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Abstract: We show that the quotient of Levy processes of jump-diffusion type has a fat-tailed
distribution. An application is to price theory in economics, with the result that fat tails arise
endogenously from modeling of price change based on an excess demand analysis resulting in a
quotient of arbitrarily correlated demand and supply whether or not jump discontinuities are present.
The assumption is that supply and demand are described by drift terms, Brownian (i.e., Gaussian) and
compound Poisson jump processes. If P−1dP/dt (the relative price change in an interval dt) is given
by a suitable function of relative excess demand, (D− S) /S (whereD and S are demand and supply),
then the distribution has tail behavior F (x) ∼ x−ζ for a power ζ that depends on the function G in
P−1dP/dt = G (D/S). For G (x) ∼ |x|1/q one has ζ = q. The empirical data for assets typically yields a
value, ζ=̃3, or ζ ∈ [3, 5] for many financial markets.
Many theoretical explanations have been offered for the disparity between the tail behavior of the
standard asset price equation and empirical data. This issue never arises if one models price dynamics
using basic economics methodology, i.e., generalized Walrasian adjustment, rather than the usual
starting point for classical finance which assumes a normal distribution of price changes. The function
G is deterministic, and can be calibrated with a smaller data set. The results establish a simple link
between the decay exponent of the density function and the price adjustment function, a feature that
can improve methodology for risk assessment.
The mathematical results can be applied to other problems involving the relative difference or quotient
of Levy processes of jump-diffusion type.
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1. Introduction

The calculation or approximation of a quotient of random variables or stochastic processes is
considerably more important in mathematical modeling than it first appears. In many physical,
biological and economics systems, there is a competition between two factors, e.g., supply and demand.
The difference results in a temporal change in another important variable such as price. However, it
is usually the relative difference that is relevant, and requires the division by one of the variables.
Furthermore, if X and Y are the two random variables with some dimensions, and Z is a dimensionless
variable, and τ a time scale, then the equation τdZ/dt = X − Y would not be meaningful from the
dimensional analysis perspective. The right hand side must be divided by either X, Y or a universal
constant, or another variable with the same units. If X and Y are velocities (and relativistic), for
example, the speed of light, c, would be a possible divisor. However, if there are no natural, universal
constants, then it is likely from a dimensional analysis perspective that division by one of the variables
is needed. This leads to consideration of an equation such as τdZ/dt = (X − Y) /Y = X/Y − 1.

If X and Y are random variables, then the density of τdZ/dt is given by the shifted density of the
pure quotient X/Y. In particular, the density of a quotient has been studied in the literature for Gaussian
random variables X and Y dating back to 1930 [28] (see references in [48]). The quotient has also
been studied for a number of other distributions [56]. In most works, the random variable are assumed
to be independent. The results are interesting in view of the broad range of approximate densities
one obtains, including behavior that is similar to a Gaussian in the mid-range. Motivated by price
changes in economics, Caginalp and Caginalp [7] studied the tail density problem for X and Y that are
arbitrarily correlated Gaussian variables, finding an exact expression for the full density in the special
case for which X and Y are anti-correlated. A closely related formula is proven in the Appendix A
of this paper. In this paper we extend the general quotient results to include processes with jumps.
Among the subtleties is the nature of correlations between the normal terms, the timing of the jumps
and the magnitude of the jumps in the numerator and denominator.

For stochastic processes, Xt and Yt, one has similar questions. The mathematical problem we study
in this paper is to determine the behavior of the tail of the distribution of Zt where (incorporating τ into
the variable Z),

Zt =
Xt

Yt
,

and Xt and Yt are stochastic processes that consist of Brownian motion plus jump processes (more
precisely, Levy processes of jump-diffusion type defined below).

The randomness in both Xt and Yt is assumed to arise from the normals, the timing of the jumps,
and the magnitude of the jumps.

Throughout this paper we focus on a classic price equation in economics, thereby addressing the
problem through that perspective. However, the results are easily interpreted for other applications in
physics, biology, etc.

A standard assumption in classical finance has been that relative changes in asset prices have a
normal (Gaussian) distribution. In other words, with price P (t) as a function of time, t, the price
change ∆P (t) := P (t + ∆t) − P (t) in a time interval, ∆t, satisfies P−1∆P ∼ N (µ, σ∆t) , i.e., a normal
distribution with mean µ (the expected return) and variance σ∆t. This idea dates back to Bachelier’s
thesis [2] in 1900, and was broadly adopted by the finance community in mid-20th century for the
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pricing of options (e.g., Black-Scholes) and the assessments of risk [21]. A popular idea for risk
assessment has been the use of “value-at-risk” analysis [32] whereby one seeks to determine whether an
investment will retain at least, say, 66% of its value with a probability of 90%, for example, during the
next decade. In addressing this question, classical methods use the historical data for that investment
to determine the variance and the assumption of a normal distribution to calculate the value-at-risk
probability.

Black-Scholes options pricing is also based on the idea that relative price change is normally
distributed. In continuum form the basic stochastic equation is generally written as (see e.g., [2,5,32])

P−1dP = µdt + σdW, (1.1)

where W is Brownian motion, so that ∆W := W (t + ∆t) − W (t) ∼ N (0,∆t) and µ and σ are the
mean and standard deviation of the stochastic process. The theoretical justification for equation (1.1)
is limited, and its widespread use is partly attributable to mathematical convenience [7,11] and the fact
that it is a basic equation from which one can build additional models. In fact, one justification is based
on infinite divisibility∗. Roughly speaking, this means that the random price change in a particular time
interval can be written as a sum random variables on arbitrarily smaller time intervals. However, there
are many other distributions besides Gaussian that are also infinitely divisible. So the property of
infinite divisibility does not imply that one can apply the Central Limit Theorem to price changes.

A direct implication of the basic equation (1.1) is that the density of the relative price change on a
fixed interval, ∆t, is normal, e.g., for µ := const, one has P−1∆P ∼ N

(
µ, σ2∆t

)
so that the density of

the relative price change is

f (x) =
(
2πσ2∆t

)−1/2
exp

{
− (x − µ)2 /

(
2σ2∆t

)}
,

which exhibits the classical exponential decay for large x.
While there is some empirical justification for normality of relative price changes (often called

return in the finance literature), the deviations between the data and a normal distribution become
especially pronounced at the tails. This phenomenon of the tail of a density decaying at a rate that
is a power law, i.e., much slower than the exponential of the normal distribution, is often called fat
tails. A large discrepancy has been observed between the implications for the frequency of unusual
events [4, 13, 17, 23, 24, 36, 39, 44, 47, 51, 54, 57] in the data relative to that obtained from the normal
distribution with parameters calculated from the standard deviation of a sample. Fat tails have also
been observed in Bitcoin [16], and even in laboratory experiments [38] where uninformed traders are
mainly responsible for these tails. Studies that have provided a theoretical framework for fat tails
include [34, 41, 43, 47]. In particular, if one measures the standard deviation, σ, and the drift, or
expected return, µ, for the S&P 500 and utilizes that value in the normal density above, then (1.1)
would imply that a 4% drop, for example, occurs with a frequence that is one in many millions of
days, instead of one in about 500 days, the observed frequency. Empirical data suggests that for most
stock classifications, one has power law decay, i.e., f (x) ∼ x−α for some α > 0 (see Conclusion for
comparison of our results with empirical data). The data for goods (see e.g., [37]) is less conclusive.
The main objective of this paper is to prove that one obtains a power law decay from a price model

∗A probability distribution F is infinitely divisible if for any integer n ≥ 2 there exist independent, identically distributed random
variables X1, .., Xn such that X1 + .. + Xn has distribution F. In particular, any Levy process, {Xt} for any t ≥ 0 has an infinitely divisible
distribution ( [12], p. 69).
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that is based on economic principles of supply and demand (with any correlation) under conditions that
include stochastic jumps in supply and demand.

The classical approach leading to (1.1) marginalizes the issues involving supply and demand,
modeling instead the price change (1.1) as an empirically observed phenomenon. As an alternative
to this semi-empirical equation (1.1) , one can model price dynamics of assets directly through supply
and demand, which ultimately drive price changes. As noted in [7] a simple and standard model
for pricing of goods is the excess demand model that essentially describes price change in time as a
mechanism to restore equilibrium (e.g. [59] or [60]). This is known in classical economics as Walrasian
price adjustment, and is generally expressed as

pt − pt−1 =
1
τ

(dt−1 − st−1) , (1.2)

where pt is the price at the discrete time, t, and st−1 and dt−1 are the supply and demand at time t−1, and
τ−1 is a constant that determines the extent to which prices move for each unit of imbalance between
supply and demand . The supply and demand functions are assumed to be linear, which are good
approximations for smooth functions when deviations from the equilibrium point are small.

Of course, (1.2) is only a local equation that is valid for a particular pair of linear supply and demand
near a point of intersection. For example, an imbalance created by dt−1 = 1, 010 and st−1 = 1, 000
will have a much smaller impact on price change than would dt−1 = 20 and st−1 = 10 even though
dt−1 − st−1 = 10 in both cases. This demonstrates the need for normalization, realized by dividing the
right hand side of (1.2) by st−1. Similarly, the left hand side must be normalized by dividing by pt−1

leading to the equation, with τ0 now a dimensionless constant that characterizes the extent to which
relative price changes as relative excess demand changes:

τ0
pt − pt−1

pt−1
=

dt−1 − st−1

st−1
. (1.3)

The fact that we need to consider proportions of suply and demand implies that we have, instead
of the difference dt−1 − st−1, the quotient minus 1, i.e., dt−1/st−1 − 1. When we consider probability
densities, the −1 simply produces a shift, so the probabilistic issues reduce to determining the density
of a quotient of random variables.

Note that while these normalizations lead to an equation that is a reasonable non-local model,
another feature of (1.2) is that it is a linear equation, so that the price change is always proportional
to the excess demand. While linearity is often a convenient and reasonable approximation, there is
no compelling requirement that price change be a linear function of excess demand. Introducing a
differentiable function g : R+→ R with suitable properties† including g (1) = 0 and g′ > 0, we can
write in place of (1.3) the equation

τ0
pt − pt−1

pt−1
= g

(
dt−1

st−1

)
. (1.4)

†Note that we can write the generalization of the right hand side of (1.3) as

ĝ
(

dt−1 − st−1

st−1

)
= ĝ

(
dt−1

st−1
− 1

)
= g

(
dt−1

st−1

)
,

so g is defined as a shift of ĝ, i.e., g (x) = ĝ (x − 1) .
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Thus, information on the supply and demand at any discrete time determines the price change for
the next discrete time. The design of markets and efficient price discovery has been an active research
area from both a theoretical and experimental perspective. See models by Milgrom [46], Gjerstad and
Dickhaut [25], Evans and Honkaponja [20], Hirshleifer et al. [31], Gjerstad [26, 27], and references
therein. The experimental aspect has been studied by researchers including Plott and Pogorelskiy, [49],
Bossaerts and Plott, [4], Porter et. al. [50].

