

AIMS Mathematics, 6(5): 4771–4785. DOI: 10.3934/math.2021280 Received: 17 November 2020 Accepted: 22 February 2021 Published: 25 February 2021

http://www.aimspress.com/journal/Math

Research article

Codewords generated by UP-valued functions

Ronnason Chinram¹ and Aiyared Iampan^{2,3,*}

- ¹ Algebra and Applications Research Unit, Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- ² Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand
- ³ Unit of Excellence in Mathematics, University of Phayao, Phayao 56000, Thailand

* Correspondence: Email: aiyared.ia@up.ac.th; Tel: +66544666666; Fax: +66544666664.

Abstract: The concept of a UP-valued function on a nonempty set was introduced by Ansari et al. [3]. Codewords in a binary block-code generated by a UP-valued function are established and some interesting results are obtained. Finally, we prove that every finite UP-algebra *A* which has the order less than or equal to the order of a finite set *X* determines a binary block-code *V* such that (A, \leq) is isomorphic to (V, \leq) .

Keywords: UP-algebra; UP-valued function; cut function; codeword; binary block-code **Mathematics Subject Classification:** 06F35, 03G25, 94B05

1. Introduction and preliminaries

Among many algebraic structures, algebras of logic form important class of algebras. Examples of these are BCK-algebras [9], BCI-algebras [10], BE-algebras [12], UP-algebras [6], extension of KU/UP-algebras [18] and others. They are strongly connected with logic. For example, BCI-algebras introduced by Iséki [10] in 1966 have connections with BCI-logic being the BCI-system in combinatory logic which has application in the language of functional programming. BCK and BCI-algebras are two classes of logical algebras. They were introduced by Imai and Iséki [9, 10] in 1966 and have been extensively investigated by many researchers.

Jun and Song [11] said the following: In computer science, a block code is a type of channel coding. It adds redundancy to a message so that, at the receiver, one can decode with minimal (theoretically zero) errors, provided that the information rate would not exceed the channel capacity. The main characterization of a block code is that it is a fixed length channel code (unlike source coding schemes such as Huffman coding, and unlike channel coding methods like convolutional encoding). Typically, a block code takes a k-digit information word, and transforms this into an n-digit codeword. Block

coding is the primary type of channel coding used in earlier mobile communication systems. A block code is a code which encodes strings formed an alphabet set *S* into code words by encoding each letter of *S* separately.

Coding theory was applied to BCK-algebras in 2011 by Jun and Song [11] and in 2015 by Flaut [5]. They proved that every finite BCK-algebra determines a binary block-code. In 2015, Mostafa et al. [15] applied coding theory to KU-algebras and gave some relation and connection between binary block-code and KU-algebras. They proved that every finite KU-algebra determines a binary block-code which is isomorphic to it. In 2020, Koam et al. [13] defined and investigated KU-valued generalized cut functions and their properties. They proved that for each *n*-ary block code *K* we can associate a KU-algebra *X*, such that the constructed *n*-ary block codes generated by *X*, and proved that for every *n*-ary block code *K*, there exists a KU-valued function on a KU-algebra which determines *K*. Moreover, they have introduced and studied UP-valued functions in [3]. For many studies of KU-algebras, see [14, 16, 23, 25].

In this paper, we establish binary block-codes by using the concept of UP-valued functions, introduced by Ansari et al. [3]. We show that every finite UP-algebra A which has the order less than or equal to the order of a finite set X determines a binary block-code V such that (A, \leq) is isomorphic to (V, \leq) .

Before we begin our study, let's review the definition of UP-algebras.

Definition 1.1. [6] An algebra $A = (A, \cdot, 0)$ of type (2, 0) is called a *UP-algebra*, where A is a nonempty set, \cdot is a binary operation on A, and 0 is a fixed element of A (i.e., a nullary operation) if it satisfies the following axioms:

(for all
$$x, y, z \in A$$
)($(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0$), (1.1)

(for all $x \in A$) $(0 \cdot x = x)$, (1.2)

(for all
$$x \in A$$
) $(x \cdot 0 = 0$), and (1.3)

$$(\text{for all } x, y \in A)(x \cdot y = 0, y \cdot x = 0 \Rightarrow x = y). \tag{1.4}$$

From [6], we know that the concept of UP-algebras is a generalization of KU-algebras (see [17]). The binary relation \leq on a UP-algebra $A = (A, \cdot, 0)$ defined as follows:

(for all
$$x, y \in A$$
) $(x \le y \Leftrightarrow x \cdot y = 0)$ (1.5)

and the following assertions are valid (see [6,7]).

