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1. Introduction

It is well-known that homoclinic solutions play an important role in analyzing the chaos of
dynamical systems. Hence, it is significative to deal with homoclinic solutions of dynamical systems.
In the present paper, let Z and R be the set of integers and real numbers, respectively. For parameter
λ > 0, we investigate the existence of two nontrivial homoclinic solutions for the following
nonperiodic fourth-order difference equation

∆4u(t − 2) + ω∆2u(t − 1) + a(t)u(t) = f (t, u(t)) + λh(t)|u(t)|p−2u(t), t ∈ Z. (1.1)

Here ω is a given constant, 1 ≤ p < 2. f (t, u) : Z × R → R is continuous in u and ∂F(t,u)
∂u = f (t, u).

a(t) : Z → R and h(t) : Z → R+. Let ∆u(t) = u(t + 1) − u(t) be the forward difference operator and
define ∆0u(t) = u(t), ∆iu(t) = ∆(∆i−1u(t)) for i ≥ 1. As usual, we say that a solution u = {u(t)} of (1.1)
is homoclinic (to 0) if lim

|t|→+∞
u(t) = 0. In addition, if u(t) , 0, then u is called a nontrivial homoclinic

solution.
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Difference equations possess theoretical background and practical significance. For example, [1]
proposes a Dirichlet boundary value problem of difference equation to represent the amplitude of the
motion of every particle in the string, [2] uses difference equations to study the impact of dispersal of
a two-patch SIR disease model and [3] studies Wolbachia infection in mosquito population based on
discrete models. Consequently, difference equations have attracted many researchers’ attentions and
rich results are obtained. To mention a few, [4–6] establish criteria for the existence and multiplicity
of solutions, [7–11] focus on sign-changing solutions and [12–18] deal with homoclinic solutions or
heteroclinic solutions.

Consider (1.1), it has been put forward as a discrete mathematical model for the study of pattern
formation in physics and mechanics and deeply studied. For example, [19, 20] investigate
sign-changing of a special case of (1.1) by the invariant sets of descending flow. As mention to
homoclinic solutions, which play an important role in analyzing the chaos of dynamical systems,
there are many publications such as [21] studies (1.1) in a special form with periodic assumption
and [22, 23] prove that some special kind of (1.1) admits one nontrivial homoclinic solution. To the
best of our knowledge, as considering homoclinic solutions for fourth order difference equations
similar to (1.1), in the most known results of the existence of one non-zero homoclinic solution
usually depend on periodic conditions or on the multiplicity with assumption of odevity on nonlinear
terms. Meanwhile, using a compactness lemma and variational techniques, we achieve two nontrivial
homoclinic solutions for (1.1) not only with neither periodic conditions nor odd-even requirements on
nonlinear terms, but also with a perturbation. In some sense that our result improves and extends
some known results.

Let constants c0 be given in Lemma 2.2 and cs be the best constant for the embedding of a Hilbert
space X, which is defined in Section 2, in Ls, 2 ≤ s < +∞ and q(t) : Z→ R+ with max

t∈Z
{q(t)} = q > c0c2

2.
Write

µ∗ = inf{‖u‖E : u ∈ E,
+∞∑

t=−∞

q(t)u2(t) = 1}. (1.2)

Remark 1.1. µ∗ defined as (1.2) is reasonable. We state the proof of it in Lemma 3.2.

With the above notations, now we establish our main result:

Theorem 1.1. Let h(t) : Z → R+ with max
t∈Z
{h(t)} = h > 0. Assume a(t) : Z → R and there exists a

constant a1 such that ω ≤ 2
√

a1 and

0 < a1 ≤ a(t)→ +∞, as |t| → +∞. (1.3)

Further, for i ≥ 1, suppose f (t, u) : Z×R→ R is continuous in u and the following assumptions hold:
(F1) f (t, u) ≡ 0 for all u < 0, t ∈ Z and there exists b(t) : Z→ R+ with max

t∈Z
{b(t)} = b < c0c2

2
2 such that

lim
u→0+

f (t, u)
ui = b(t) ∀t ∈ Z,

and
f (t, u)

ui ≥ b(t) ∀u > 0, t ∈ Z;
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(F2)

lim
u→+∞

f (t, u)
ui = q(t) ∀t ∈ Z;

(F3) there exist two constants θ > 2 and c0c2
2(θ−2)
4θ < d0 <

c0c2
2(θ−2)
2θ , such that

F(t, u) −
1
θ

f (t, u)u ≤ d0u2, ∀u > 0, t ∈ Z. (1.4)

Then either (i) i = 1 and µ∗ < 1 or (ii) i > 1, there exists Λ0 > 0 such that (1.1) admits at least two
distinct homoclinic solutions for every λ ∈ (0,Λ0).

Remark 1.2. The assumptions in Theorem 1.1 are feasible. For example, take b(t) =
c0c2

2
4 for all t ∈ Z.

