn,k) > µn−1(Gn,d n
2 e

) = µn−1

(
G(1, 2, d n

2e − 3; 1, 1, b n
2c − 2)

)
.

This completes the proof. �

Lemma 5.3. Let G be a bicyclic graph of order n ≥ 8. Then µn−1(G(1, 2; 2, n − 5)) >

µn−1

(
G(1, 2, d n

2e − 3; 1, 1, b n
2c − 2)

)
.

Proof. When k = 3, we get P(Gn,k, x) = f2(x), that is µn−1(Gn,3) = µn−1 (G(1, 2; 2, n − 5)).
By Lemma 5.2, we have P(Gn,k+1, x) ≤ P(Gn,k, x), and P(Gn,4, x) ≤ P(Gn,3, x) still hold.
By inequation (5.5), we obtain

µn−1(Gn,3) > µn−1(Gn,4) > · · · > µn−1(Gn,d n
2 e−1) ≥ µn−1(Gn,d n

2 e
).

Hence µn−1 (G(1, 2; 2, n − 5)) > µn−1(Gn,d n
2 e

) = µn−1

(
G(1, 2, d n

2e − 3; 1, 1, b n
2c − 2)

)
for n ≥ 8. �

Lemma 5.4. Let G be a bicyclic graph of order n ≥ 8. Then µn−1(G(1, 1; 3, n − 5)) −
µn−1

(
G(1, 2, d n

2e − 3; 1, 1, b n
2c − 2)

)
> 2

n .

Proof. For n = 8 and n = 9, it can be verified by using Maple.
Let n = 8, µn−1(G(1, 1; 3, n − 5)) = 0.8377 and µn−1

(
G(1, 2, d n

2e − 3; 1, 1, b n
2c − 2)

)
= 0.5858. Then

µn−1(G(1, 1; 3, n − 5)) − µn−1

(
G(1, 2, dn

2e − 3; 1, 1, bn
2c − 2)

)
= 0.2519 > 1

4 , so the conclusion is correct.

Let n = 9, µn−1(G(1, 1; 3, n − 5)) = 0.8169 and µn−1

(
G(1, 2, d n

2e − 3; 1, 1, b n
2c − 2)

)
= 0.5344. Then

µn−1(G(1, 1; 3, n − 5)) − µn−1

(
G(1, 2, dn

2e − 3; 1, 1, bn
2c − 2)

)
= 0.2825 > 2

9 , so the conclusion is correct.
Next we prove when n ≥ 10, the inequality holds.
By Lemma 5.3, we get µn−1(G(1, 2; 2, n− 5)) ≥ µn−1

(
G(1, 2, d n

2e − 3; 1, 1, b n
2c − 2)

)
, so we can prove

µn−1(G(1, 1; 3, n−5))−µn−1(G(1, 2; 2, n−5)) > 2
n . Let α = µn−1(G(1, 1; 3, n−5)), β = µn−1(G(1, 2; 2, n−

5)). Then it is satisfying

h1(x) = x3 − (4 + n)x2 + (5n − 2)x − 3n and h1(α) = 0.

h2(x) = x3 − (3 + n)x2 + (5n − 8)x − 2n and h2(β) = 0.

By the implicit function existence theorem and Figure 3, when G � G(1, 1; 3, n − 5), the relation
between the decreases of α and the increase of n, and h1(x) is monotonically increasing on the interval
[0, 1]. Hence h1(0.81) = −3.713 + 0.39n > 0, h1(0.69) = −2.956 − 0.26n < 0, so 0.69 < α < 0.81.

Similarly, h2(0.58) = −5.454 + 0.56n > 0, h2(0.43) = −3.915 − 0.035n < 0, so 0.43 < β < 0.58.
Therefore, α − β > 0.11 > 2

19 , that is, when n ≥ 19, hence the conclusion is correct.
When 10 ≤ n ≤ 18, α − β > 2

n is obvious. The results are shown in Table 1.
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Figure 3. h1(x) (thin line) and h2(x) (thick line).

Table 1. The correlation between α − β and 2
n .

n α β α − β 2
n

10 0.8107 0.5735 0.2372 0.200
11 0.7899 0.5566 0.2333 0.182
12 0.7804 0.5438 0.2366 0.167
13 0.7728 0.5332 0.2396 0.154
14 0.7666 0.5248 0.2418 0.143
15 0.7612 0.5176 0.2436 0.133
16 0.7566 0.5116 0.2450 0.125
17 0.7526 0.5064 0.2462 0.118
18 0.7491 0.5020 0.2471 0.111

So we conclude that when n ≥ 8,

µn−1(G(1, 1; 3, n − 5)) − µn−1

(
G(1, 2, d

n
2
e − 3; 1, 1, b

n
2
c − 2)

)
>

2
n
. �

Theorem 5.1. Let G be a connected bicyclic chain graph of order n ≥ 8. Then
G(1, 2, dn

2e − 3; 1, 1, b n
2c − 2) attains the maximal Laplacian energy. In particular, when n is odd,

LE
(
G(1, 2, d n

2e − 3; 1, 1, b n
2c − 2)

)
= LE

(
G(1, 2, d n

2e − 4; 1, 1, b n
2c − 1)

)
.