(for all $x \in A$) $(x \le x)$, (1.6)

(for all $x, y, z \in A$) $(x \le y, y \le z \Rightarrow x \le z)$, (1.7)

- (for all $x, y, z \in A$) $(x \le y \Rightarrow z \cdot x \le z \cdot y)$, (1.8)
- (for all $x, y, z \in A$) $(x \le y \Rightarrow y \cdot z \le x \cdot z)$, (1.9)

(for all $x, y, z \in A$) $(x \le y \cdot x, \text{ in particular, } y \cdot z \le x \cdot (y \cdot z))$, (1.10)

(for all $x, y \in A$) $(y \cdot x \le x \Leftrightarrow x = y \cdot x)$, (1.11)

(for all
$$x, y \in A$$
) $(x \le y \cdot y)$, (1.12)

(for all $a, x, y, z \in A$) $(x \cdot (y \cdot z) \le x \cdot ((a \cdot y) \cdot (a \cdot z)))$,	(1.13)
(for all $a, x, y, z \in A$)((($a \cdot x$) \cdot ($a \cdot y$)) $\cdot z \le (x \cdot y) \cdot z$),	(1.14)
(for all $x, y, z \in A$)($(x \cdot y) \cdot z \le y \cdot z$),	(1.15)
(for all $x, y, z \in A$) $(x \le y \Rightarrow x \le z \cdot y)$,	(1.16)
(for all $x, y, z \in A$)($(x \cdot y) \cdot z \le x \cdot (y \cdot z)$), and	(1.17)
(for all $a, x, y, z \in A$)($(x \cdot y) \cdot z \le y \cdot (a \cdot z)$).	(1.18)

Example 1.2. [20] Let *U* be a nonempty set and let $X \in \mathcal{P}(U)$ where $\mathcal{P}(U)$ means the power set of *U*. Let $\mathcal{P}_X(U) = \{A \in \mathcal{P}(U) \mid X \subseteq A\}$. Define a binary operation \triangle on $\mathcal{P}_X(U)$ by putting $A \triangle B = B \cap (A^C \cup X)$ for all $A, B \in \mathcal{P}_X(U)$ where A^C means the complement of a subset *A*. Then $(\mathcal{P}_X(U), \triangle, X)$ is a UP-algebra. Let $\mathcal{P}^X(U) = \{A \in \mathcal{P}(U) \mid A \subseteq X\}$. Define a binary operation \blacktriangle on $\mathcal{P}^X(U)$ by putting $A \blacktriangle B = B \cup (A^C \cap X)$ for all $A, B \in \mathcal{P}^X(U)$. Then $(\mathcal{P}^X(U), \blacktriangle, X)$ is a UP-algebra.

Example 1.3. [4] Let \mathbb{Z}^* be the set of all nonnegative integers. Define two binary operations \circ and \star on \mathbb{Z}^* by:

(for all
$$m, n \in \mathbb{Z}^*$$
) $\left(m \circ n = \begin{cases} n & \text{if } m < n, \\ 0 & \text{otherwise} \end{cases} \right)$

and

(for all
$$m, n \in \mathbb{Z}^*$$
) $\left(m \star n = \begin{cases} n & \text{if } m > n \text{ or } m = 0, \\ 0 & \text{otherwise} \end{cases} \right).$

Then $(\mathbb{Z}^*, \circ, 0)$ and $(\mathbb{Z}^*, \star, 0)$ are UP-algebras.

For more examples of UP-algebras, see [1, 2, 7, 8, 19–22, 24].