It follows that 0 < max
t∈Z
{b(t)} =

c0c2
2

4 <
c0c2

2
2 . Let

f (t, u) =


12
π

b(t)ui arctan(u +

√
6 −
√

2
√

6 +
√

2
), if u ≥ 0, for all t ∈ Z;

0, if u < 0, for all t ∈ Z;
(1.5)

then

F(t, u) =


12
π

b(t)
∫ u

0
xi arctan(x +

√
6 −
√

2
√

6 +
√

2
)dx, if u ≥ 0, for all t ∈ Z;

0, if u < 0, for all t ∈ Z.

Consequently,

lim
u→0+

f (t, u)
ui = lim

u→0+

12
π

b(t) arctan(u +
√

6−
√

2
√

6+
√

2
)ui

ui = b(t) ∀t ∈ Z,

and

lim
u→+∞

f (t, u)
ui = lim

u→+∞

12
π

b(t) arctan(u +
√

6−
√

2
√

6+
√

2
)ui

ui = 6b(t) =
3c0c2

2

2
:= q(t) > c0c2

2 ∀t ∈ Z,

which means the assumptions (F1) and (F2) are satisfied.
Moreover, from the expression of F(t, u), for all t ∈ Z and u ≥ 0, we have

F(t, u) =
12
π

b(t)
∫ u

0
xi arctan(x +

√
6 −
√

2
√

6 +
√

2
)dx

=
12
π

b(t)
xi+1

i + 1
arctan(x +

√
6 −
√

2
√

6 +
√

2
) −

12
π

b(t)
1

i + 1

∫ u

0

xi+1

1 + (x +
√

6−
√

2
√

6+
√

2
)
2 dx.

Obviously, xi+1

1+(x+
√

6−
√

2
√

6+
√

2
)
2 > 0 for x > 0, which follows that

∫ u

0
xi+1

1+(x+
√

6−
√

2
√

6+
√

2
)
2 dx ≥ 0. Then one can verify that

condition (F3) is satisfied.
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Remark 1.3. Our result improves and generalizes some known results. For example, similarly, [23]
gives that there exists one homoclinic solution for the following difference equation

∆2(ϕp(∆2u(t − 2))) − a∆(ϕp(∆u(t − 1))) + λV(t)ϕp(u(t)) = f (t, u(t)). (1.6)

(1.1) can be regarded as a special case of (1.6) when p = 2. Our result Theorem 1.1 points out that
(1.1) has at least two nontrivial homoclinic solutions. Meanwhile, according to [23], (1.1) possesses
one homoclinic solution. Therefore, our result improves the result in [23] in some sense.

The organization of the paper is as follows: After this introduction, we present some basic lemmas
and establish the corresponding variational functional to (1.1) in Section 2. Section 3 provides the
detailed proof of our main result.

2. Variational structure and basic lemmas

In this section, we give some notations and basic lemmas to prepare for the proof of our main result
Theorem 1.1.

Denote u = {u(t)}t∈Z = (· · · , u(−t), · · · , u(−1), u(0), u(1), · · · , u(t), · · · ). Let the set of all two-sided
sequences S = {u = {u(t)} : u(t) ∈ R, t ∈ Z}, then S is a vector space with au + bv = {au(t) + bv(t)} for
u, v ∈ S , a, b ∈ R. Define a subspace E of S as

E =

u ∈ S :
+∞∑

t=−∞

[
|∆2u(t − 1)|2 − ω|∆u(t − 1)|2 + a(t)|u(t)|2

]
< +∞

 .
For any u, v ∈ E, define

< u, v >E =

+∞∑
t=−∞

[
∆2u(t − 1) · ∆2v(t − 1) − ω∆u(t − 1) · ∆v(t − 1) + a(t)u(t) · v(t)

]
.

For later use, we define another Hilbert space (X, < u, v >X), where

X =

u ∈ S :
+∞∑

t=−∞

[
|∆2u(t − 1)|2 + |∆u(t − 1)|2 + |u(t)|2

]
< +∞


and, for any u, v ∈ X, the inner product is given by

< u, v >X =

+∞∑
t=−∞

[
∆2u(t − 1) · ∆2v(t − 1) + ∆u(t − 1) · ∆v(t − 1) + u(t) · v(t)

]
.

Then the corresponding norm is

‖u‖X =
√
< u, u >X =

 +∞∑
t=−∞

[
|∆2u(t − 1)|2 + |∆u(t − 1)|2 + |u(t)|2

]1/2

, ∀u, v ∈ X.

In what follows, let

Ls =

u ∈ S : ‖u‖Ls =

 +∞∑
t=−∞

|u(t)|s


1
s

< +∞
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denote the space of functions whose s-th powers are summable on Z and

‖u‖L∞ = sup
t∈Z
|u(t)| < +∞.