A modern approach to modeling price dynamics as asset flow, initiated in 1990, has been built on
analyzing the supply and demand as discussed above (see e.g. [6, 9] and more recently [15, 45]). In
other words, we use a continuum model based on the same principle as the discrete models above. The
supply and demand can depend on the price, price derivative, and other factors.

There is little theoretical justification for assumption that relative price changes are normal, since
the hypotheses for the Central Limit Theorem (CLT) do not apply directly to prices, as the latter
evolve through a function of supply and demand. To be more specific, CLT involves the mean and
variance of a large number of independent, identically distributed random variables. Prices are not in
themselves independent random variables, but rather evolve through a process involving supply and
demand. Moreover, supply and demand consist of a large number of independent agents placing buy
and sell orders. Each buyer (and likewise, each seller) can be deemed to be a random variable, so that
a large number of buyers can be reasonably approximated as independent and identically distributed
(regardless of the particular distribution) so the case for applying the CLT is much stronger. See further
discussion in Appendix D.

In this continuum formulation, the price equation can be written in its simplest form in terms of
relative excess demand as

τ0
1

P (t)
dP (t)

dt
=
D (t) − S (t)
S (t)

(1.5)

where supply, S, and demand, D, can vary due to any arbitrary set of motivations. For example, they
can depend on the price, P, and the discount from an assessment of the true value of the asset. Here, τ0

is a time constant that also incorporates a constant rate factor that would multiply the right hand side.
A key difference between the classical finance (1.1) and the asset flow approaches is due to fact that
(1.1) assumes infinite arbitrage. The assumption is that there is always capital that can take advantage
of mispricing of assets. In this way the deviation from realistic value will be small and random, and
the random terms might be normal. In (1.5) the supply and demand can arise from various motivations
and strategies including undervaluation and price trend. A derivation and discussion of this equation
appear in [7]. See also modeling of supply/demand in [30, 31].

While the discrete price change mechanism may be more complicated that the models above
indicate, one has to distinguish between a smoothly trading asset, such as a large capitalization stock,
and an asset that trades in discrete quantities that cannot be approximated well by an equation such as
(1.5). Thus, (1.4) may be a coarse approximation to a thinly traded asset, but a continuum limit such as
(1.5) that arises from an averaging process is not likely to be sensitive to the infinitesimal perturbations
of the supply and demand.

Note that in the price equation (1.5), supply and demand are not on an equal footing. This can be
remedied by replacing the right hand side by a function G (D/S) with particular properties (see Section
2.2 of [8]), such as the function G (u) = u − u−1. In other words, the simplest model, (1.5), may not be
the one that corresponds to the empirical evidence for price change for a particular asset market. Thus,
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we assume the more general model

τ0
1

P (t)
dP (t)

dt
= G

(
D (t)
S (t)

)
(1.6)

with G : R→ R a differentiable function‡ that satisfies such that G′ > 0 and G (1) = 0, and possibly
other conditions.

We assume that price changes satisfy (1.5) where D and S are given by terms that include both
Brownian process, W (t), i.e., randomness with normal distribution, as well as jump discontinuities
through a compound Poisson distribution.

We consider Eq (1.5) for arbitrary correlation, ρ, between supply and demand, i.e., the most general
case. There is some subtlety to the issue of correlation, since the correlation can arise from both the
supply and demand conditioned on the number of jumps or shock in each, as well as the correlation
between the number of jumps (see Appendix C). The special case ρ = −1 (anti-correlation) involves
the assumption that random terms that lead to higher demand also lead to lower supply with the same
magnitude, and that the number of jumps is identical. In this limiting case one can use the exact
density for a quotient using a modification of [7] in the Appendix A. We consider all cases, and prove
that the following asymptotic relationship holds for each. For any q > 0, the function obtained by
smoothing [19] of the continuous function

G (x) = sgn
(
x − x−1

) ∣∣∣x − x−1
∣∣∣1/q ,

for example, corresponds to a distribution that decays as F (x) ∼ |x|−q . The values q ∈ [3, 5]
corresponds the mid-range of the empirical results [23, 24], as discussed in the Conclusion.

While the results involve functions G that are symmetric in supply and demand, one can similarly
consider asymmetric functions (as determined by empirical data) whose properties will be manifested
in the decay exponent analogously. In this paper we also consider the density conditioned on positive
D and S, in addition to unrestricted D and S. The conditioning does not alter the tail exponent of the
density.

In summary, a price dynamics equation based on excess demand yields a q power law decay of
the distribution function, whether or not there are jump discontinuities, complementing the earlier
result [8] that a quotient of normals (without the Poisson jump terms) has a density with a power law
decay. Furthermore, there is a simple link between the power, q−1, in the deterministic price adjustment
function, G, above, and decay exponent as indicated above.

There have been a variety of explanations for fat tails, such as the placement of large orders. Related
to this is the perspective that fat tails are a consequence of jumps in prices. However, the placement of
a large order has the direct effect of a jump in supply or demand; the change is price is a consequence.
We model the changes in supply and demand that are responsible for changes in price and show that
the tail of the distribution has the same power exponent with or without jump discontinuities.

Other approaches to modeling of prices and supply/demand and stochasticity include [10, 33].
Research has also provided simulations and theoretical models directly on prices (see, for example,
[3, 52]).

From a mathematical perspective, the results obtained below are quite general. In many physical or
biological models there are two processes that have Brownian motion and jump components (i.e., Levy

‡While differentiability is a desirable feature for studying dynamics, continuity suffices for the tail behavior results in this paper.
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processes of jump-diffusion type [12]; see also [55] for estimation and simulation using multi-variate
Levy processes) that are in some type of competition, so the pertinent quantity is the difference between
the two. However, as in the case of supply/demand, it is generally the relative difference that one needs
to consider just to make the units balance. Thus, one has a quotient (with a shift of a constant, −1) of
such Levy processes as a consequence. Hence, the analysis below applies to all such problems.

For maximum generality in a variety of applications, we consider quotients in which the numerator
and denominator can be either (i) of either sign, or (ii) are conditioned to be positive. The issue of the
sign of demand or supply in economics is considered in Appendix E.

2. The density of the quotient of diffusion-jump processes with arbitrary correlation and
independent number of jumps

We consider stochastic processes consisting of Brownian plus a compound Poisson process (see
Cont and Tankov [12] p. 111). Let S = XSt , D = XDt be the stochastic supply and demand§ at
time t, with ∆XS,Dt := XS,Dt+∆t − XS,Dt for some finite interval, ∆t. During a time interval (t, t + ∆t) one
expects that the deterministic contribution to the supply and demand will be proportional to ∆t, i.e.,
∆XS,Dt = γS,D∆t (where γS and γD are deterministic and independent of ∆t) if there is no randomness.
We let D := γD∆t and S := γS∆t. Note that γS and γD can be regarded as the expected values of supply
and demand (per unit time) and can depend on the asset’s price and price trend, and other factors that
would be coupled into the equations.

The stochastic supply and demand terms, XSt , XDt , incorporate a normal, i.e., Brownian motion,
as well as a compound Poisson process. In addition to the deterministic term and Brownian motion,
we allow for jumps whose timing is given by a Poisson process, while the jump distribution itself is
normal. Let ∆Nt be the number of jumps in the demand during (t, t + ∆t) , so that the probability that
there are k jumps in an interval ∆t, is given by the Poisson distribution,

P ({∆Nt = k}) = e−λ1∆t (λ1∆t)k

k!
(2.1)

and likewise for the supply, with Ñt similarly defined with parameter λ2.
A key point here is that Nt and Ñt are independent. However, the correlation between the numerator

and denominator given k1 jumps in the numerator and k2 in the denominator will be a fixed ρ ∈ (−1, 1) .
In Section 5, we will consider a bivariate Poisson process whereby the number of jumps ∆Nt and ∆Ñt

in the demand and supply is arbitrarily correlated.
The jump processes in the numerator and denominator are defined by

Nt+∆t∑
i=Nt

Yi with Yi ∼ N
(
µ1, σ

2
1

)
,

Ñt+∆t∑
i=Nt

Ỹi with Ỹi ∼ N
(
µ2, σ

2
2

)
.

Also, let Wt and W̃t denote Brownian motion,N (0,∆t) , for the demand and supply, respectively. Thus

§Note that we assume that both the supply and demand are Levy jump diffusion processes, which, like a simple normal distribution,
can have negative values. This issue is discussed in the Appendix.
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the ratio¶ of the change in supply and demand during (t, t + ∆t) is given by

∆XDt
∆XSt

=
D

(
1 + σ01

2 ∆Wt +
∑Nt+∆t

i=Nt
Yi

)
S

(
1 + σ02

2 ∆W̃t +
∑Ñt+∆t

i=Nt
Ỹi

) . (2.2)

The numerator and denominator are known as Levy processes of jump-diffusion type [12]. We make
the standard assumption that {∆Wt,Yi} are all mutually independent, as are

{
∆W̃t, Ỹi

}
. Note that we

do not need to multiply the Yi sum by a coefficient since it can be incorporated into µ and σ2
i . The

correlation, ρ, between the random events entering the supply and demand will be specified below.
Empirically, the supply and demand are generally negatively correlated, and often close to ρ = −1,
however, we allow for the complete range −1 < ρ < 1. The case ρ = −1 will be considered in Section
4 through an exact expression for this special case of anti-correlation. The case ρ = 1 is the trivial
case in which the randomness in the supply and demand cancel, leaving only deterministic terms in
(2.2). Further discussion of the correlation is presented in Appendix C, where we calculate the total
correlation, ρT , between supply and demand and show that |ρT | is bounded away from 1 when the jumps
in the supply and demand are independent. In Section 6, we consider jumps that are not dependent and
can consider the full range of ρT .

In the mathematical analysis below, it will be convenient to incorporate the deterministic terms, D
and S , into the constants as we consider the ratio Ra := R1/R2 = ∆XDt /∆XSt . Thus, we write (noting
that µ01 and µ02 will be proportional to ∆t)

R1 := µ01 +
σ01

2
∆W +

Nt+∆t∑
i=Nt

Yi;

R2 := µ02 +
σ02

2
∆W̃ +

Ñt+∆t∑
i=Ñt

Ỹi. (2.3)

Hence, the initial mathematical problems will be to determine the tail of the densities of (i) Ra = R1/R2;
(ii) Rb := Ra−R−1

a , and (iii) Rc := s (Rb) where s is an arbitrary function for the price dynamics equation.