2. UP-valued functions

First of all, we recall the definition of a UP-valued function on a nonempty set, which is introduced by Ansari et al. [3]. In what follows let *X* and *A* denote a nonempty set and a UP-algebra respectively, unless otherwise specified.

Definition 2.1. A mapping \widetilde{X} : $X \to A$ is called a *UP-valued function* on *X*.

Definition 2.2. A cut function of \widetilde{X} , for $a \in A$ is defined to be a mapping $\widetilde{X}_a \colon X \to \{0, 1\}$ such that

(for all
$$x \in X$$
) $\left(\widetilde{X}_a(x) = \begin{cases} 1 & \text{if } \widetilde{X}(x) \cdot a = 0, \\ 0 & \text{otherwise} \end{cases} \right)$. (2.1)

Equivalently,

(for all
$$x \in X$$
) $\left(\widetilde{X}_a(x) = \begin{cases} 1 & \text{if } \widetilde{X}(x) \le a, \\ 0 & \text{otherwise} \end{cases}\right)$. (2.2)

AIMS Mathematics

Obviously, \widetilde{X}_a is the characteristic function of the following subset of X, called a *cut subset* or an *a-cut* of \widetilde{X} :

$$X_a = \{x \in X \mid \overline{X}(x) \cdot a = 0\} = \{x \in X \mid \overline{X}(x) \le a\}.$$
(2.3)

Then

$$X_0 = X \tag{2.4}$$

and

(for all
$$x \in X$$
) $(x \in X_{\widetilde{X}(x)})$. (2.5)

By (2.1) and (2.3), we note that

$$X_a = \{x \in X \mid X_a(x) = 1\}.$$
 (2.6)

Example 2.3. Let $A = \{0, 1, 2, 3, 4, 5, 6\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table, as Figure 1:

•	0	1	2	3	4	5	6
$\widetilde{X}(x) = 0$	0	1	2	3	4	5	6
1	0	0	2	3	2	3	6
$\widetilde{X}(y) = 2$	0	1	0	3	1	5	3
3	0	1	2	0	4	1	2
4	0	0	0	3	0	3	3
5	0	0	2	0	2	0	2
$\widetilde{X}(z) = 6$	0	1	0	0	1	1	0

Let $X = \{x, y, z\}$ and we define a UP-valued function $\widetilde{X} : X \to A$ on X by:

$$\widetilde{X} = \begin{pmatrix} x & y & z \\ 0 & 2 & 6 \end{pmatrix}.$$

Then all cut subsets of \widetilde{X} are as follows:

$$X_0 = X, X_1 = \emptyset, X_2 = \{y, z\}, X_3 = \{z\}, X_4 = \emptyset, X_5 = \emptyset, \text{ and } X_6 = \{z\}.$$

Proposition 2.4. Every UP-valued function $\widetilde{X}: X \to A$ on X is represented by the minimum of the set $\{q \in A \mid \widetilde{X}_q(x) = 1\}$ for all $x \in X$, that is,

$$(for all \ x \in X)(X(x) = \min\{q \in A \mid X_q(x) = 1\}).$$
(2.7)

AIMS Mathematics

Proof. Let $x \in X$. Then $\widetilde{X}(x) = r$ for some $r \in A$. By (1.6), we have $\widetilde{X}(x) \cdot r = 0$ and so $\widetilde{X}_r(x) = 1$. Thus $r \in \{q \in A \mid \widetilde{X}_q(x) = 1\}$. Let $q \in A$ be such that $\widetilde{X}_q(x) = 1$. Then $r \cdot q = \widetilde{X}(x) \cdot q = 0$, so $r \leq q$. Hence,

$$X(x) = r = \min\{q \in A \mid X_q(x) = 1\}$$

Proposition 2.5. Let \widetilde{X} : $X \to A$ be a UP-valued function on X. Then

$$(for all q, r \in A)(q \le r \Rightarrow X_q \subseteq X_r).$$

$$(2.8)$$

Proof. Let $q, r \in A$ be such that $q \leq r$. Then $q \cdot r = 0$. Let $x \in X_q$. Then $\widetilde{X}(x) \cdot q = 0$. By (1.9) and (1.2), we have $0 = (q \cdot r) \cdot (\widetilde{X}(x) \cdot r) = 0 \cdot (\widetilde{X}(x) \cdot r) = \widetilde{X}(x) \cdot r$, that is, $x \in X_r$. Hence, $X_q \subseteq X_r$.