Thus the following embedding between Ls spaces holds,

Lq ⊂ Lp, ‖u‖Lp ≤ ‖u‖Lq , 1 ≤ q ≤ p ≤ ∞.

Now we start to consider the variational functional of (1.1). Define a functional J : E → R as

J(u) =
1
2

+∞∑
t=−∞

[
∆2u(t − 1) · ∆2u(t − 1) − ω∆u(t − 1) · ∆u(t − 1) + a(t)u(t) · u(t)

]
−

+∞∑
t=−∞

F(t, u(t)) − λ
+∞∑

t=−∞

h(t)|u(t)|p.

(2.1)

Then the continuity of f indicates that J ∈ C1(E,R) and, for any u, v ∈ E, its derivative is expressed as

< J′(u), v >E=

+∞∑
t=−∞

[
∆2u(t − 1) · ∆2v(t − 1) − ω∆u(t − 1) · ∆v(t − 1) + a(t)u(t) · v(t)

]
−

+∞∑
t=−∞

f (t, u(t)) · v(t) − λ
+∞∑

t=−∞

h(t)|u(t)|p−2u(t) · v(t),

which means that u ∈ E is a critical point of J if and only if u is a homoclinic solution of (1.1).
Recall the definition of Cerami sequence and the variant version of the mountain pass theorem from

critical point theory, which are helpful for us to seek critical points of (2.1).

Definition 2.1. Let J ∈ C1(E,R). A sequence {un} ∈ E is called a Cerami sequence ((C)c sequence for
short) for J if J(un)→ c for some c ∈ R and (1 + ‖un‖)J′(un)→ 0 as n→ ∞. If any (C)c sequence for
J possesses a convergent subsequence, then J satisfies the (C)c condition.

Lemma 2.1. (Mountain pass theorem) ( [24]) Let E be a real Banach space with its dual space E∗,
and suppose that I ∈ C1(E,R) satisfies

max{I(0), I(e)} ≤ µ < η ≤ inf
‖u‖=ρ

I(u),

for some µ < η, ρ > 0 and e ∈ E with ‖e‖ > ρ. Let ĉ ≥ η be characterized by

ĉ = inf
γ∈Γ

max
0≤τ≤1

I (γ(τ)) ,

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of continuous paths joining 0 and e, then
there exists a sequence {un} ⊂ E such that

I(un)→ ĉ ≥ η and (1 + ‖un‖E∗)‖I
′(un)‖E∗ → 0, as n→ ∞.

Remark 2.1. Similar to [23], Lemma 2.1 allows us to find a (C)c sequence for J.
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In the following, we establish some compactness conditions.

Lemma 2.2. Suppose a(t) ≥ a1 > 0 and ω < 2
√

a1, then for any u ∈ E

+∞∑
t=−∞

[
∆2u(t − 1) · ∆2u(t − 1) − ω∆u(t − 1) · ∆u(t − 1) + a(t)u(t) · u(t)

]
≥ c0‖u‖2X (2.2)

is true for some constant c0 > 0.

Proof. Since ω < 2
√

a1, we divide it into two cases.
Case 1. ω < 0. Take c0 = min{−ω, a1, 1}, obviously,

+∞∑
t=−∞

[
|∆2u(t − 1)|2 − ω|∆u(t − 1)|2 + a(t)|u(t)|2

]
≥c0

+∞∑
t=−∞

[
|∆2u(t − 1)|2 + |∆u(t − 1)|2 + |u(t)|2

]
which implies that (2.2) is true.
Case 2. 0 ≤ ω < 2

√
a1. In this case, it is easy to get ω2 < 4a1, then there exists k ∈ (0, 3) satisfying

3 > k ≥ 1 − ω − 2a1 +

√
(ω + 2a1 − 1)2 + 3(ω + 1)2.

Hence,
k2 + 2k(ω + 2a1 − 1) − 3(ω + 1)2 ≥ 0. (2.3)

Consider

g(ξ) := ξ4 +

(
1 −

3(ω + 1)
k

)
ξ2 +

(
1 +

3(a1 − 1)
k

)
∀ξ ∈ R. (2.4)

Denote

4 :=
(
1 −

3(ω + 1)
k

)2

− 4
(
1 +

3(a1 − 1)
k

)
,

then (2.3) ensures
4 ≤ 0,

which indicates that
g(ξ) ≥ 0, ∀ξ ∈ R.

Therefore, for k ∈ (0, 3), we have

(ω + 1)ξ2 − a1 + 1 ≤
k
3

(1 + ξ2 + ξ4), ∀ξ ∈ R. (2.5)

Analogous to [25], for any u(t) ∈ X, we take

u(t) =
∑
t∈Z

eiζtū(ζ),
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then
∆u(t − 1) = (1 − eiζ)

∑
t∈Z

eiζtū(ζ) and ∆2u(t − 1) = (1 − eiζ)2
∑
t∈Z

eiζtū(ζ).

