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1. Introduction

The Egoroff theorem, the well-known convergence theorem in real analysis theory, describes
the relationship between the convergence almost everywhere and almost uniform for real-valued
measurable functions sequence ( [3]). In [16] the convergence of a sequence of measurable closed-
valued multifunctions (i.e., random sets) onσ-additive measure spaces (in particular, probability measure
spaces) were discussed and a version of Egoroff’s theorem for closed-valued measurable multifunctions
was shown.

This important convergence theorem has been widely extended in non-additive measure theory
(see [4, 5, 9–12, 14, 19]. The Egoroff theorem for closed-valued measurable multifunctions, which was
established in [16], was generalized from σ-additive measures space to non-additive measure spaces
(see [8,11,14]). However, in these discussion the continuity and autocontinuity of non-additive measures
are required.

In this short paper we further investigate the (pseudo-)convergence almost everywhere and (pseudo-
)almost uniform of a sequence of random sets on non-additive measure spaces. By means of the
condition [E] and condition [E] (see [9]) of non-additive measures, we show four versions of the Egoroff

theorem — one standard version and three pseudo-versions — for random sets sequence on general
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non-additive measure spaces. The necessary and sufficient conditions are respectively presented for
these results to remain valid for non-additive measures. The non-additive measures we considered are
not necessarily continuous, and thus the previous related results ([11]) are improved and generalized.

2. Preliminaries

Let (Ω,A) be a measurable space, i.e., Ω is a nonempty set and A is a σ-algebra of subsets of Ω.
We consider Rd, the d-dimensional Euclidean (linear) space with Euclidean norm ‖ · ‖. Let O, F and K
denote the classes of all open, closed and compact sets in Rd, respectively, and B(Rd) denote the Borel
σ-algebra on Rd, i.e., it is the smallest σ-algebra containingO. For x ∈ Rd and E ⊂ Rd, the distance from
the point x to the subset E is defined by ρ(x, E) = inf{‖x− y‖ : y ∈ E}. Let B(x, ε) and B(x, ε) denote the
open ball and closed ball of radius ε and center x ∈ Rd, respectively, i.e., B(x, ε) = {y ∈ Rd : ‖x− y‖ < ε}
and B(x, ε) = {y ∈ Rd : ‖x − y‖ ≤ ε}.

2.1. Random sets

We recall the basic definitions dealing with set-valued maps [1], also called multifunctions, or
multi-valued mapping. Let us consider a set-valued map Γ : Ω → P(Rd) (the power set of Rd); its
effective domain is dom(Γ) = {ω ∈ Ω : Γ(ω) , ∅}. We denote Γ−1(F) , {ω ∈ Ω : Γ(ω) ∩ F , ∅}, where
F ∈ P(Rd). The set-valued mapping Γ is said to be closed-valued, if its values are closed subsets of Rd,
i.e., Γ : Ω→ F . A closed-valued mapping Γ is measurable (with respect toA), if for all closed subset
F of Rd, Γ−1(F) ∈ A (see [1, 16]).

A measurable closed-valued mapping Γ is called a random set (with respect toA). Let R[Ω] denote
the class of all random sets defined on Ω (with respect toA).

2.2. Convergence of sequence of closed sets

Definition 2.1. ( [1, 16]) Let C ∈ F , (Cn)n∈N ⊂ F . If lim supn→∞Cn = lim infn→∞Cn = C, then C is
called to be the set limit of the sequence (Cn)n∈N, denoted by limn→∞Cn = C, where lim supn→∞Cn ,
{x ∈ Rd : lim infn→∞ ρ(x,Cn) = 0} and lim infn→∞Cn , {x ∈ Rd : limn→∞ ρ(x,Cn) = 0}.

For given ε > 0 and A ⊂ Rd, let εA denote an open ε-neighborhood of the set A defined as follows: if
A is nonempty then εA = {x ∈ Rd : ρ(x, A) < ε} and ε∅ = Rd \ B(0, 1/ε).

Proposition 2.1. ( [16]) Let C ∈ F , (Cn)n∈N ⊂ F . Then the following four conditions are equivalent:
(i) limn→∞Cn = C;
(ii) for all ε > 0, limn→∞[(C \ εCn) ∪ (Cn \ εC)] = ∅;
(iii) for each ε > 0 and each K ∈ K , there exists n(ε,K) such that for all n ≥ n(ε,K)

[(C \ εCn) ∪ (Cn \ εC)] ∩ K = ∅;

(iv) for each ε > 0, r > 0 and x ∈ Rd, there corresponds n(ε, r, x) such that for all n ≥ n(ε, r, x)

[(C \ εCn) ∪ (Cn \ εC)] ∩ B(x, r) = ∅.
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2.3. Non-additive measures

A set function λ : A → [0,+∞] is called a non-additive measure on (Ω,A), if it satisfies the
following two conditions:

(1) λ(∅) = 0; (vanishing at ∅)
(2) For any E1, E2 ∈ A, E1 ⊂ E2 implies λ(E1) ≤ λ(E2). (monotonicity)
A non-additive measure is also known as “capacity”, “fuzzy measure”, “monotone measure” or

“nonlinear probability”, etc. For more information concerning non-additive measures, we recommend
[2, 13, 15, 17, 19].