The following example shows that the converse of (2.8) of Proposition 2.5 is not true in general.

Example 2.6. From Example 2.3, we have $X_5 = \emptyset \subseteq \{z\} = X_6$ but $5 \nleq 6$.

Corollary 2.7. Let \widetilde{X} : $X \to A$ be a UP-valued function on X. Then

$$(for all x, y \in X)(\widetilde{X}(x) = \widetilde{X}(y) \Leftrightarrow X_{\widetilde{X}(x)} = X_{\widetilde{X}(y)}).$$

$$(2.9)$$

Proof. It is straightforward by Proposition 2.5, (1.6), (2.5), and (1.4).

Corollary 2.8. Let \widetilde{X} : $X \to A$ be a UP-valued function on X. Then

(for all
$$x, y \in X$$
) $(X(x) \le X(y) \Leftrightarrow X_{\widetilde{X}(x)} \subseteq X_{\widetilde{X}(y)})$. (2.10)

Proof. It is straightforward by Proposition 2.5 and (2.5).

For a UP-valued function \widetilde{X} : $X \to A$ on X, consider the following sets:

 $X_A = \{X_a \mid a \in A\}$

and

$$\widetilde{X}_A = \{\widetilde{X}_a \mid a \in A\}$$

Proposition 2.9. Let \widetilde{X} : $X \to A$ be a UP-valued function on X. Then

(for all
$$Y \subseteq A$$
, inf Y exists) $(X_{\inf Y} = \bigcap_{y \in Y} X_y)$. (2.11)

Proof. Let $Y \subseteq A$ be such that inf Y exists and let $x \in X$. Then

$$x \in X_{\inf Y} \Leftrightarrow X(x) \cdot \inf Y = 0$$

$$\Leftrightarrow (\text{for all } y \in Y)(\widetilde{X}(x) \cdot y = 0) \qquad ((1.7))$$

$$\Leftrightarrow (\text{for all } y \in Y)(x \in X_y)$$

$$\Leftrightarrow x \in \bigcap_{y \in Y} X_y.$$

Hence, $X_{\inf Y} = \bigcap_{y \in Y} X_y$.

AIMS Mathematics

Volume 6, Issue 5, 4771–4785.

Corollary 2.10. Let \widetilde{X} : $X \to A$ be a UP-valued function on X. Then

(for all
$$Y \subseteq A$$
, inf Y exists)($\bigcap_{y \in Y} X_y \in X_A$). (2.12)

Proof. It is straightforward by Proposition 2.9.

The following example shows that the result of Corollary 2.10 is not true in case of union operation. **Example 2.11.** From Example 2.3, we define a new UP-valued function $\widetilde{X}: X \to A$ on X by:

$$\widetilde{X} = \begin{pmatrix} x & y & z \\ 1 & 2 & 3 \end{pmatrix}.$$

Then cut subsets of \widetilde{X} are

$$X_0 = X, X_1 = \{x\}, X_2 = \{y\}, X_3 = \{z\}, X_4 = \emptyset, X_5 = \emptyset$$
, and $X_6 = \emptyset$.

Let $Y = \{1, 2\}$. Then inf Y exists and equal 4 but $X_1 \cup X_2 = \{x, y\} \notin X_A$.

Proposition 2.12. Let \widetilde{X} : $X \to A$ be a UP-valued function on X. Then

$$\bigcup_{a \in A} X_a = X. \tag{2.13}$$

$$(for all \ x \in X)(\bigcup_{a \in A} \{X_a \mid x \in X_a\} = X).$$

$$(2.14)$$

Proof. It is straightforward by (2.4).

For a UP-valued function $\widetilde{X}: X \to A$ on X, define the binary relation Θ on A by:

(for all
$$a, b \in A$$
) $(a\Theta b \Leftrightarrow X_a = X_b)$. (2.15)

Theorem 2.13. Let \widetilde{X} : $X \to A$ be a UP-valued function on X. Then the binary relation Θ which is defined in (2.15) is an equivalence relation on A.