Denote ξ = 1 − eiζ , ϕ(ζ), then ζ = ϕ−1(ξ). Now we have

u(t) =
∑
t∈Z

eiζtū(ζ) =
∑
t∈Z

eiϕ−1(ξ)tū(ϕ−1(ξ)) , û(ξ)

and
∆u(t − 1) = ξû(ξ), ∆2u(t − 1) = ξ2û(ξ).

Thanks to (2.5), there has

+∞∑
t=−∞

[
|∆2u(t − 1)|2 − ω|∆u(t − 1)|2 + a(t)|u(t)|2

]
≥

+∞∑
t=−∞

[
|∆2u(t − 1)|2 − ω|∆u(t − 1)|2 + a1|u(t)|2

]
=

+∞∑
ξ=−∞

(
ξ4 + ξ2 + 1 − (ω + 1)ξ2 + a1 − 1

)
|û(ξ)|2

≥

+∞∑
ξ=−∞

(
ξ4 + ξ2 + 1 −

k
3

(ξ4 + ξ2 + 1)
)
|û(ξ)|2

=(1 −
k
3

)
+∞∑
ξ=−∞

(ξ4 + ξ2 + 1)|û(ξ)|2

=(1 −
k
3

)‖u‖2X.

(2.6)

Choose c0 =

√
1 − k

3 > 0, then (2.6) leads to ‖u‖2E ≥ c0‖u‖2X, that is, (2.2) holds for 0 ≤ ω < 2
√

a1.
Therefore, Lemma 2.2 is true and the proof is completed. �

With the help of Lemma 2.2, we obtain that < u, u >E is positive for all nonzero u ∈ E and E is a
Hilbert space. Here and hereafter, we write

‖u‖2E =

+∞∑
t=−∞

[
|∆2u(t − 1)|2 − ω|∆u(t − 1)|2 + a(t)|u(t)|2

]
.

Now we state the main compactness lemma and present its proof in detail.

Lemma 2.3. Let (1.3) hold and ω < 2
√

a1. Then, for 2 ≤ s ≤ +∞, E is compactly embedded in Ls.

Proof. First, we prove Lemma 2.3 holds for s = 2.
Define

α(A) = inf
|t|>A

a(t), A ∈ [0,+∞).

From (1.3), α(A) increases and α(A)→ +∞ as |t| → +∞.
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Let K be a bounded subset of E. It follows that, if u ∈ K, there exists a constant M > 0 such that
‖u‖E ≤ M. Thanks to (2.2), we have

‖u‖2X ≤
1
c0
‖u‖2E ≤

M2

c0
and ‖u‖2L2 ≤

M2

c0
, ∀u ∈ K.

Hence, we have

+∞∑
t=−∞

a(t)|u(t)|2

=

+∞∑
t=−∞

[
|∆2u(t − 1)|2 − ω|∆u(t − 1)|2 + a(t)|u(t)|2 − |∆2u(t − 1)|2 + ω|∆u(t − 1)|2

]
≤

+∞∑
t=−∞

[
|∆2u(t − 1)|2 − ω|∆u(t − 1)|2 + a(t)|u(t)|2 + |ω||∆u(t − 1)|2

]
≤ M2 + |ω|

+∞∑
t=−∞

|∆u(t − 1)|2

≤ M2 + 4|ω|
+∞∑

t=−∞

|u(t)|2

≤ M2 + |ω| ·
4M2

c0
.

Write b̂ , M2 + |ω| · 4M2

c0
. For any ε > 0, take A0 large enough such that

4b̂
α(A0)

<
ε2

2
. (2.7)

Since K ⊂ E is bounded by M, there are u1, u2, · · · , um ∈ K such that for any u ∈ K, there exists some
ul (1 ≤ l ≤ m) satisfying

A0∑
t=−A0

|u(t) − ul(t)| ≤
ε
√

2
(2.8)

Combining (2.7) with (2.8), it yields

+∞∑
t=−∞

|u(t) − ul(t)|2 =
∑
|t|≤A0

|u(t) − ul(t)|2 +
∑
|t|>A0

|u(t) − ul(t)|2 (2.9)

≤
ε2

2
+

∑
|t|>A0

a(t)
α(A0)

|u(t) − ul(t)|2

<
ε2

2
+

4b̂
α(A0)

< ε2

which implies ‖u − ul‖L2 → 0.
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Next we verify that our claim is true for s = +∞. Notice that for any n ∈ N, T ∈ Z, 2 ≤ k ∈ N and
u ∈ E, thanks to the Newton-Lebnitz formula of indefinite summation and step by step summation [26],
we have

t−1∑
s=T

[
(s − T )n+1

(t − T )n ∆u(s)
]

= (t − T )u(t) −
t−1∑
s=T

[
u(s + 1)∆

(s − T )n+1

(t − T )n

]
and

T+k−1∑
s=t

[
(T + k − s)n+1

(T + k − t)n ∆u(s)
]

= (T + k − t)u(t) −
T+k−1∑

s=t

[
u(s + 1)∆

(T + k − s)n+1

(T + k − t)n

]
.