LetM denote the set of all non-additive measures defined on (Ω,A).
Let λ ∈ M. λ is said to be continuous from below [3], if limn→∞ λ(Ln) = λ(L) whenever Ln ↗ L;

continuous from above [3], if limn→∞ λ(Un) = λ(U) whenever Un ↘ U and there exists n0 with
λ(Un0) < +∞; continuous, if λ is continuous both from below and from above; strongly order continuous
[7, 9], if limn→∞ λ(An) = 0 whenever An ↘ A and λ(A) = 0.

For a non-additive measure λ ∈ M with λ(Ω) < +∞, the non-additive measure λ, defined by

λ(A) = λ(Ω) − λ(Ω \ A), A ∈ A,

is called the conjugate of λ (the conjugate λ is also called the dual of λ).

3. Egoroff’s theorems for random sets on monotone measure spaces

Given λ ∈ M. Let Γ ∈ R[Ω], (Γn)n∈N ⊂ R[Ω], A ∈ A. The following concepts come from [16] (see
also [11]). We say that

(1a) (Γn)n∈N converges to Γ almost everywhere on Ω (with respect to λ), if there exists E0 ∈ A, such
that λ(E0) = 0 and for every ω ∈ Ω \ E0, limn→∞ Γn(ω) = Γ(ω) (in the sense of Definition 2.1, the same
below), write Γn

a.e.
−→ Γ[λ];

(1b) (Γn)n∈N converges to Γ pseudo-almost everywhere on Ω (with respect to λ), if there exists
F0 ∈ A, such that λ(Ω \ F0) = λ(Ω) and for every ω ∈ Ω \ F0, limn→∞ Γn(ω) = Γ(ω), write Γn

p.a.e.
−→ Γ[λ];

(2) (Γn)n∈N converges uniformly to Γ on A, denoted by Γn
uni f .
−→ Γ on A, if for any ε > 0 and any

compact subset K of Rd, there exists some positive integer n(ε,K), such that (4−1
εn (K))∩ A = ∅ whenever

n ≥ n(ε,K), where

4−1
εn (K) ,

{
ω ∈ Ω :

[
(Γn \ εΓ) ∪ (Γ \ εΓn)

]
(ω) ∩ K , ∅

}
; (3.1)

(2a) (Γn)n∈N converges almost uniformly to Γ on Ω (with respect to λ), denoted by Γn
a.u.
−→ Γ[λ], if for

any δ > 0, there exists Aδ ⊂ A such that Γn
uni f .
−→ Γ on Aδ and µ(Ω \ Aδ) < δ;

(2b) (Γn)n∈N converges pseudo-almost uniformly to Γ on Ω (with respect to λ), denoted by Γn
p.a.u.
−→

Γ[λ], if there is {Fm}m∈N ⊂ A such that limm→∞ λ(Ω \ Fm) = λ(Ω), and Γn
uni.
−→ Γ on Ω \ Fm(m = 1, 2, . . .).

We recall the condition [E] of non-additive measures, which plays an important role in generalizing
the Egoroff theorem from classical measure theory to non-additive measure theory ( [6, 9]).
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Definition 3.1. Let λ ∈ M. If for every double sequence (P(m)
n )(m,n)∈N×N ⊂ A satisfying the condition:

for any m = 1, 2, . . ., P(m)
n ↘ P(m) (n → ∞) with λ

(⋃+∞
m=1 P(m)) = 0, there are increasing sequences

(ni)i∈N and (mi)i∈N of natural numbers, such that

lim
k→+∞

λ
( +∞⋃

i=k

P(mi)
ni

)
= 0

(
resp. lim

k→+∞
λ
(
Ω \

+∞⋃
i=k

P(mi)
ni

)
= λ

(
Ω
) )
, (3.2)

then we say that λ fulfils condition [E] (resp. condition [E]).

Proposition 3.1. ( [6, 12]) Let λ ∈ M.
(1) If λ is finite (i.e., λ(Ω) < ∞) and continuous, then it fulfils condition [E].
(2) If λ fulfils condition [E], then it is strongly order continuous (i.e., limn→+∞ λ(An) = 0 whenever

An ↘ A with λ(A) = 0).