Proof. Straightforward.

If $x \in A$, then the Θ -class of x is the set $(x)_{\Theta}$ defined as follows:

$$(x)_{\Theta} = \{ y \in A \mid x \Theta y \}.$$

We define two subsets of *A* by:

$$\operatorname{Im}(\widetilde{X}) = \widetilde{X}(X) = \{a \in A \mid \widetilde{X}(x) = a \text{ for some } x \in X\}$$
(2.16)

and

(for all
$$b \in A$$
)((b] = { $a \in A \mid a \cdot b = 0$ } = { $a \in A \mid a \le b$ }). (2.17)

By (1.4), we have the following assertions:

(for all
$$a, b \in A$$
)($(a] = (b] \Leftrightarrow a = b$). (2.18)

AIMS Mathematics

Volume 6, Issue 5, 4771–4785.

Proposition 2.14. Let \widetilde{X} : $X \to A$ be a UP-valued function on X. Then

$$(for all \ a, b \in A)(a\Theta b \Leftrightarrow (a] \cap \operatorname{Im}(X) = (b] \cap \operatorname{Im}(X)).$$

$$(2.19)$$

In particular, if \widetilde{X} is surjective, then

$$(for all a, b \in A)(a\Theta b \Leftrightarrow (a] = (b] \Leftrightarrow a = b).$$

$$(2.20)$$

Proof. For all $a, b \in A$, we have

$$a\Theta b \Leftrightarrow X_a = X_b$$

$$\Leftrightarrow \text{(for all } x \in X)(\widetilde{X}(x) \cdot a = 0 \Leftrightarrow \widetilde{X}(x) \cdot b = 0) \tag{(2.3)}$$

$$\Leftrightarrow \{x \in X \mid \overline{X}(x) \in (a]\} = \{x \in X \mid \overline{X}(x) \in (b]\}$$
((2.17))

$$\Leftrightarrow (a] \cap \operatorname{Im}(\overline{X}) = (b] \cap \operatorname{Im}(\overline{X}).$$

Example 2.15. From Example 2.3, we have all cut subsets of \widetilde{X} are as follows:

$$X_0 = X, X_1 = \emptyset, X_2 = \{y, z\}, X_3 = \{z\}, X_4 = \emptyset, X_5 = \emptyset, \text{ and } X_6 = \{z\}.$$

Then all cut functions of \widetilde{X} are as follows:

•	х	у	Z
\widetilde{X}_0	1	1	1
\widetilde{X}_1	0	0	0
\widetilde{X}_2	0	1	1
\widetilde{X}_3	0	0	1
\widetilde{X}_4	0	0	0
\widetilde{X}_5	0	0	0
\widetilde{X}_6	0	0	1

3. Codewords generated by UP-valued functions

In this section, we establish codewords in a binary block-code generated by a UP-valued function. Finally, we prove that every finite UP-algebra which has the order less than or equal to the order of a finite set determines a binary block-code which is isomorphic to it.

_ .

Lemma 3.1. Let \widetilde{X} : $X \to A$ be a UP-valued function on X. Then

$$(for all \ x \in X)(\overline{X}(x) = \max(\overline{X}(x))_{\Theta} \cap \operatorname{Im}(\overline{X})).$$
(3.1)

_ .

In particular, if \widetilde{X} is surjective, then

(for all
$$x \in X$$
)($\widetilde{X}(x) = \max(\widetilde{X}(x))_{\Theta}$). (3.2)

AIMS Mathematics

Proof. Let $x \in X$. Then $\widetilde{X}(x) \in (\widetilde{X}(x))_{\Theta} \cap \operatorname{Im}(\widetilde{X})$. Let $a \in (\widetilde{X}(x))_{\Theta} \cap \operatorname{Im}(\widetilde{X})$. By Proposition 2.14, we have $a \in (a] \cap \operatorname{Im}(\widetilde{X}) = (\widetilde{X}(x)] \cap \operatorname{Im}(\widetilde{X})$. Thus $a \in (\widetilde{X}(x)]$, that is, $a \leq \widetilde{X}(x)$. Hence, $\widetilde{X}(x) = \max(\widetilde{X}(x))_{\Theta} \cap \operatorname{Im}(\widetilde{X})$.