Hence, for all T ≤ t ≤ T + k − 1, we have

ku(t) =

t−1∑
s=T

[
(s − T )n+1

(t − T )n ∆u(s) + u(s + 1)∆
(s − T )n+1

(t − T )n

]

+

T+k−1∑
s=t

[
(T + k − s)n+1

(T + k − t)n ∆u(s) + u(s + 1)∆
(T + k − s)n+1

(T + k − t)n

]
.

On the other hand, owing to aθ + bθ ≤ (a + b)θ holds for a, b ≥ 0 and θ ≥ 1, it follows

t−1∑
s=T

∣∣∣∣∣∣ (s − T )n+1

(t − T )n ∆u(s)

∣∣∣∣∣∣ +

T+k−1∑
s=t

∣∣∣∣∣∣ (T + k − s)n+1

(T + k − t)n ∆u(s)

∣∣∣∣∣∣
≤

1
(t − T )n

 t−1∑
s=T

|(s − T )n+1
|
2
1/2

·

 t−1∑
s=T

|∆u(s)|2
1/2

+
1

(T + k − t)n

T+k−1∑
s=t

|(T + k − s)n+1
|
2
1/2

·

T+k−1∑
s=t

|∆u(s)|2
1/2

=
1

√
2n + 3

(t − T )3/2

 t−1∑
s=T

|∆u(s)|2
1/2

+
1

√
2n + 3

(T + k − t)3/2

T+k−1∑
s=t

|∆u(s)|2
1/2

≤
1

√
2n + 3

[
(t − T )3/2 + (T + k − t)3/2

] T+k−1∑
s=T

|∆u(s)|2
1/2

≤
k3/2

√
2n + 3

T+k−1∑
s=T

|∆u(s)|2
1/2

.

(2.10)

In view of
√

a+
√

b
√

2
≤
√

a + b (a, b ≥ 0), similar to (2.10), we have

t−1∑
s=T

∣∣∣∣∣∣u(s + 1)∆
(s − T )n+1

(t − T )n

∣∣∣∣∣∣ +

T+k−1∑
s=t

∣∣∣∣∣∣u(s + 1)∆
(T + k − s)n+1

(T + k − t)n

∣∣∣∣∣∣
≤

√
2k(n + 1)
√

2n + 1

T+k−1∑
s=T

|u(s + 1)|2
1/2

.

(2.11)
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Therefore, for all T ≤ t ≤ T + k − 1 and 2 ≤ k ∈ N, with the aid of (2.10) and (2.11), we have

|u(t)| ≤

√
k

√
2n + 3

T+k−1∑
s=T

|∆u(s)|2
1/2

+

√
2
√

k
·

n + 1
√

2n + 1

T+k−1∑
s=T

|u(s + 1)|2
1/2

, (2.12)

which implies that

|u(t) − v(t)|

≤

√
k

√
2n + 3

∑
|s|≥A

|∆ (u(s) − v(s)) |2


1/2

+

√
2(n + 1)
√

k(2n + 1)

∑
|s|≥A

|u(s + 1) − v(s + 1)|2


1/2

≤

√
k

√
2n + 3


 +∞∑

s=−∞

|∆u(s)|2
1/2

+

 +∞∑
s=−∞

|∆v(s)|2
1/2 +

√
2(n + 1)
√

k(2n + 1)∑
|s|>A

a(s)|u(s + 1) − v(s + 1)|2

α(A)


1/2

=
4M
√

k
√

2n + 3
+

√
2(n + 1)
√

k(2n + 1)
·

2
√

b̂
√
α(A)

holds for any u, v ∈ K, A > 0 and all |t| > A. For any ε > 0, take first n large enough such that

4M
√

k
√

2n + 3
<
ε

2
.

Notice that 2 ≤ k ∈ N, then, for any ε > 0, choose A0 large enough such that
√

2(n + 1)
√

k(2n + 1)
·

2
√

b̂
√
α(A0)

<
ε

2
.

Therefore, we can draw a conclusion that

max
|t|>A0
|u(t) − v(t)| < ε, ∀u, v ∈ K. (2.13)

By the same method of (2.8), it follows that

max
|t|≤A0
|u(t) − ul(t)| < ε. (2.14)

Combing (2.13) with (2.14), we obtain

‖u − ul‖L∞ < ε. (2.15)

Finally, we accomplish the proof of Lemma 2.3 by verifying it is correct for 2 < s < +∞. Given an
arbitrary u ∈ E, there has

+∞∑
t=−∞

|u(t)|s =

+∞∑
t=−∞

(
|u(t)|s−2

· |u(t)|2
)
≤ max

t∈N
|u(t)|s−2

·

+∞∑
t=−∞

|u(t)|2 = ‖u‖s−2
L∞ · ‖u‖

2
L2 , (2.16)

which implies that K is precompact in Ls. Combing (2.9), (2.15) and (2.16), we complete the proof of
Lemma 2.3 immediately. �
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3. Proof of the main results

In this section, we intend to prove the main result at length. Now we are in the position to state
the following several lemmas which guarantee that the functional J, defined by (2.1), has the mountain
pass geometry at first.