Remark. In principle, all of the analysis below will be valid even if we had µ0i proportional to (∆t)p

for p > 0. In other words, obtaining the decay of the density is not contingent on having a meaningful
limit as ∆t → 0.

An alternative that is used in Section 4 is to consider (2.2) without the D/S (which is deterministic)
factor, and then note that the exponent of the tail density is not altered upon multiplying the random
variable by the deterministic factor D/S .

We proceed by first determining the density of Ra denoted fa conditioned on the number of jumps,
ki, for Ri, so that Nt = k1 and Ñt = k2 are fixed. With this conditioning, we define a related variable
where the ki are fixed:

R̂1 (k1) = µ01 +
σ01

2
∆W + Y1 + ... + Yk1

¶The set of points on which the denominator vanishes has measure zero, and the finiteness of the integral representing the distribution
is established in the sequel.
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R̂2(k2) = µ02 +
σ02

2
∆W̃ + Ỹ1 + ... + Ỹk2 . (2.4)

Since the Yi are all independent, identically distributed variables (i.i.d.), and also independent of ∆W,
and likewise for Ỹi, we have from (2.3) and (2.4))

R̂1 (k1) ∼ N
(
µ01 + k1µ1,

(
σ01

2

)2
∆t + k1σ

2
1∆t

)
,

R̂2(k2) ∼ N
(
µ02 + k2µ2,

(
σ02

2

)2
∆t + k2σ

2
2∆t

)
. (2.5)

We abbreviate σ2
R1

:=
(
σ01
2

)2
+ k1σ

2
1∆t, σ2

R2
:=

(
σ02
2

)2
+ k2σ

2∆t
2 , µR1 := µ01 + k1µ1, µR2 := µ02 + k2µ2,

yielding, Ri ∼ N
(
µRi , σRi

)
, i = 1, 2.

At this point we can assign an arbitrary correlation ρ ∈ (−1, 1) between the demand and supply
(with k1 and k2 jumps or shocks) as follows. For each fixed pair (k1, k2) one sets, for a given ρ,

Cov
(
R̂1 (k1) , R̂2(k2)

)
= σ12 (k1, k2) := ρσR1 (k1)σR2 (k1) . (2.6)

Thus, ρ is independent of k1 and k2, and has the prescribed value. Moreover, ρ is an arbitrary parameter
– that can be determined empirically – as the correlation between the random events entering into the
supply and demand.

Given two normals with prescribed means and variances, we can write down a joint density by
specifying the correlation or covariance. In particular, the joint density of R1, R2 conditioned on ∆Nt =

k1 and ∆Ñt = k2 (see [58], p. 7), is

f (k1,k2) (x1, x2) := f
(
x1, x2 | ∆Nt = k1,∆Ñt = k2

)
=

1
2πσR1σR2

1√
1 − ρ2

exp
{
−

1
2
(
1 − ρ2)Q (x1, x2)

}
Q (x1, x2) :=

(
x1 − µR1

σR1

)2

− 2ρ
(

x1 − µR1

σR1

) (
x2 − µR2

σR2

)
+

(
x2 − µR2

σR2

)2

. (2.7)

The full density of R1 and R2 without the conditioning on ki is then

f (x1, x2) =

∞∑
k1,k2=0

P
(
∆Nt = k1,∆Ñt = k2

)
× (2.8)

f
(
x1, x2 | ∆Nt = k1,∆Ñt = k2

)

f (x1, x2) =

∞∑
k1,k2=0

e−λ1∆t (λ1∆t)k1

k1!
e−λ2∆t (λ2∆t)k2

k2!
× (2.9)

f
(
x1, x2 | ∆Nt = k1,∆Ñt = k2

)
.
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Notation. For asymptotic relationships, we use the standard notation that for g : R→R we write for
some j ∈ N, the relations g (x) = O

(
x− j

)
or g (x) ∼ x− j if there exist c1, c2, x0 ∈ R

+ such that

c1x− j ≤ g (x) ≤ c2x− j for all x ≥ x0.

We will use the notation g (x) ' xp if the difference |g (x) − xp| is bounded by a constant times the next
power, xp+1.

2.1. The density, fa, of Ra

With this joint density, f (x1, x2) , of R1 and R2 above, one can write the quotient density ( [42], p.
187) as

fR1/R2 (w) =

∫ ∞

−∞

|y| f (wy, y) dy.

For brevity let c1 :=
(
2πσR1σR2

√
1 − ρ2

)−1
and c2 :=

(
2
(
1 − ρ2

))−1
and write

fR1/R2 (w) = c1

∫ ∞

−∞

dy |y|
∞∑

k1,k2=0

e−λ1∆t (λ1∆t)k1

k1!
e−λ2∆t (λ2∆t)k2

k2!
× (2.10)

exp

−c2

(wy − µR1

σR1

)2

− 2ρ
(
wy − µR1

σR1

) (
y − µR2

σR2

)
+

(
y − µR2

σR2

)2 .
We denote

I (w) :=
∫ ∞

−∞

dy |y| exp

−c2

(wy − µR1

σR1

)2

− 2ρ
(
wy − µR1

σR1

) (
y − µR2

σR2

)
+

(
y − µR2

σR2

)2
and approximate for large |w| . Let z := y −

µR1
w so h (z) := − c2

σ2
R1

z2 and

(
wy − µR1

σR1

) (
y − µR2

σR2

)
=

wz
(
z +

µR1
w − µR2

)
σR1σR2

,

(
y − µR2

σR2

)2

=

(
z +

µR1
w − µR2

)2

σ2
R2

.

Using these identities we can write I (w) as

I (w) =

∫ ∞

−∞

dzew2h(z)g (z; w)

with

g (z; w) :=
∣∣∣∣∣z +

µR1

w

∣∣∣∣∣ exp

2c2ρ
wz

(
z +

µR1
w − µR2

)
σR1σR2

− c2

(
z +

µR1
w − µR2

)2

σ2
R2

 .
We can also write, using

pki := e−λi∆t (λi∆t)ki

ki!
, (2.11)
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the identity

fR1/R2 (w) =

∞∑
k1,k2=0

pk1 pk2c1

∫ ∞

−∞

dzew2h(z)g (z; w)

=

∞∑
k1,k2=0

pk1 pk2c1I (w) . (2.12)

The Laplace integral approximation ( [18], p. 36) then yields

I (w)=̃g (0; w)
(
−2π

w2h′′ (0; w)

)1/2

ew2h(0;w)

+ ew2h(0;w)O
(
w−3

)
. (2.13)

We compute g (0; w) =
∣∣∣µR1

w

∣∣∣ exp
{
−c2

(
µR2
σR2

)2
}
, h (0) = 0, h′′ (z) = −2 c2

σ2
2
. This yields

I (w) =

∣∣∣∣∣µR1

w

∣∣∣∣∣ exp

−c2

(
µR2

σR2

)2
 π1/2σR2

c1/2
2

∣∣∣∣∣ 1
w

∣∣∣∣∣ .
Combining the constants in c1I (w) we have

π1/2 c1

c1/2
2

µR1σR2 =

(
π

2

)1/2 µR1

σR1

.

Thus, we can write the density of the quotient R1/R2 as (for large |w|with the remainder term O
(
|w|−3

)
:

fR1/R2 (w)=̃
∞∑

k1,k2=0

e−λ1∆t (λ1∆t)k1

k1!
e−λ2∆t (λ2∆t)k2

k2!
(2.14)

×

(
π

2

)1/2 µR1

σR1

exp

−c2

(
µR2

σR2

)2
 1
|w|2

.

Remark. The convergence of this sum is clear. In particular, µRi and σRi depend on k1 and k2 (and so
does c1 but not c2), and one must consider these in terms of convergence of the infinite series. Recall

µR1 := µ01 + k1µ1, µR2 := µ02 + k2µ2

σ2
R1

:=
(
σ01

2

)2
+ k1σ

2
1, σ

2
R2

:=
(
σ02

2

)2
+ k2σ

2
2.

Thus, for large k1, k2, one has µR1/σR1 ∼ k1/2
1 and

(
µR2/σR2

)2
∼ k2. Also, exp

{
−c2

(
µR2
σR2

)2
}

is less than

1. Thus, the end result is

fR1/R2 (w) ∼
e−λ1∆te−λ2∆t

|w|2

∞∑
k1,k2=0

k1/2
1

(λ1∆t)k1

k1!
(λ2∆t)k2

k2!
< ∞. (2.15)

In other words, the factorials dominate the powers, and we have convergence for all values of the
parameters.
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2.2. The density fb of Rb:= r (Ra) := Ra−R−1
a

Using the results above, we now focus on the behavior of the density (for large, positive values of
the argument), fb, for Rb := r (Ra) , where Ra := R1/R2 with density fa.

The function y = r (x) := x − x−1 has two smooth strictly monotonic branches (for x > 0 and x < 0)
as shown in Figure 1. The respective inverses in the two regions are given by

x± = h± (y) =
1
2

(
y ±

√
y2 + 4

)
,

h′± (y) =
1
2

(
1 ±

(
1 + 4/y2

)−1/2
)
.

To calculate the density we first compute the large |y| behavior for h± (y) and its derivatives h′± (y).
For a given positive value of y, the two intersections of y with r (x) will be denoted by x>+ on the right
half plane, and x>− on the left half plane. Both values are on the upper half plane as y > 0. See Figure 1.

r(x) = x - 1/x

x>
+x<_ x

y

x<_ x>
+

Figure 1. The graph of y = r (x) := x − x−1 featuring the two branches is displayed.
Calculations of the density for r (Ra) required determining the intersection of a constant value
of y with r (x) . When y > 0 the intersection in the upper half plane occurs at the values x>+ for
the right branch, and x>− for the left branch on the x−axis. Analogously the intersections for
the lower half plane (y < 0) occur at x<+ and x<−. The qualitative features of Gε (x) are similar,
and the same notation is used when Gε (x) replaces r (x) .

For y � 1 we have the approximations (with the error term being of the next power of |y|)

x>+ = h+ (y) ' y, x>− = h− (y) '
1
2

(
1 −

(
1 +

2
y2

))
= −

1
y
. (2.16)
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In other words, when y � 1 one has either x � 1 (i.e., x+ on the right branch), or −1 � x < 0 (i.e.,
x−on the left branch) as shown by the intersections in Figure 1.

The derivatives for y � 1 are approximated by

h′+ (y) ' 1, h′− (y) '
1
y2 . (2.17)

The analogous computations for y � −1 yield, with the two intersections x<± on the right and left half
planes (both in the lower half plane):

x<+ = h+ (y) '
1
−y
, x<− = h− (y) ' y

h′+ (y) '
1
y2 , h′− (y) ' 1. (2.18)

In order to compute the density, fb (y), of Rb we note that each value of y for Rb can be attained in
two ways represented by the intersection of a constant value of y with the two segments of r (x) . Thus,
one has

fb (y) = fa (h+ (y)) h′+ (y) + fa (h− (y)) h′− (y) .