Proof. By Lemma 5.1, we can attain the maximal Laplacian energy by comparing µn−1 in equations
(5.1), (5.2) and (5.4). It is obvious that LE(G(1, 2; 2, n − 5)) < LE

(
G(1, 2, d n

2e − 3; 1, 1, b n
2c − 2)

)
. In

particular, when n is odd, LE
(
G(1, 2, d n

2e − 3; 1, 1, b n
2c − 2)

)
= LE

(
G(1, 2, dn

2e − 4; 1, 1, bn
2c − 1)

)
. So

LE
(
G(1, 2, d

n
2
e − 3; 1, 1, b

n
2
c − 2)

)
− LE(G(1, 1; 3, n − 5))

=10 +
2(n − 6)(n + 1)

n
− 2µn−1

(
G(1, 2, d

n
2
e − 3; 1, 1, b

n
2
c − 2)

)
− 6 −

2(n − 4)(n + 1)
n

+ 2µn−1(G(1, 1; 3, n − 5))

=2
(
µn−1(G(1, 1; 3, n − 5)) − µn−1

(
G(1, 2, d

n
2
e − 3; 1, 1, b

n
2
c − 2)

))
−

4
n
.

Hence by Lemma 5.4, LE
(
G(1, 2, d n

2e − 3; 1, 1, b n
2c − 2)

)
− LE(G(1, 1; 3, n − 5)) > 0, that is,

LE
(
G(1, 2, d n

2e − 3; 1, 1, b n
2c − 2)

)
> LE(G(1, 1; 3, n − 5)). In conclusion, we get G(1, 2, d n

2e −

3; 1, 1, b n
2c − 2) has the maximal Laplacian energy among all connected bicyclic chain graphs (n ≥ 8).

�
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6. Conclusions

In this paper, we introduced the definition of chain graph. We obtain some bounds on ε(G) of the
chain graphs. Since the rank of the chain graphs is 2h, we can get some bounds on ε(G) and LE(G)
of the chain graphs. We present the upper bound on LE(G) of the chain graphs in terms of vertex
cover number. In order to attain the maximal Laplacian energy of bicyclic chain graphs, we compare
algebraic connectivity of each kind of bicyclic chain graphs. The problem is still open to discuss what
chain graphs give the maximal Laplacian energy for given n and whether it is still related to algebraic
connectivity.
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8. K. C. Das, A. Alazemi, M. Andelić, On energy and laplacian energy of chain graphs, Discrete
Appl. Math., 284 (2020), 391–400.

9. K. C. Das, P. Kumar, Some new bounds on the spectral radius of graphs, Discrete Math., 281
(2004), 149–161.

10. K. C. Das, S. A. Mojallal, I. Gutman, On laplacian energy in terms of graph invariants, Appl. Math.
Comput., 268 (2015), 83–92.

AIMS Mathematics Volume 6, Issue 5, 4847–4859.



4859

11. K. C. Das, S. A. Mojallal, I. Gutman, On energy of line graphs, Linear Algebra Appl., 499 (2016),
79–89.

12. I. Gutman, S. Wagner, The matching energy of a graph, Discrete Appl. Math., 160 (2012), 2177–
2187.

13. H. Zhang, S. Li, On the laplacian spectral radius of bipartite graphs with fixed order and size,
Discrete Appl. Math., 229 (2017), 139–147.

14. M. König, C. J. Tessone, Y. Zenou, Nestedness in networks: A theoretical model and some
applications, Theoretical Economics, 9 (2014), 695–752.

15. J. Li, J. M. Guo, W. C. Shiu, The orderings of bicyclic graphs and connected graphs by algebraic
connectivity, The electronic journal of combinatorics, 17 (2010), 162.

16. X. Li, Z. Qin, M. Wei, I. Gutman, M. Dehmer, Novel inequalities for generalized graph entropies
revisited, graph energies and topological indices, Appl. Math. Comput., 259 (2015), 470–479.

17. X. Li, Y. Shi, I. Gutman, Graph Energy, Springer New York, 2012.

18. R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl., 197 (1994), 143–176.

19. J. L. Palacios, Lower bounds for the laplacian energy of bipartite graphs, Discrete Appl. Math., 239
(2018), 213–217.

20. J. Rada, A. Tineo, Upper and lower bounds for the energy of bipartite graphs, J. Math. Anal. Appl.,
289 (2004), 446–455.
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