3.1. The standard version of Egoroff’s theorem for random sets

In [6] (see also [9]) it was shown that Egoroff’s theorem for real-valued measurable functions holds
in the case of monotone measures if and only if the monotone measures fulfill condition [E] (or Egoroff
condition, see [12]). Now we show a version of the Egoroff theorem for random sets sequence on
non-additive measure spaces. It only concerns convergence a.e. and convergence a.u., and we refer to it
as the standard-form of Egoroff’s theorem (for random sets on non-additive measure spaces).

Theorem 3.1. Let λ ∈ M. Then the following are equivalent:
(i) λ fulfils condition [E] (or Egoroff condition);
(ii) for all (Γn)n∈N ⊂ R[Ω] and all Γ ∈ R[Ω], we have

Γn
a.e.
−→ Γ[λ] =⇒ Γn

a.u.
−→ Γ[λ]. (3.3)

Proof. (i) ⇒ (ii) Let Ω0 = {ω ∈ Ω : limn→∞ Γn(ω) , Γ(ω)}. Since Γn
a.e.
−→ Γ[λ], we have λ(Ω0) = 0,

and Γn converges to Γ everywhere on Ω \Ω0.
Denote

Wn(ε, r, x) ,
{
ω ∈ Ω : [(Γn \ εΓ) ∪ (Γ \ εΓn)](ω) ∩ B(x, r) , ∅

}
.

For m, k = 1, 2, . . ., let E(k)
m =

⋃∞
n=m Wm( 1

k , k, 0), then E(k)
m is decreasing in m for each fixed k.

Denote E(k) =
⋂∞

m=1 E(k)
m , k = 1, 2, . . .. From Proposition 2.1, it is not difficult to verify that⋃∞

k=1 E(k) = Ω0. Therefore λ(
⋃∞

k=1 E(k)) = 0. Thus the double sequence (E(k)
m )(m,k)∈N×N ⊂ A satisfies the

condition: for any fixed k = 1, 2, . . ., as m→ ∞,

E(k)
m ↘ E(k) and λ

( +∞⋃
k=1

E(k)
)

= 0.

By using the condition [E], we get increasing sequences (mi)i∈N and (ki)i∈N, such that

lim
j→+∞

λ
( +∞⋃

i= j

E(ki)
mi

)
= 0.
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For any δ > 0, we take j0 such that

λ
( +∞⋃

i= j0

E(ki)
mi

)
< δ.

Let Aδ = Ω −
⋃+∞

i= j0 E(ki)
mi , then Aδ ∈ A and

λ(Ω − Aδ) = λ
( +∞⋃

i= j0

E(ki)
mi

)
< δ.

In the following we prove that (Γn)n∈N converges to Γ on Aδ uniformly.
Noting that

Aδ =

∞⋂
i= j0

∞⋂
n=mi

{
ω ∈ Ω :

[(
Γn \

1
ki

Γ
)
∪

(
Γ \

1
ki

Γn
)]

(ω) ∩ B(0, ki) = ∅

}
,

then for any i ≥ j0, we have

Aδ ⊂

∞⋂
n=mi

{
ω ∈ Ω :

[(
Γn \

1
ki

Γ
)
∪

(
Γ \

1
ki

Γn
)]

(ω) ∩ B(0, ki) = ∅

}
,

i.e.,

Aδ ⊂

{
ω ∈ Ω :

[(
Γn \

1
ki

Γ
)
∪

(
Γ \

1
ki

Γn
)]

(ω) ∩ B(0, ki) = ∅

}
whenever n ≥ mi. Therefore{

ω ∈ Ω :
[(

Γn \
1
ki

Γ
)
∪

(
Γ \

1
ki

Γn
)]

(ω) ∩ B(0, ki) , ∅
}
∩ Aδ = ∅

whenever n ≥ mi, i.e., Wm(1
k , k, 0) ∩ Aδ = ∅ whenever n ≥ mi.

On the other hand, for any ε > 0 and any compact subset K of Rd, we take i0 such that i0 > j0,
1/ki0 < ε and K ⊂ B(0, ki0). Take n(ε,K) = mi0 . Then as n ≥ n(ε,K),{

ω ∈ Ω :
[(

Γn \
1
ki0

Γ
)
∪

(
Γ \

1
ki0

Γn)
]
(ω) ∩ B(0, ki0) , ∅

}
∩ Aδ = ∅.

Noting that[(
Γn \

1
ki0

Γ
)
∪

(
Γ \

1
ki0

Γn

)]
(ω) ∩ B(0, ki0) ⊃

[(
Γn \ εΓ

)
∪

(
Γ \ εΓn

)]
(ω) ∩ K,

we have {
ω ∈ Ω :

[(
Γn \ εΓ

)
∪

(
Γ \ εΓn

)]
(ω) ∩ K , ∅

}
∩ Aδ = ∅

whenever n ≥ n(ε,K). That is, (4−1
εn (K)) ∩ Aδ = ∅ whenever n ≥ n(ε,K). This shows Γn

a.u
−→ Γ[λ].