For y � 1 we use the relations above in (2.16) and (2.17) together with the relation fa (y) ∼ |y|−2 to
obtain

fb (y) ∼ fa (y) · 1 + fa

(
−

1
y

)
·

1
y2 ∼

1
y2 for y � 1. (2.19)

Note that we have used, for y � 1, the relation fa

(
−1

y

)
' 1.

Similarly, for y � −1 we have the relation

fb (y) ∼ fa

(
−

1
y

)
1
y2 + fa (y) · 1 ∼

1
y2 .

Thus we can conclude that fb (y) ∼ |y|−2 when y � 1.

2.3. The density for nonlinear functions in the price equation

We now consider a spectrum of nonlinear functions for the right hand side of the price adjustment
equation, and prove that the tail of the density decays as a monomial, together with a calculation of the
exponent. Recalling that Ra represents the quotient of demand and supply, each modeled with a jump-
diffusion process (i.e., Brownian motion together with a compound Poisson process), we consider
specifically, for q > 0, the random variable Rc = Gε (Ra) where y = Gε (x) is a smoothing (see [19]) of
each branch of

G (x) =


(
x − 1

x

)1/q
i f x − 1

x > 0

−
(

1
x − x

)1/q
i f x − 1

x < 0
. (2.20)

Note that the smoothing makes this differentiable at x = ±1. More general functions G can be
considered provided they satisfy the conditions G (1) = 0, G′ (x) > 0 for all x ∈ R\ {±1, 0} and, if
symmetry betweenD and S is imposed, G (x) = −G

(
x−1

)
(see [8]).

We calculate the decay in the density in two different ways each of which is useful for a general sets
of functions replacing G.
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2.3.1. Calculating fc through fb

Given a positive real number q, we define a function s : R→ R by

s (u) :=
{

u1/q i f u ≥ 0
− (−u)1/q i f u < 0

.

and let sε be the smoothing. Noting that sε is strictly monotonic, with y = sε (x) and inverse, x = jε (y) ,
which is a smoothing‖ of

j (y) =

{
yq i f y ≥ 0

− (−y)q i f y < 0
.

Recalling Rb = r (Ra) where r (x) := x− x−1, the result fb (y) ∼ |y|−2 for |y| � 1 and the density relation,

fc (y) = fb ( jε (y)) j′ε (y) ,

we have for y � 1 the asymptotic relation,

fc (y) ∼ fb (yq) yq−1 ∼ y−q−1,

and for y � −1 the same end result,

fc (y) ∼ fb (− (−yq)) yq−1 ∼ y−q−1.

2.3.2. Calculating fc from fa directly

We are interested first in y = Rc � 1, which can occur in two ways: x � 1, or −1 � x < 0. We can
write the inverse of Gε, denoted H, in two continuous parts that lie in the x > 0 and x < 0 half-planes.
The superscripts > and < denote, respectively, the parts expression of H that are above and below the
x axis. Also, note that the regions x − 1

x > 0 correspond to y > 0 for y = Gε (x) while x − 1
x < 0

corresponds y < 0 in y = G (x) . The qualitative features for Gε (x) are similar to that for r (x) above,
and one can refer again to Figure 1.

In determining the density fc (y) for y � 1, we compute first the inverse of y = Gε (x) =
(
x − 1

x

)1/q

in this region. Note that the roots of x2 − yqx − 1 = 0 are given by

H>
± (y) := x>± =

yq ±
√

y2q + 4
2

.

The positive root corresponds to x � 1 and is given by

H>
+ (y) = x>+ =

yq

2

1 +

(
1 +

4
y2q

)1/2 =̃
yq

2

(
1 +

(
1 +

2
y2q

))
' yq.

The negative root corresponds to the left branch of G so H>
− (y) := x>− is given by

H>
− (y) := x>− =

yq

2

1 +

(
1 +

4
y2q

)1/2
‖The jε will not be given by the same formula as sε, but this is not relevant for our purpose.
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'
yq

2

(
1 −

(
1 +

2
y2q

))
' −

1
yq .

Computation of the derivatives yields

d
dy

H>
± (y) =

1
2

[
qyq−1 ±

1
2

(
y2q + 4

)−1/2
2qy2q−1

]
=

1
2

qyq−1

1 ± yq(
y2q + 4

)1/2

 ;

d
dy

H>
+ ∼ yq−1 and

d
dy

H>
− (y) ∼ y−q−1

We can now compute the density as

fc (y) = fa
(
H>

+ (y)
) d

dy
H>

+ (y) + fa
(
H>
− (y)

) d
dy

H>
− (y) ,

yielding the approximation

fc (y) ∼ fa (yq) yq−1 + fa

(
−

1
yq

)
y−q−1.

Recalling that fa (−y−q) =̃ fa (0) ∼ 1, and fa (z) ∼ z−2 we then have fc (y) ∼ y−q−1.

We consider next the case y � −1, which occurs in two ways: 0 < x � 1, or x � −1 . These
are the two intersections of a value of y that is large and negative corresponding to the right and left
branches, respectively, and the parts of Gε that lie below the x−axis.

On the negative parts of both branches we have the relation

y = −

(
−x +

1
x

)1/q

and thus x2 + (−y)q
− 1 = 0, which has solutions

H<
± (y) := x<± =

− (−y)q
±

√
(−y)2q + 4

2

'
(−y)q

2

(
−1 ±

(
1 +

2
(−y)2q

))
.

We have then
H<

+ (y) ∼
1

(−y)q , H<
− ∼ − (−y)q .

The derivatives are given by

d
dy

H<
− (y) ∼ (−y)q−1 ,

d
dy

H<
+ (y) ∼ (−y)−q−1 .

For y � −1, we thereby compute the decay of the density as

fc (y) = fa
(
H<

+ (y)
) d

dy
H<

+ (y) + fa
(
H<
− (y)

) d
dy

H<
− (y)
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∼ fa

(
1

(−y)q

)
(−y)−q−1 + fa (− (−y)q) (−y)q−1

∼ 1 · (−y)−q−1 + (−y)−2q (−y)q−1
∼ (−y)−q−1 .

We have proven the following.

Theorem 2.3. Let Ra := R1/R2 where R1 = D, R2 = S are described by jump-diffusion processes
(i.e., Brownian motion plus a compound Poisson process) through (2.3) . Assume that the two Poisson
processes, ∆Nt and ∆Ñt are independent Poisson processes with arbitrary parameters λ1 and λ2. Let
ρ ∈ (−1, 1) be the correlation between R1 and R2 conditioned on a fixed pair of jumps (k1, k2). With Gε

be defined via (2.20) , the density fc of Rc := Gε (Ra) satisfies the asymptotic relation

fc (y) ∼ |y|−q−1 for |y| � 1.

3. The density functions conditioned on positivity

We consider the densities for functions of the ratio R1/R2 = D/S as before except that supply, S,
and demand,D, are required to be positive random variables through conditioning.

3.1. The quotient with conditioning

The probability of X/Y conditioned on X > 0 and Y > 0 is expressed as

P
(X
Y
≤ u | X > 0,Y > 0

)
=
P
(

X
Y ≤ u, X > 0,Y > 0

)
P (X > 0,Y > 0)

.

Let Q1 := P (X > 0,Y > 0) so that

FX/Y (u | X > 0,Y > 0) = Q−1
1

!
x/y≤u,

x>0, y>0

fX,Y (x, y) dxdy

and using w = x/y we have the conditional distribution and density as

FX/Y (u | X > 0,Y > 0) = Q−1
1

∫ ∞

0
dy

∫ u

0
y fX,Y (wy, y) dw,

fX/Y (u | X > 0,Y > 0) = Q−1
1

∫ ∞

0
y fX,Y (uy, y) dy.

In our case, the joint density fX,Y (x1, x2) is given by f (x1, x2) in (2.8) , (2.9) .

3.2. Calculation of fa
(
y | R1,R2> 0

)
for |y|� 1

The density of the quotient Ra := R1/R2 conditioned on R1, R2 > 0 is similar to the calculation in
Section 2.1, with the main difference being that the integral I (w) will involve only half of the interval,
i.e.,

∫ ∞
0

y fX,Y (wy, y) dy, versus
∫ ∞
−∞
|y| fX,Y (wy, y) dy. The resulting asymptotics for large |u| are the same

(except for constant factors). Hence, we have the same asymptotic relation,

fa (w | X > 0,Y > 0) ∼ |w|−2 for |w| � 1. (3.1)
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We use this to obtain results on the decay of the density of Rc = Gε (D/S ) under the condition that
supply, S, and demand, D are both positive, utilizing two different approaches. In the first approach
we find the conditional density of Rb := Ra − R−1

a with Ra := R1/R2, and then obtain the conditional
density of fc from fb which is obtained from fa. In the second approach we obtain it from fa directly.

3.3. Calculation of fc
(
y | R1,R2> 0

)
through fb

(
y | R1,R2> 0

)
Defining Rb := r (Ra) = Ra − R−1

a , i.e., y = r (x) = x − x−1 and conditioning on R1 and R2 positive,
we have Ra = R1/R2 > 0, so only the right branch of r (x) , i.e., x > 0, is of interest. It has inverse

h+ (y) := x+ =
1
2

(
y +

√
y2 + 4

)
.

As the conversion from x to y is single valued, the conditional density thereby satisfies, for both y � 1
and y � −1, the identity

fb (y | R1,R2 > 0) = fa (h+ (y) | R1,R2 > 0) h′+ (y) . (3.2)

Using the asymptotics obtained earlier, i.e., (2.16) , (2.18) , we have for y � 1 (so x � 1) the
asymptotic relation,

fb (y | R1,R2 > 0) ∼ fa (y) · 1 ∼ y−2.

and for y � −1 (so −1 � x+ < 0) the result

fb (y | R1,R2 > 0) ∼ fa

(
1
−y

)
1
y2 ∼

1
y2 .

Thus, we conclude that the density of Rb conditioned on positive R1 and R2 yields the same
asymptotic relation

fb (y | R1,R2 > 0) ∼ y−2, |y| >> 1. (3.3)

Next, we use this result to calculate fc (y | R1,R2 > 0) . We define sε in the same way as the
smoothing of

s (u) :=
{(

u1/q i f u ≥ 0
− (−u)1/q i f u < 0

)
.

Note that sε is strictly increasing and has an inverse hε with hε (y) ∼ yq if |y| � 1 (i.e., the smoothing
does not alter the growth rate), and h′ε (y) ∼ 3y2.