Lemma 3.1. Let a(t) and ω satisfy the assumptions in Theorem 1.1 and the conditions (F1) and (F2)
hold. Then there exist Λ0 > 0 and constants ρ, η > 0 such that

J(u)|‖u‖E=ρ ≥ η > 0

for every λ ∈ (0,Λ0).

Proof. For every ε > 0, notice that the condition (F1) implies that there exists a constant δ > 0 such that
f (t, s) ≤ (b+ε)si ≤ (b+ε)s holds for 0 < s < δ. From (F2), lim

s→∞

f (t,s)
si = q(t) leads to lim

s→∞

f (t,s)
si+1 = 0, which

implies that there exists a constant M > 0 big sufficiently such that f (t,s)
si+1 ≤ ε, that is, f (t, s) ≤ εsi+1 with

s > M. Further, since f (t, s) is continuous, it is not difficult to choose a constant C such that f (t,s)
si+1 ≤ C

for δ ≤ s ≤ M. Therefore,

f (t, s) ≤ (b + ε)s + εsi+1 + Csi+1, ∀s ∈ R, (3.1)

which indicates that there exist Cε > 0 and r ≥ i + 2 such that

F(t, s) ≤
b + ε

2
s2 +

Cε

r
|s|r, ∀s ∈ R. (3.2)

For 2 ≤ r < +∞, let cr be the best constants for the embedded of X in Lr. With the aid of Lemma 2.2,
we get

‖u‖rE ≥ c
r
2
0 ‖u‖

r
X ≥ c

r
2
0 cr

r‖u‖
r
Lr ,

that is,

‖u‖rLr ≤
1

c
r
2
0 cr

r

‖u‖rE.

Together with (3.2), for all u ∈ E, one can obtain

+∞∑
t=−∞

F(t, u(t)) ≤
b + ε

2

+∞∑
t=−∞

|u(t)|2 +
Cε

r

+∞∑
t=−∞

|u(t)|r

=
b + ε

2
‖u‖2L2 +

Cε

r
‖u‖rLr

≤
b + ε

2c0c2
2

‖u‖2E +
Cε

rc
r
2
0 cr

r

‖u‖rE.
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Therefore,

J(u) =
1
2
‖u‖2E −

+∞∑
t=−∞

F(t, u(t)) − λ
+∞∑

t=−∞

h(t)|u(t)|p

≥
1
2
‖u‖2E −

b + ε

2c0c2
2

‖u‖2E −
Cε

rc
r
2
0 cr

r

‖u‖rE − λc−
p
2

0 c−p
p h‖u‖p

E

= ‖u‖p
E

1
2

(
1 −

b + ε

c0c2
2

)
‖u‖2−p

E −
Cε

rc
r
2
0 cr

r

‖u‖r−p
E − λc−

p
2

0 c−p
p h

 .
(3.3)

By the last equation in (3.3), select ε =
c0c2

2
2 − b > 0 and denote t = ‖u‖E ≥ 0, we define

g(t) =
1
4

t2−p −
Cε

rc
r
2
0 cr

r

tr−p.

Since r > 2 and 1 ≤ p < 2, it is easy to find that g(t) will get its maximum value at t =

(
rc

r
2
0 cr

r(2−p)
4Cε (r−p)

) 1
r−2

,

ρ > 0. Hence

max
t≥0

g(t) = g(ρ) =
r − 2

4(r − p)

 (2 − p)rc
r
2
0 cr

r

4(r − p)Cε


2−p
r−2

, M > 0.

Combing with (3.3), it yields that there exists Λ0 =
Mc

p
2
0 cp

p

h > 0 such that we can find a constant η > 0
which satisfies J(u)|‖u‖E=ρ ≥ η for every λ ∈ (0,Λ0) . �

Lemma 3.2. Let ρ and Λ0 be defined in Lemma 3.1. Suppose that the conditions (F1) and (F2) hold,
then for every λ ∈ (0,Λ0) there exists e ∈ E with ‖e‖E > ρ such that J(e) < 0 holds for either i = 1 and
µ∗ < 1 or i > 1.

Proof. We give the proof in two cases.
Case I. If i = 1 and µ∗ < 1, we first declare µ∗, defined as (1.2), is reasonable. Let u ∈ E satisfy
+∞∑

t=−∞
q(t)u2(t) = 1. Then

1 =

+∞∑
t=−∞

q(t)u2(t) ≤ q
+∞∑

t=−∞

u2(t) = q · ‖u‖2L2 ,

which means that ‖u‖2L2 ≥
1
q . In view of Lemma 2.2, we get

‖u‖2E ≥ c0‖u‖2X ≥ c0c2
2‖u‖

2
L2 ≥

c0c2
2

q
> 0.