(ii) ⇒ (i) Considering the singleton-valued functions, it is similar to the proof of Theorem 1
in [6]. �
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As a direct consequence of Theorem 3.1 and Proposition 3.1(1), we obtain the following result. It is
a version of Egoroff’s theorem of sequence of random sets for continuous non-additive measures.

Corollary 3.1. Let λ be a continuous non-additive measure on (Ω,A) and λ(Ω) < ∞. Then, for all
(Γn)n∈N ⊂ R[Ω] and all Γ ∈ R[Ω],

Γn
a.e.
−→ Γ[λ] =⇒ Γn

a.u.
−→ Γ[λ]. (3.4)

Remark 3.1. A non-additive measure λ is called null-additive [13, 19], if λ(P ∪ Q) = λ(P) whenever
P,Q ∈ A and λ(Q) = 0. In [11] the above Corollary 3.1 was obtained under the assumption of
null-additivity of non-additive measures. In fact, the condition of null-additivity can be abandoned.

A non-additive measure λ is called to have property (S ), if for any (An)n∈N with limn→+∞λ(An) = 0,
there exists a subsequence (Ani)i∈N of (An)n∈N such that λ

(⋂∞
k=1

⋃∞
i=k Ani

)
= 0 (see [13,18]). If λ is strong

order continuous and has property (S), then λ fulfils the condition [E] (see [6, 7]). Thus, as a special
result of Theorem 3.1, we obtain following corollary:

Corollary 3.2. (Li et al. [8, Theorem 1]) Let λ ∈ M. If λ is strongly order continuous and has property
(S), then the formula (3.3) holds for all (Γn)n∈N ⊂ R[Ω] and all Γ ∈ R[Ω].

From Proposition 3.1(2) we get a necessary condition of the validity of formula (3.3).

Corollary 3.3. Let λ ∈ M. If for all (Γn)n∈N ⊂ R[Ω] and all Γ ∈ R[Ω],

Γn
a.e.
−→ Γ[λ] =⇒ Γn

a.u.
−→ Γ[λ], (3.5)

then λ is strongly order continuous.

3.2. The pseudo-versions of Egoroff’s theorems for random sets

Since non-additive measures lose additivity, the two concepts of almost everywhere convergence
and almost uniform convergence have so-called “pseudo-” variants, respectively: “pseudo-almost
everywhere convergence” and “pseudo-almost uniform convergence” ( [19]). Thus, Egoroff’s theorem
is divided into four different forms in the case of non-additive measures (see [9, 19]). As we have stated,
the above Theorem 3.1, which only concerns convergence a.e. and convergence a.u., is referred to as
the standard-version of Egoroff’s theorem. In the following we show other three pseudo-versions of
Egoroff’s theorem for random sets on finite non-additive measure spaces. They were established in the
context of (pseudo-)convergence.

Theorem 3.2. Let λ ∈ M and λ(Ω) < ∞. Then,
(1) for all (Γn)n∈N ⊂ R[Ω] and all Γ ∈ R[Ω],

Γn
p.a.e.
−→ Γ[λ] =⇒ Γn

p.a.u.
−→ Γ[λ] (3.6)

if and only if λ fulfils condition [E].
(2) for all (Γn)n∈N ⊂ R[Ω] and all Γ ∈ R[Ω],

Γn
a.e.
−→ Γ[λ] =⇒ Γn

p.a.u.
−→ Γ[λ] (3.7)
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if and only if λ fulfils condition [E].
(3) for all (Γn)n∈N ⊂ R[Ω] and all Γ ∈ R[Ω],

Γn
p.a.e.
−→ Γ[λ] =⇒ Γn

a.u.
−→ Γ[λ] (3.8)

if and only if λ fulfils condition [E].

Proof. It is similar to the proof of Theorem 3.1. �

Remark 3.2. Recently, Li et al. ( [10]) established the generalized Egoroff theorem (for real-valued
measurable functions sequence) concerning a pair of non-additive measures by using type E of absolute
continuity for non-additive measures. Similarly, the generalized Egoroff theorem in [10] can be extended
to the cases relating to the sequence of random sets (i.e., measurable closed-valued mappings) in the
framework involving a pair of non-additive measures.

4. Conclusions

We have shown four versions of Egoroff’s theorem for measurable closed-valued multifunctions (i.e.,
random sets) sequence on general non-additive measure spaces (Theorem 3.1 and Theorem 3.2(1),(2)
and (3)). As we have seen, the necessary and sufficient conditions under which these four kinds of
Egoroff’s theorem remain valid for non-additive measures are respectively presented. In our discussion
the condition [E] and condition [E] of non-additive measures play important roles and the continuity of
non-additive measures is not required. Therefore the previous related results in [8, 11] are improved and
generalized.
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