Thus, we have again, for y � 1

fc (y | R1,R2 > 0) = fb (hε (y) | R1,R2 > 0) h′ε (y)

∼ (yq)−2 yq−1.

Similarly, we have for y � −1,

fc (y | R1,R2 > 0) = fb (hε (y) | R1,R2 > 0) h′ε (y)

∼ (−y)−2q (−y)q−1 = (−y)−q−1 .
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3.4. Calculation of fc
(
y | R1,R2> 0

)
through fa

(
y | R1,R2> 0

)
directly

We proceed in the same way as in Section 2.3.2, where Rc = Gε (Ra) and y = Gε (x) is a smoothing
of

G (x) = sign
(
x − x−1

) ∣∣∣x − x−1
∣∣∣1/q , q > 0,

Due to the conditioning on positive R1,R2, we have Ra = R1/R2 > 0, so we only need to consider the
positive x branch of Gε (x) . The inverse H+ (y) (with H>

+ (y) for y > 0, H<
+ (y) for y < 0) is defined in

the same way as in Section 2.3.2, and H− is not relevant.
We have then for y � 1, the density relation (identical to Section 2.3.2 except for the absence of H−

term):

fc (y | R1,R2 > 0) = fa
(
H>

+ (y) | R1,R2 > 0
) d

dy
H>

+ (y) ,

yielding the approximation

fc (y | R1,R2 > 0) ∼ fa (yq | R1,R2 > 0) yq−1 + fa

(
−

1
yq | R1,R2 > 0

)
y−q−1.

Recalling that fa (−y−q|...) =̃ fa (0) ∼ 1, and fa (z|...) ∼ z−2 we then have fc (y|...) ∼ y−q−1.

Similarly, for y � −1, we compute the decay of the density as

fc (y | R1,R2 > 0) = fa
(
H<

+ (y) |...
) d

dy
H<

+ (y)

∼ fa

(
1

(−y)q |...

)
(−y)−q−1

∼ (−y)−q−1 .

Thus, we have the conclusion that for |y| � 1, the density satisfies the asymptotic relation

fc (y | R1,R2 > 0) ∼ |y|−q−1 .

We have then the following result.

Theorem 3.4. Let Ra := R1/R2 where R1 = D, R2 = S are described by jump-diffusion processes
(i.e., Brownian motion plus a compound Poisson process) through (2.3). Assume that ∆Nt and ∆Ñt are
independent Poisson processes with arbitrary parameters λ1 and λ2. Let ρ ∈ (−1, 1) be the correlation
between R1 and R2 conditioned on a fixed pair of jumps (k1, k2). With Gε defined via (2.20) , the density
fc (y |R1,R2 > 0) of Rc := Gε (Ra) conditioned on positive R1 and R2 satisfies the asymptotic relation

fc (y |R1,R2 > 0) ∼ |y|−q−1 for |y| � 1.

Remark. We conclude that the decay of the density fc is not altered by the conditioning on positive
supply and demand.

4. The price function when supply and demand are anti-correlated (ρ = −1)

In this section, we consider the remaining case in which the supply and demand (i.e., R1 and R2)
have correlation ρ = −1. For this particular case one can also derive an exact density from which one
can analyze the ∆t → 0 limits.
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4.1. The anti-correlated quotient of Levy processes of jump-diffusion type

We consider the quotient of demand,D = R1, and supply, S = R2 within a small time interval, now
for the remaining case of ρ = −1, and write this quotient more simply as

D

S
=

R1

R2
=

D
(
∆t + σ0

2 ∆Wt +
∑Nt+∆t

i=Nt
Yi

)
S

(
∆t − σ0

2 ∆Wt −
∑Nt+∆t

i=Nt
Yi

) . (4.1)

We assume still that {∆Wt,Yi} are all mutually independent, with ∆Wt ∼ N (0,∆t) again, and write
Yi ∼ N

(
µ, δ2

)
to simplify notation.

The assumption of ρ = −1 in this limiting case implies that random events that lead to a rise in
demand will simultaneously give rise to a fall in supply. Near the trading price anti-correlation is
not far from a typical situation, since incoming news that is negative (for example due to an earnings
downgrade) will cause a reassessment that impacts both the supply and demand with similar (though
not exactly equal) magnitudes. In practice, they may have a strong negative correlation but greater than
−1.

Note that S and D are the deterministic factors in supply and demand (which we can regard as the
expected values) while S andD are the complete supply and demand functions with stochasticity. We
first define the quotient, Ra, without these factors:

Ra :=
∆t + σ0

2 ∆Wt +
∑Nt+∆t

i=Nt
Yi

∆t − σ0
2 ∆Wt −

∑Nt+∆t
i=Nt

Yi
.

Since Yi ∼ N
(
µ, δ2

)
, if we examine Ra, conditioned on fixed ∆Nt = Nt+∆t − Nt = k, we have a sum of

k + 1 normal variables plus a constant term ∆t in both the numerator and denominator, which thus have
the respective normal distributions

N

(
∆t ± kµ,

σ2
0

4
∆t + kδ2

)
.

An exact expression for a quotient of anti-correlated normal random variables, such as Ra, was derived
in Theorem 4.3 of [7] under the condition of anti-correlation. For quotient of several other distributions,
see [56]. If the numerator and denominator have distributions N

(
µ1, σ

2
1

)
and N

(
µ2, σ

2
2

)
respectively,

then the quotient has density given by

f (x) =
µ1σ2 + µ2σ1
√

2π

exp
{
−1

2

(
µ2 x−µ1
σ2 x+σ1

)2
}

(σ2x + σ1)2 . (4.2)

Now let σ2
1 = σ2

2 = σ2 := σ2
0

4 ∆t + kδ2, µ1 := ∆t + kµ and µ2 := ∆t − kµ so that this general formula
yields

fa(x | ∆Nt = k) =
2 (∆t)
√

2πσ

exp
{
− 1

2σ2

(
(∆t)(x−1)−kµ(x+1)

x+1

)2
}

(x + 1)2 . (4.3)
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Next, we define RA = D
S Ra, which has density

fA(x | ∆Nt = k) =
fa( x

D/S | ∆Nt = k)

D/S
.

Substitution for fa yields

fk (x) := fA(x | ∆Nt = k) =
2∆t
√

2πσD
S

exp
{
− 1

2σ2

(
(∆t)

(
x

D/S −1
)
−kµ

(
x

D/S +1
)

x
D/S +1

)2}
(

x
D/S + 1

)2 . (4.4)

5. Asymptotics of the density

We focus on the large |x| behavior of the density by first examining (4.4) in the cases k = 0 and
k ≥ 1 separately.

(i) For k = 0, recalling σ2 := σ2
0

4 ∆t + kδ2 =
σ2

0
4 ∆t, we have simply

f0 (x) := fA(x | ∆Nt = 0) (5.1)

=
1

√
2π σ0

4(∆t)
1
2

S
D(

x
D/S + 1

)2 exp

−1
2

1
σ2

0
4∆t

 x
D/S − 1

x
D/S + 1

2
 .

For |x| � 1 this yields the expression

f0 (x) ∼
1

√
2π σ0

4(∆t)
1
2

D
S

x2 exp

−1
2

1
σ2

0
4∆t

 . (5.2)

(ii) For k ≥ 1, and |x| � 1 we have similarly,

fk (x) ∼
2 (∆t) D

S
√

2πσ

exp
{
− 1

2σ2

[
∆t − kµ

]2
}

x2 , (5.3)

so the last two expressions both have a power law decay, x−2.

Using the theorem of total probability, we now calculate the full density (i.e., without conditioning
on k)

fA (x) =

∞∑
k=0

e−λ∆t (λ∆t)k

k!
2∆t
√

2πσD
S

exp
{
− 1

2σ2

(
µ2

x
D/S −µ1
x

D/S +1

)2
}

(
x

D/S + 1
)2 . (5.4)

From the previously defined f0, i.e., (5.1) and fk (k ≥ 1), one has

fA (x) = e−λ∆t f0 (x) +

∞∑
k=1

e−λ∆t (λ∆t)k

k!
fk(x) . (5.5)
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Considering the k ≥ 1 terms separately, we have for x � 1,

∞∑
k=1

e−λ∆t (λ∆t)k

k!
fk(x) ∼

∞∑
k=1

e−λ∆t (λ∆t)k

k!
2 (∆t) D

S
√

2πσ

exp
{
− 1

2σ2

[
∆t − kµ

]2
}

x2 . (5.6)

The series is clearly convergent so that the decay for large |x| is O
(
x−2

)
. Combining this with the

similar result for f0 (x) yields the conclusion

fA (x) ∼ x−2 as |x| → ∞. (5.7)

The results of Section 2 for ρ ∈ (−1, 1) follow similarly for the random variables Rb := RA − R−1
A

and Rc:=Gε (RA) where Gε is the smoothing of G defined by (2.20) .

Theorem 5.1. Let RA be defined as the quotient of supply, S, and demand, D, through (4.1) with
correlation ρ = −1. With Gε be defined via (2.20) , the density fc of Rc := Gε (Ra) satisfies the
asymptotic relation

fc (y) ∼ |y|−q−1 (5.8)

for |y| � 1.
The density of Rc conditioned on the numerator and denominator both being positive also satisfies

(5.8) .

Proof. The last assertion follows from the exact conditional density for the quotient of anti-correlated
normal random variables given in the Appendix A. Since this expression differs from (4.2) only by a
constant, all of the asymptotic relationships remain valid in this conditional case.

Next, we consider the full density under the conditions ∆t � 1 and x � 1. The f0 (x) remains the
same while fk (x) for k ≥ 1 can be approximated using σ2 =

σ2
0

4 ∆t + kδ2=̃kδ2 to yield the following
result for µ > 0. When µ = 0 with δ > 0, i.e., Yi ∼ N

(
0, δ2

)
we have no jumps in the Poisson process,

so the randomness arises only through the Brownian motion which has been considered previously.

Theorem 5.2 Under the same conditions as Theorem 5.1, but with ∆t � 1 in addition to x � 1, and
µ > 0, the density of RA is given by (5.5) with f0 and fk having asymptotic behavior given by (5.2) and

fk (x) ∼
2 (∆t) D

S
√

2πk1/2δ

exp
{
−1

2
kµ2

δ2

}
x2 (5.9)

for µ > 0. Also, one has the bounds for sufficiently large |x|

2
√

2π

∆t
δ

1
x2

D
S

e−λ∆tλ∆te−
µ2

2δ2

2
≤

∞∑
k=1

2 (∆t) D
S

√
2πk1/2δ

exp
{
−1

2
kµ2

δ2

}
x2 (5.10)

≤
2
√

2π

∆t
δ

1
x2

D
S

e−λ∆t
[
exp

(
λ∆te−

µ2

2δ2

)
− 1

]
.