Thus µ∗ ≥ c0c2
2

q > 0. Aim to get µ∗ is attainable, let {un} ∈ E be a minimizing sequence of (1.2), then {un}

is bounded and satisfies
+∞∑

t=−∞
q(t)u2

n(t) = 1. Choose a subsequence of {un}, without loss of generality,
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still denoted by {un}. In view of Lemma 2.3, there exists φ1 ∈ E such that un ⇀ φ1 weakly in E and
un → φ1 strongly in L2. Hence

+∞∑
t=−∞

q(t)u2
n(t)→

+∞∑
t=−∞

q(t)φ2
1(t) as n→ ∞, and

+∞∑
t=−∞

q(t)φ2
1(t) = 1.

Therefore,

µ∗ ≤

+∞∑
t=−∞

[(
∆2φ1(t − 1)

)2
− ω(∆φ1(t − 1))2 + a(t)φ2

1(t)
]

≤ lim
n→∞

inf
+∞∑

t=−∞

[(
∆2un(t − 1)

)2
− ω(∆un(t − 1))2 + a(t)u2

n(t)
]

= µ∗,

which indicates that µ∗ =
+∞∑

t=−∞

[(
∆2φ1(t − 1)

)2
− ω(∆φ1(t − 1))2 + a(t)φ2

1(t)
]

= ‖φ1‖
2
E.

Since µ∗ < 1, it is not difficult to choose 0 ≤ ϕ ∈ E with
+∞∑

t=−∞
q(t)ϕ2(t) = 1 such that ‖ϕ‖E < 1.

Using the given condition (F2), we have

lim
s→+∞

J(sϕ)
s2 =

1
2
‖ϕ‖2E − lim

s→+∞

+∞∑
t=−∞

F(t, sϕ(t))
s2 − lim

s→+∞

λ

s2

+∞∑
t=−∞

h(t)|sϕ(t)|p

≤
1
2
‖ϕ‖2E − lim

s→+∞

+∞∑
t=−∞

F(t, sϕ(t))
s2

=
1
2
‖ϕ‖2E −

+∞∑
t=−∞

lim
s→+∞

f (t, sϕ(t)) · ϕ(t)
2s

=
1
2
‖ϕ‖2E −

+∞∑
t=−∞

lim
s→+∞

f (t, sϕ(t)) · ϕ(t)
2sϕ(t)

· ϕ(t)

=
1
2
‖ϕ‖2E −

1
2

+∞∑
t=−∞

q(t)ϕ2(t)

=
1
2

(‖ϕ‖2E − 1)

< 0,

which tells us that J(sϕ)→ −∞ as s→ +∞. Then there exists e ∈ E with ‖e‖E > ρ such that J(e) < 0.
Case II. If i > 1, in view of q(t) : Z→ R+, we find there exists ψ ∈ E such that

+∞∑
t=−∞

q(t)ψi+1(t) > 0.
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In the same manner as Case I, we have

lim
s→+∞

J(sψ)
si+1 = lim

s→+∞

1
2‖sψ‖

2
E −

+∞∑
t=−∞

F(t, sψ(t)) − λ
+∞∑

t=−∞
h(t)|sψ(t)|p

si+1

≤ lim
s→+∞

‖ψ‖2E
2si−1 − lim

s→+∞

+∞∑
t=−∞

F(t, sψ(t))
si+1

= lim
s→+∞

‖ψ‖2E
2si−1 −

1
i + 1

+∞∑
t=−∞

q(t)ψi+1(t)

≤ −
1

i + 1

+∞∑
t=−∞

q(t)ψi+1(t)

< 0.

Therefore, there exists e ∈ E with ‖e‖E > ρ such that J(e) < 0. The proof is completed. �

Notice Lemma 3.1 and Lemma 3.2 show that J meets all conditions in Lemma 2.1, hence J
possesses a (C)c sequence {un} ⊂ E for the mountain pass level β which is defined by

β = inf
γ∈Γ

max
0≤t≤1

J (γ(t))

and Γ = {γ ∈ C([0, 1], E)|γ(0) = 0, γ(1) = e}.
In the following, we set out to look for homoclinic solutions for (1.1). Denote Bρ = {u ∈ E : ‖u‖E <

ρ}, where ρ is given by Lemma 3.1. We first seek for a critical point of J by showing J attains a local
minimum for small λ.

Lemma 3.3. Let ρ and Λ0 be defined in Lemma 3.1. Assume a(t), ω and h(t) satisfy Theorem 1.1 and
(F1) hold. Then, for λ ∈ (0,Λ0), (1.1) possesses a homoclinic solution u0 ∈ E such that

J(u0) = inf{J(u)|u ∈ B̄ρ} < 0.