The proof is presented in Appendix B.

Remark. For nonlinear functions of RA one has similar expressions and decay using the methods of
the previous sections.
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Remark. Adding to (5.9) the f0 (x) from (5.2) , we see that asymptotic expression for density fA (x)
(for ∆t � 1 and x � 1) satisfies bounds obtained from (5.10) so that fA (x) ∼ O

(
1/x2

)
for x � 1.

6. The density with arbitrary correlation between the number of jumps in the supply and
demand

In this section we allow for the possibility that the number of jumps, ∆Nt in the demand (i.e.,
numerator) has an arbitrary correlation, ρJ, with the supply (i.e., denominator). For positive reals
λ01, λ02, λ12 and k, l ∈ N, we write the bivariate Poisson probability (see [35]) as

p (k, l) := P
(
∆Nt = k,∆Ñt = l

)
=

min{k,l}∑
j=0

λ
k− j
01 λ

l− j
02 λ

j
12e−(λ01+λ02+λ12)

(k − j)! (l − j)! j!
(6.1)

where E [∆Nt] = Var [∆Nt] = λ01 + λ12 =: λ1, E
[
∆Ñt

]
= Var

[
∆Ñt

]
= λ02 + λ12 =: λ2. Summing over

l yields the individual probabilities,

P (∆Nt = k) =
(λ01 + λ12)k

k!
e−(λ01+λ12),

and similarly for P
(
∆Ñt = l

)
. Also, the covariance is given by Cov

[
∆Nt,∆Ñt

]
= λ12 and, hence, the

correlation by

ρ(P) :=
λ12

√
λ01 + λ12

√
λ02 + λ12

. (6.2)

Thus the correlation in the number of jumps can be adjusted through the parameters λ01, λ02, and λ12.
The analysis of Sections 2 and 3 can now be adapted for this general case by noting that the joint
density for the random variables R̂i (ki) defined by (2.4) is still given by (2.7) and (2.8). At this point
we do not assume independence of ∆Nt and ∆Ñt but use the joint probability density above, and (2.9)
is now replaced by

f (x1, x2) =

∞∑
k1,k2=0

p (k1, k2) f
(
x1, x2 | ∆Nt = k1,∆Ñt = k2

)
,

and similarly, (2.12) is identical except for the p (k1, k2) substitution. The result (2.14) is then

fR1/R2 (w) =̃

∞∑
k1,k2=0

p (k1, k2)
(
π

2

)1/2 µR1

σR1

exp

−c2

(
µR2

σR2

)2
 1
|w|2

. (6.3)

One needs to show convergence of the sums above. Noting that µR1/σR1 ∼ k1/2
1 and the exponential is

bounded by unity, one can prove the boundedness of the series by noting that

∞∑
k1,k2=0

p (k1, k2) k1/2
1 <

∞∑
k1,k2=0

p (k1, k2) k1 = E [∆Nt] = λ01 + λ12 < ∞.

Hence, we can state the conclusion analogous to Theorem 2.3. In addition, the analysis for R1 and
R2 conditioned on positivity can be similarly carried out as in Section 3, with the following result.
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Theorem 6.1. Let Ra := R1/R2 where R1 = D, R2 = S are described by jump-diffusion processes
(i.e., Brownian motion plus a compound Poisson process) through (2.3) . Assume that the two Poisson
processes, ∆Nt and ∆Ñt are bivariate Poisson with means λ1 = λ01 +λ12 and λ2 = λ02 +λ12 respectively,
and covariance λ12. Let ρ ∈ (−1, 1) be the correlation between R1 and R2 conditioned on a fixed pair of
jumps (k1, k2). With Gε be defined via (2.20) , the density fc of Rc := Gε (Ra) satisfies the asymptotic
relation

fc (y) ∼ |y|−q−1 for |y| � 1.

The density fc (y |R1,R2 > 0) of Rc := Gε (Ra) conditioned on positive R1 and R2 also satisfies the
asymptotic relation

fc (y |R1,R2 > 0) ∼ |y|−q−1 for |y| � 1.

The total correlation, ρT , as a function of the parameters is calculated in the Appendix C.

Summarizing the results, we see that the issue of correlation between supply and demand is
complex. Given k1 jumps or shocks for demand and k2 for supply, we can impose a correlation,
ρ ∈ (−1, 1) , between supply and demand conditioned on (k1, k2) . However, the overall correlation
(not conditioned on k1 and k2) for demand and supply will have a smaller magnitude if the number of
jumps are independent, and is calculated in Appendix C.

In this section, we have considered the problem when the number of jumps in the supply and
demand, ∆Nt and ∆Ñt has an arbitrary correlation, ρ(P), given by (6.2) in which case one can obtain the
full range (−1, 1) of correlation for the supply and demand, as stated in Theorem 6.1.

The limiting case in which the correlation between supply and demand is given by −1, i.e., anti-
correlation, has been considered in Theorem 5.1.

7. Conclusions

We have shown that fat tails can be obtained solely by modeling price adjustment through supply
and demand, each of which are random variables consisting of Brownian motion and shocks from
a Poisson distribution. This consistent with the empirical evidence for many asset markets. The
classical theory embodied in (1.1) is based partly on empirical observations near the mean (and not
the tails) of price changes. The fact that the normal distribution is a reasonable model near the mean
– and is generally convenient mathematically – does not provide any evidence that the tail of density
should behave as the normal does, i.e., f (x) ∼ e−x2/2. Prices evolve through re-balancing supply and
demand. In this paper we have assumed a model that embodies the perspective of supply/demand
without invoking the fine microstructure, and show that the quotient of two Levy processes of jump-
diffusion type has a tail distribution that is a power law.

In essence, exponential decay in the classical finance models is a feature of the assumptions made
without compelling theoretical arguments. Prices are not distributed by a random process; rather they
are the consequence of changes in supply and demand which have randomness. In fact, it is almost a
tautology to say that all price change is a direct consequence of changes in supply and demand, which
have randomness. If the supply and demand were deterministic, there would be no randomness in
price change. Aggregate supply and demand involve the sum of a large number of decision makers so
that the Central Limit Theorem can be applied. The addition of a compound Poisson process to the
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randomness incorporates the influx of a smaller number of large orders that are manifested as jumps in
supply or demand.

A natural way to model price change is through an excess demand model which involves a quotient
of supply and demand. The important mathematical idea is that a quotient of two normals is not
normal, though it resembles a normal near the mean for a range of parameters. The tail of the density
of a quotient of normals has previously been shown to have a power law decay [7]. In this paper,
we showed that this persists even with the introduction of shocks in the form of a Poisson distribution
when there is an arbitrary correlation in the number of shocks and an arbitrary total correlation between
supply and demand.

Another important issue is that the price adjustment equation (1.5) is not necessarily linear. Hence,
we consider appropriate nonlinear functions, Gε, (2.20) that are characterized by an exponent q−1 for
q > 0. The salient feature of this function is that supply and demand enter on equal footing.

For this family of functions we have calculated the power of the decay exponent for the density
of the relative price change P−1∆P, as f (x) ∼ x−q−1. The exponent is a function of the shape of the
price function, Gε, so that there is a direct link between the form of the price function and the decay
exponent. Other possibilities for the function Gε for supply and demand yields similar results. Roughly
speaking if the dependence of G on the quotient of demand to supply is characterized by the power
q−1, then the decay will be f (x) ∼ |x|−α with α = 1 + q.

Empirical studies of the tail of distributions for relative stock price changes (denoted by r below)
have mainly shown (see [4, 23, 24, 47, 51, 53] and references therein) that large capitalization stocks
have a decay rate given by ζ=̃3 or at least within a range ζ ∈ [3, 5] where

P ({|r| > x}) ∼ x−ζ ,

so that f (x) ∼ x−ζ−1. An early paper [29] studied 40 million data points and hypothesized a ζ = 3
“universal cubic law.” Thus, we have α = q + 1, i.e., ζ = q. This would predict that the Gε defined
above should have q−1 = 1/3 corresponding to α = 4 ζ = 3. This means that if the nonlinear price
function Gε has a behavior that is somewhat less responsive than linear, the implied decay will be
within the empirical range. The analysis also suggests that it would be useful to do empirical research
on determining the form of the function Gε, as well as examining the correlation between the changes
in supply and demand to determine how close it is to anti-correlation. Some studies (e.g., [40])
have indicated that the tail exponent varies to some extent as one examines different countries and
markets such as emerging markets. While stock price movements have been studied extensively, there
is much less empirical work on the nature of the supply and demand curves, particularly under extreme
conditions. This would be a useful empirical work that could open up a new avenue to understand
rare events as discussed below. This approach can be utilized not only for the tail but for the entire
distribution so volatility can be modeled in its entirety.

Our model is applicable to any price formation, and is not restricted to financial instruments. In
some markets for goods, the exponential tail may hold [1,37]. Our analysis may provide a link between
the tails of financial assets and goods/services. In our model, this would be attained by a function G that
is very slowly responding for large imbalance e.g., involving a logarithmic function. This would mean
that as the supply/demand balance becomes extreme, the relative price does not continue to change
nearly as much. It seems intuitively reasonable that the supply and demand curves for goods/services
have this feature, since there is usually no possibility of resale. However, further research is needed on
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this issue.
In general, G is a function to be calibrated. The essential point, however, is that G is a deterministic

function, while D and S are Levy processes of jump-diffusion type. To simplify the discussion,
let us suppose that they are simply Gaussian. The central thesis is that price change is essentially
deterministic given a specific supply and demand. Suppose that one is interested in estimating the
probability of a 5% drop in an asset. In order to establish this probability directly from empirical data,
one would need a very large amount of data since it occurs infrequently. However, using the formalism
above, one would need many fewer observations that would determine the value of the price drop as
a function of the imbalance in supply and demand. Once this connection is established, it is then a
matter of understanding the probability of that imbalance. The supply, S, and demand, D, are each
Gaussian, with means and variances that are easily estimated with a moderate amount of data (i.e.,
without necessarily observing rare events) so we know the density of the normalized excess demand,
namely, (D− S) /S.

In summary, we can establish the deterministic connection between the imbalance of supply/demand
and the change in price through the function G. Once this is done, we can estimate the means and
variances of the supply and demand individually. The mathematical results then yield the density of
(D− S) /S. With the approximation of G we then obtain the probability of a particular size price drop.
In particlar, we can estimate the distribution tail exponent, ζ = q.

Note that the use of a smaller data set is not just a matter of convenience. The issue is that as
we use much larger sets, we are utilizing data that may be irrelevant, for example, because it is an
artifact of a different era. Data sets of 252 trading days and 2520 correspond to one year and ten years,
respectively. In the year 2011, for example, the ten year period would include the post-Internet bubble
of 2001-2003, as well as the 2007-2008 housing debacle and subsequent recovery. So data from only
the period 2010-2011 would be more pertinent in terms of estimating the probabilities of possible rare
events in 2012. Then using the data from 252 or 504 relevent trading days, one can find the most
extreme price changes and match them up with the (D− S) /S values, so that the values of G for those
arguments are set. This is a consequence of G being deterministic. From this data set of 252 or 504
we can reliably determine the mean and variance of each of supply and demand, noting that these
are Gaussian by virtue of the Central Limit Theorem for independent agents. Using these parameters,
and the analysis of the quotient of Levy jump-diffusion processes, we can calculate a more accurate
probability for the extreme events that were observed than would be possible by using just the raw
frequency.

The problem of fat tails is part of the general issue of volatility in markets that has been of great
interest in recent years (see, e.g., [22]). The methods discussed can be useful within the general setting
of volatility problems.

The analysis of this paper has involved normal distributions through the Brownian motion and the
distribution of each jump in the Poisson process. An open problem is to extend these results to a broad
set of distributions. Using results such as [56], one can consider the quotient other distributions for the
supply and demand and analyze the tail behavior.
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Appendix A. The density of a quotient of anti-correlated normal random variables with positive
numerator and denominator

We obtain a result that is a modification of Theorem 4.3 of [7]. We define, for µ1, σ1, µ2, σ2 > 0 and
Z ∼ N (0, 1)

R :=
µ1 + σ1Z
µ2 − σ2Z

and wish to calculate (neglecting sets of measure zero)

P+ := P {R ≤ x | µ1 + σ1Z > 0, µ2 − σ2Z > 0} =
P {R ≤ x, µ1 + σ1Z, µ2 − σ2Z > 0}
P { µ1 + σ1Z > 0, µ1 − σ1Z > 0}

Let Q := P { µ1 + σ1Z > 0, µ1 − σ1Z > 0} so that Q =
∫ µ2/σ2

−µ1/σ1
(2π)−1/2 e−x2/2dx. We have then

QP+ = P {µ1 + σ1Z ≤ (µ2 − σ2Z) x, µ1 + σ1Z > 0, µ1 − σ1Z > 0} .

The three inequalities above reduce to (i) Z ≤ µ2 x−µ1
σ2 x+σ1

, (ii) Z ≥ −µ1/σ1, and (iii) Z < µ2/σ2. Since the
inequality (iii) is less restrictive than (i) , we can ignore (iii) and write, with fZ (s) = (2π)−1/2 e−x2/2 as
the density for Z ∼ N (0, 1) :

QP+ =

∫ µ2 x−µ1
σ2 x+σ1

−µ1/σ1

fZ (s) ds.

Differentiating this expression with respect to x yields the result that we can express in the form

fX/Y (x |X > 0, Y > 0) =
µ1σ2 + µ2σ1
√

2πQ

e−
1
2

(
µ2 x−µ1
σ2 x+σ1

)
(σ2x + σ1)2 .

Appendix B. Proof of Theorem 5.2

We examine bounds on these asymptotic expressions for the full density if both ∆t � 1 and x � 1
[i.e.,(5.5) with (5.2) and (5.9)] and obtain

∞∑
k=1

fk (x) e−λ∆t (λ∆t)k

k!
∼

2
√

2π

∆t
δ

D
S

1
x2 e−λ∆t

∞∑
k=1

(λ∆t)k exp
{
−1

2
kµ2

δ2

}
k1/2k!

= CA,

C :=
2
√

2π

∆t
δ

D
S

1
x2 e−λ∆t, A :=

∞∑
k=1

(λ∆t)k exp
{
−1

2
kµ2

δ2

}
k1/2k!

.

Upon defining

A1 :=
∞∑

k=1

(λ∆t)k exp
{
−1

2
kµ2

δ2

}
k!

, A2 :=
∞∑

k=1

(λ∆t)k exp
{
−1

2
kµ2

δ2

}
(k + 1)!

.
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we have
A2 ≤ A ≤ A1. (.1)

We let a := λ∆te−
1
2
µ2

δ2 so

A1 = ea − 1 (.2)

A2 =
1
a

(ea − 1 − a) ≥ a/2.

satisfy the bounds
CA2 ≤ CA ≤ CA1.

C
a
2
≤ C

1
a

(ea − 1 − a) = CA2 ≤ CA ≤ CA1 ≤ C (ea − 1) , i.e., (.3)

yielding (5.10).
Noting also that the f0 (x) term cannot be simplified further beyond (5.2) for ∆t � 1 we see from

(5.5) that all terms decay as x−2 for x >> 1.

Appendix C. Analysis of supply/demand correlation

In Section 2 we considered an arbitrary correlation, ρ, between supply and demand when there
are k1 jumps or shocks in demand, and k2 in supply during a small time interval, ∆t, determined
by independent Poisson processes, though the magnitude of the jumps in supply and demand are
correlated. The independence of the Poisson processes implies an upper bound to the magnitude of the
correlation between the supply and demand. In Section 6 we utilized a bivariate Poisson distribution
for the jumps, which means that the full range ρ ∈ (−1, 1) can be attained. Both of these assertions will
be established, together with an exact calculation in this Appendix.

We start with R1 and R2 defined as earlier by

R1 = µ01 +
σ01

2
∆W +

∆Nt∑
j=0

Y j, R2 = µ02 +
σ02

2
∆W̃ +

∆Nt∑
j=0

Ỹ j

where Y ∼ N (0, σ1) and Ỹ ∼ N (0, σ2) , and we have set µ1 = µ2 = 0 so that the drift arises only from
the first term, implying ER1 = µ01, ER2 = µ02. The variables R̂1 (k1) and R̂2 (k2) are the corresponding
values when ∆Nt = k1 and ∆Ñt = k2, namely, (2.4) .

We calculate, using the notation P
{
∆Nt = k1, ∆Ñt = k2

}
=: p (k1, k2), the identity,

VarR1 = E
[
(R1 − ER1)2

]
= E


σ01

2
∆W +

∆Nt∑
j=0

Y j


2

=

∞∑
k1,k2=0

E


σ01

2
∆W +

∆Nt∑
j=0

Y j


2

| ∆Nt = k1, ∆Ñt = k2

 p (k1, k2)

=

∞∑
k1,k2=0

E


σ01

2
∆W +

k1∑
j=0

Y j


2  p (k1, k2) .
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Since the
{
Y j

}
are independent of each other and ∆W, we have

VarR1 =

∞∑
k1,k2=0

p (k1, k2)
((
σ01

2

)2
+ k1σ

2
1

)
.

Now using the fact that the mean and variance of pk1 , defined in (2.1) , are both λ1∆t, one has

∞∑
k2=0

p (k1, k2) = pk1 = e−λ1∆t (λ1∆t)k1

k1!
,

VarR1 =

(
σ01

2

)2
+ σ2

1λ1∆t, (.4)

and similarly for VarR2.

Next, abbreviating E
[
R1R2| ∆Nt = k1, ∆Ñt = k2

]
= E [R1R2| k1, k2] , we calculate,

E [R1R2] =

∞∑
k1,k2=0

p (k1, k2)E [R1R2| k1, k2]

=

∞∑
k1,k2=0

p (k1, k2)

∞"
−∞

x1x2 f (k1,k2) (x1, x2) dx1dx2

where f (k1,k2) (x1, x2) is the joint density for R̂1, R̂2 defined in (2.4) The covariance can then be expressed
by writing

ER1 ER2 = µ01µ02 =

∞∑
k1,k2=0

p (k1, k2) µ01µ02

Cov (R1,R2) =

∞∑
k1,k2=0

p (k1, k2)


∞"

−∞

x1x2 f (k1,k2) (x1, x2) dx1dx2 − µ01µ02

 .
The term in the parentheses is Cov

(
R̂1 (k1) , R̂2 (k2)

)
= ρ (k1, k2)σR1 (k1)σR2 (k2) (see (2.6) in Section 2)

so we can write

Cov (R1,R2) =

∞∑
k1,k2=0

p (k1, k2) ρ (k1, k2)σR1 (k1)σR2 (k2) .

We can then write the overall correlation, ρT , as

ρT :=
Cov (R1,R2)
√

VarR1
√

VarR2
(.5)

=

∑∞
k1,k2=0 p (k1, k2) ρ (k1, k2)σR1 (k1)σR2 (k2)√(

σ01
2

)2
+ σ2

1λ1∆t
√(

σ02
2

)2
+ σ2

2λ2∆t
.

In order to show that ρT = 1 can be unity when the correlation between the bivariate Poisson processes,
∆Nt and ∆Ñt is one, we note first the result below, which follows immediately from the definition, (6.1) .
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If the correlation between ∆Nt and ∆Ñt approaches 1 then one must have λ01 → 0, λ02 → 0, while
λ12 → 1, so that

lim
λ0 j→0

p (k1, k2) =

 0 i f k1 , k2

e−λ12
λ

k1
11

k1! i f k1 = k2

and thus, p (k1, k2) reduces to p (k1, k2) = pk1δ (k1, k2) as the correlation approaches 1.
In the limit as the correlation between ∆Nt and ∆Ñt approaches 1, the numerator of (.5) has the

form:

∞∑
k1,k2=0

p (k1, k2) ρ (k1, k2)σR1 (k1)σR2 (k2)

=

∞∑
k1=0

pk1ρ (k1, k1)σR1 (k1)σR2 (k1) .

If σ01 = σ02 and σ1 = σ2 (so the two types of variances for the supply and demand are equal), and
ρ (k1, k2) = 1 then the numerator reduces to

∞∑
k1=0

pk1σR1 (k1)σR2 (k1) =

∞∑
k1=0

pk1

{(
σ01

2

)2
+ σ2

1k1∆t
}

=

(
σ01

2

)2
+ σ2

1λ1∆t

where we have have used the fact that the mean of ∆Nt is λ1∆t, yielding the following result.

Theorem C.1. Suppose that σ01 = σ02 and σ1 = σ2, the correlation between ∆Nt and ∆Ñt approaches
1, and the covariance ρ (k1, k2) is set as an arbitrary number r ∈ (−1, 1) . Then ρT → r.