Proof. Since h(t) : Z → R+, it is convenient to select ζ ∈ E such that
+∞∑

t=−∞
h(t)|ζ(t)|p > 0. For κ > 0

small enough, (F1) induces F(t, κζ(t)) > 0 is correct for all t ∈ Z. Then for 1 ≤ p < 2, one has

J(κζ) =
1
2
‖κζ‖2E −

+∞∑
t=−∞

F(t, κζ(t)) − λ
+∞∑

t=−∞

h(t)|κζ(t)|p

=
κ2

2
‖ζ‖2E −

+∞∑
t=−∞

F(t, κζ(t)) − λκp
+∞∑

t=−∞

h(t)|ζ(t)|p

≤
κ2

2
‖ζ‖2E − λκ

p
+∞∑

t=−∞

h(t)|ζ(t)|p

< 0

Write m , inf{J(u) : u ∈ B̄ρ}, then m < 0. Thus there exists a minimizing sequence {un} ⊂ E such that
J(un) → m and J′(un) → 0 as n → ∞. Therefore, Lemma 2.3 ensures that J admits a critical point
u0 ∈ E which satisfies J′(u0) = 0 and J(u0) = m < 0. �
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In view of Lemma 3.3, it is necessary for us to show that there exists another ū ∈ E such that
J′(ū) = 0 and ū , u0 to accomplish the proof of Theorem 1.1.
Proof of Theorem 1.1. We complete the proof in two steps.
Step 1. The (C)c sequence {un} ∈ E of J, defined by

J(un)→ β > 0 and (1 + ‖un‖E)‖J′(un)‖E∗ → 0, as n→ ∞,

is bounded. Let n be large enough. By the condition (F3) and Lemma 3.1, it follows that

β + 1 ≥ J(un) −
1
θ
< J′(un), un >

= (
1
2
−

1
θ

)‖un‖
2
E −

+∞∑
t=−∞

[
F(t, un(t)) −

1
θ

f (t, un(t))un(t)
]
− λ(1 −

1
θ

)
+∞∑

t=−∞

h(t)|un(t)|p

≥
θ − 2

2θ
‖un‖

2
E − d0

+∞∑
t=−∞

u2
n(t) − λ(1 −

1
θ

)h
+∞∑

t=−∞

|un(t)|p

≥
θ − 2

2θ
‖un‖

2
E − d0‖un‖

2
L2 − λ(1 −

1
θ

)h‖un‖
p
Lp

≥
θ − 2

2θ
‖un‖

2
E −

d0

c0c2
2

‖un‖
2
E − λ(1 −

1
θ

)hc−
p
2

0 c−p
p ‖un‖

p
E

=

(
θ − 2

2θ
−

d0

c0c2
2

)
‖un‖

2
E − λ(1 −

1
θ

)hc−
p
2

0 c−p
p ‖un‖

p
E

<

θ − 2
2θ
−

c0c2
2(θ−2)
4θ

c0c2
2

 ‖un‖
2
E − λ(1 −

1
θ

)hc−
p
2

0 c−p
p ‖un‖

p
E

=
θ − 2

4θ
‖un‖

2
E − λ(1 −

1
θ

)hc−
p
2

0 c−p
p ‖un‖

p
E.

(3.4)

Obviously, for θ > 2 and p < 2, (3.4) implies ‖un‖E is bounded for all λ ∈ (0,Λ0).
Step 2. Now it is time for us to verify that J has another critical point ū which satisfies J′(ū) = 0 and
J(ū) = β > 0. Since the (C)c sequence {un} ⊂ E of J is bounded, from Lemma 2.3, there exists ū ∈ E
satisfying, up to a subsequence,

un ⇀ ū weakly in E, un → ū strongly in L2.

Together with the Hölder inequality, it follows that

+∞∑
t=−∞

[
f (t, un(t)) − f (t, ū(t))

]
(un(t) − ū(t))→ 0, as n→ ∞,

and
+∞∑

t=−∞

[
h(t)

(
|un(t)|p−2un(t) − |ū(t)|p−2ū(t)

)]
(un(t) − ū(t))→ 0, as n→ ∞.
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On the other hand, the definition of J(u) indicates that

‖un − ū‖2E =< J′(un) − J′(ū), un − ū >E −

+∞∑
t=−∞

[
f (t, un(t)) − f (t, ū(t))

]
(un(t) − ū(t))

− λ

+∞∑
t=−∞

[
h(t)

(
|un(t)|p−2un(t) − |ū(t)|p−2ū(t)

)]
(un(t) − ū(t)) .

Hence un → ū strongly in E. Moreover, J(ū) = β > 0 and ū is another homoclinic solution of (1.1).
Consequently, u0 and ū are two distinct homoclinic solutions of (1.1). And the proof of Theorem 1.1
is finished.
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