From (.5) it is clear –as one would expect – that one cannot attain the full range (−1, 1) of ρT

if the number of jumps in supply and demand are not correlated. Equation (.5) can also be used to
obtain the correlation when these two Poisson processes are independent. Using the standard result
that independence implies

p (k1, k2) = pk1 pk2

one has the correlation for the overall probability as

ρT =

∑∞
k1,k2=0 pk1 pk2ρ (k1, k2)σR1 (k1)σR2 (k2)√(

σ01
2

)2
+ σ2

1λ1∆t
√(

σ02
2

)2
+ σ2

2λ2∆t
(.6)

Since σ2
R1

(k1) =
(
σ01
2

)2
+ k1σ

2
1 and likewise for σ2

R2
(k2), one has the following exact total correlation

under the condition that the Poisson processes are independent but the distribution of the jumps have
covariance σ (k1, k2) :

ρT =

∑∞
k1,k2=0 pk1 pk2σ (k1, k2)

√(
σ01
2

)2
+ k1σ

2
1

√(
σ02
2

)2
+ k2σ

2
2√(

σ01
2

)2
+ σ2

1λ1∆t
√(

σ02
2

)2
+ σ2

2λ2∆t
.
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Note that even if we set σ01 = σ02 and σ1 = σ2, and ρ (k1, k2) = 1 we obtain

ρT =

 ∞∑
k1=0

pk1

√(
σ01
2

)2
+ k1σ

2
1


2

(
σ01
2

)2
+ σ2

1λ1∆t
.

The denominator can be written as
∑∞

k1=0 pk1

{(
σ01
2

)2
+ σ2

1k1

}
, so that the Cauchy-Schwarz inequality

implies ρT ≤ 1 with equality holding only for trivial Poisson probabilities
{
pk1

}
.

This shows that when the Poisson processes are uncorrelated the minimum of ρT even with full
anti-correlation, σ (k1, k2) = −1 will exceed −1. However, when there is a bivariate Poisson process,
the value of ρT can span the range (−1, 1) depending on the σ (k1, k2) .

Appendix D. Randomness and the Central Limit Theorem in supply and demand

We consider a large number of agents buying an asset, and argue that the random orders satisfy
the the Central Limit Theorem (CLT), and model the price change within a discrete formulation of the
basic equation

P−1 dP
dt

=
D (t, P (t,Γ) , ω)

S
(
t, P

(
t, Γ̄

)
, ω̄

) − 1.

We consider a discrete set of times,
{
t j

}∞
j=1
, and prices, {Pi}

N
i=1 .We let Γ j :=

{
ω0, ..., ω j, ω̄0, ..., ω̄ j

}
where

ω ∈ Ω, ω̄ ∈ Ω are random values that will be chosen from a distribution. When the computed price is
not exactly one of those values, we approximate with the closest of the Pi. The demand at the time t j

can depend on the existing price, P
(
t j,Γ j

)
and on t j directly, due to a multitude of factors. In addition,

the demand will depend on a random value that depends on ω j. The situation is the same for supply.
The randomness can depend on the time and price in a complicated way. As noted earlier, scriptD, is
used to indicate the full demand (including randomness) while D is used for the deterministic part, or
equivalently the expected value of demand (assuming the random term has vanishing mean). We will
thus assume ED =D, and analogously for supply.

We illustrate the idea with a simple model below.
A basic model. One simple possibility is that the random variable, say, R j

(
ω j

)
, alters the

deterministic demand, D (t, P (t,Γ)) via

D
(
t j, P

(
t j,Γ j

)
, ω j

)
= D

(
t j−1, P

(
t j−1,Γ j−1

)) (
1 + R j

(
ω j

))
, (.7)

and analogously for supply with R̄ j

(
ω̄ j

)
. In other words, at time t j we have a particular price,

P
(
t j−1,Γ j−1

)
that depends on the random variables chosen up through time t j−1, i.e., Γ j−1. If there

were no additional randomness at time t j we would have the total demand, D, that would lack the
R j

(
ω j

)
term. Randomness introduced in this multiplicative form simply states that the magnitude of

the randomness is proportional to the overall demand. For example, if the expectation of demand is
a million units, we would expect that the standard deviation would be much larger than if it were a
hundred units. Thus, simply adding R j to the demand would not be meaningful.
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Next, we consider the distribution of R j. For an actively traded stock, we can assume that there are
many independent traders and investors that can be approximated by some distribution. If the number
of such traders is sufficiently large, the distribution of the sum can be approximated well by the normal
distribution. This is a consequence of the Central Limit Theorem (CLT) which is applied here directly
to the large number of agents (individuals or institutions). Consider, for example, 1000 agents bidding
on an asset at a particular time each with a particular distribution that is not necessarily normal. For
a broad set of distributions, the CLT will apply, and we can thus assume that the aggregate demand is
normal. This is in sharp contrast to trying to apply CLT directly to prices, since prices are not chosed
directly by agents, but arise from a complex process. As shown in the literature [14], [28] even the
quotient of two normals is not normal, though in some regimes of parameters, e.g., near the mean, the
distribution of the quotient can be approximated by a Gaussian distribution.

The price will depend on the set of ωi, ω̄i prior to that time, i.e., Γi. Let

∆P
(
t j,Γ j

)
:= P

(
t j,Γ j

)
− P

(
t j−1,Γ j−1

)
.

The discrete version of the price equation can be written, with R j+1 normal,

∆P
(
t j+1,Γ j+1

)
P

(
t j,Γ j

) =
D

(
t j, P

(
t j,Γ j

)) (
1 + R j+1

(
ω j+1

))
S

(
t j, P

(
t j,Γ j

)) (
1 + R̄ j+1

(
ω̄ j+1

)) − 1

so that as we obtain the successive terms,

P
(
t j+1,Γ j+1

)
=

D
(
t j, P

(
t j,Γ j

)) (
1 + R j+1

(
ω j+1

))
S

(
t j, P

(
t j,Γ j

)) (
1 + R̄ j+1

(
ω̄ j+1

)) P
(
t j,Γ j

)
.

We note that in this simple model, the randomness influences the demand at all prices uniformly
through (.7) .

A more general model. We now consider distributions that can depend not only on time, but on
the price as well. For example, one might have greater variance for prices that are extreme. Changing
notation, we focus on a single time t j and write the random variablesD, S and X as

D = (D1, ...,DN) , S = (S1, ..,SN) ,
X = (X1, .., X2N) = (D1, ...,DN ,S1, ..,SN) ,

where Dk is the demand at price Pk. At this time t j there is a deterministic component (i.e., expected
value) of the demand at each price Pk with k = 1, 2, ..,N, denoted µk with k = 1, 2, ..,N. Similarly,
for the supply, XN+1, ...X2N one has µN+1, .., µ2N . The covariance matrix, Σ, is arbitrary, provided it is
positive definite. Thus, one can specify the correlations between the supply and demand at different
prices. Note that the correlation between the supply and demand at a given price will generally be
negative, and close to −1. Hence, the density of X is a multivariate normal described by

f (x; µ,Σ) = (2π)−N
|Σ|−1/2 e−Q2N (x;µ,Σ)/2

Q2N (x; µ,Σ) := (x − µ)T Σ−1 (x − µ) .
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The price change at time t j+1 when the price P
(
t j,Γ j

)
= Pk is thus given by

∆P
(
t j+1,Γ j+1

)
P

(
t j,Γ j

) =
Dk

(
t j

)
Sk

(
t j

) − 1 =
Xk

(
t j

)
XN+k

(
t j

) − 1, i.e.,

P
(
t j+1,Γ j+1

)
= P

(
t j,Γ j

) Xk

(
t j

)
XN+k

(
t j

) .
If we consider the full nonlinear model with general G subject to the conditions stated earlier (including
G (1) = 0, G′ > 0) the equation has the form

P−1 dP
dt

= G

D (t, P (t,Γ) , ω)

S
(
t, P

(
t, Γ̄

)
, ω̄

)  .
The discrete model above can then be written as

P
(
t j+1,Γ j+1

)
=

G
 Xk

(
t j

)
XN+k

(
t j

) + 1

 P
(
t j,Γ j

)
.

Appendix E. Issue of negative supply or demand

We consider, for simplicity, the situation without the jump terms as the issues are similar.

(I) Does negative demand make any sense in finance? While a standard interpretation is that all buy
orders are demand and all sell orders are supply, there is also the concept of selling short, which could
be interpreted as negative demand, for example. Whether this is useful depends on the other equations
coupled with the price equation, as in the asset flow equations. In other words, if there is a group of
investors that is largely on the buy-side, it may be a useful mathematical concept to consider selling
short as negative demand. Whether this is useful depends on the other equations coupled with the price
equation, as in the asset flow equations.

For commodities, negative price means that one has to pay someone to take it away, as happened
with oil prices in May 2020. This could be interpreted as negative net demand.

In the text, we consider the mathematics in full generality as the mathematical issue involving a
quotient of such random variables in other contexts.

(II) The normal distribution is used in many measurable quantities that are positive by definition,
e.g. IQ, prices, etc. While negative values are theoretically possible from the normal distribution, the
standard deviation is sufficiently small compared to the mean that the probability of a negative value
is infinitesimal. The standard equation for asset price, (1.1) , can lead to negative prices, for example.
Indeed, letting µ = 0,(i.e., no trend) and σ = const for simplicity, and fixing a time interval ∆t, so
∆W ∼ N (0,∆t) , one has

∆P
P

=̃σ∆W.

Thus, one has
P (t + ∆t) =̃P (t) (1 + σ∆W) .
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The probability of a negative price is the probability that a random variable X ∼ N
(
0, σ2∆t

)
is less

than −1, i.e., this is a
(
σ (∆t)1/2

)−1
standard deviation event. For the S&P 500, or a typical stock, the

standard deviation of the price is about 0.5% or 1% of the price. Thus, we set ∆t = 1 and σ = 0.01, so
the equation above indicates (using 1%) that the probability of going to negative price in one day is a
100 standard deviation event. Hence, this possibility is negligible within this framework.

The situation is similar for negative demand or supply, as one could verify – in principle – from
the order book data. Also, this can be related to relative price change using the price change equation
[1.6], and shown to be the same order of magnitude as the probability of negative prices.

(III) There is also the possibility of using conditional probability. This, of course, changes the
distribution by an infinitesimal amount (provided the standard deviation is small compared to the
mean), and it forces strictly positive values of supply and demand. We can think of this as a random
choice of demand that is made from a normal distribution with mean µD and variance σ2

D
. If the value

is positive, it is used. In the extremely rare event that it is negative, the choice is discarded. When
µD/σD exceeds 5 or 6, the two densities would be nearly identical for practical purposes. However, the
analysis of this conditional probability is useful in other contexts beyond price, demand and supply,
particularly, when the standard deviation is not small compared to the mean.

(IV) There are other ways to modify the normal distribution so that the random variable has no
negative values, e.g., by truncation. The resulting distribution is of course not exactly normal, and
in practice, the difference between this approach and the conditional approach we have used would
be negligible in this application, but could be significant when the standard deviation is not small
compared to the mean.
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