Let *X* be a nonempty set with *n* elements. We consider $X = \{1, 2, 3, ..., n\}$ and let *A* be a UP-algebra. For each UP-valued function $\widetilde{X} : X \to A$ on *X*, we can define a binary block-code *V* of length *n* in the following way: Each Θ -class $(a)_{\Theta}$ where $a \in A$, will corresponds to a codeword $w_a = a_1 a_2 a_3 ... a_n$ with

(for all
$$i \in X, j \in \{0, 1\}$$
) $(a_i = j \Leftrightarrow \overline{X}_a(i) = j)$. (3.3)

We observe that

(for all
$$a, b \in A$$
)($(a)_{\Theta} = (b)_{\Theta} \Leftrightarrow w_a = w_b$). (3.4)

Indeed,

$$(a)_{\Theta} = (b)_{\Theta} \Leftrightarrow X_a = X_b$$

$$\Leftrightarrow \{i \in X \mid \widetilde{X}_a(i) = 1\} = \{i \in X \mid \widetilde{X}_b(i) = 1\}$$

$$\Leftrightarrow (\text{for all } i \in X)(a_i = b_i)$$

$$\Leftrightarrow w_a = w_b.$$
((2.6))

Let $w_a = a_1 a_2 a_3 \dots a_n$ and $w_b = b_1 b_2 b_3 \dots b_n$ be two codewords belonging to a binary block-code *V*. Define an order relation \leq on the set of codewords belonging to a binary block-code *V* as follows:

$$w_a \le w_b \Leftrightarrow \text{ for all } i \in X, a_i \le b_i.$$
 (3.5)

Example 3.2. From Example 2.3, we have all cut subsets of \widetilde{X} are as follows:

$$X_0 = X, X_1 = \emptyset, X_2 = \{y, z\}, X_3 = \{z\}, X_4 = \emptyset, X_5 = \emptyset, \text{ and } X_6 = \{z\}$$

Then the equivalence relation Θ on A is as follows:

 $\Theta = \{(0,0), (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,4), (4,1), (1,5), (5,1), (4,5), (5,4), (3,6), (6,3)\}.$

From Example 2.15, we have all distinct codewords of the binary block-code *V* are as follows (see Figure 2):

$$w_0 = 111, w_1 = w_4 = w_5 = 000, w_2 = 011, \text{ and } w_3 = w_6 = 001.$$

From Figures 1 and 2, we conclude that (A, \leq) is not isomorphic to (V, \leq) .

The following example will lead to the next important theorem.

Example 3.3. Let $A = \{0, 1, 2, 3\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table, as Figure 3:

Figure 3. (A, \leq) .

Let $\widetilde{A}: A \to A$ be the identity UP-valued function on A. Then all cut subsets of \widetilde{X} are as follows:

$$A_0 = A, A_1 = \{1, 2\}, A_2 = \{2\}, \text{ and } A_3 = \{3\}.$$

Thus all cut functions of \widetilde{A} are as follows:

	0	1	2	3
\widetilde{A}_0	1	1	1	1
\widetilde{A}_1	0	1	1	0
\widetilde{A}_2	0	0	1	0
\widetilde{A}_3	0	0	0	1

and the equivalence relation Θ on A is as follows:

$$\Theta = \{(0,0), (1,1), (2,2), (3,3)\}.$$

Hence, all distinct codewords of the binary block-code V are as follows (see Figure 4):

 $w_0 = 1111, w_1 = 0110, w_2 = 0010, \text{ and } w_3 = 0001.$

AIMS Mathematics

From Figures 3 and 4, we conclude that (A, \leq) is isomorphic to (V, \leq) under the isomorphism sending $a \mapsto w_a$. In addition, the error pattern e = 1000 can be detected because $w_0 + e = 1111 + 1000 = 0111 \notin V, w_1 + e = 0110 + 1000 = 1110 \notin V, w_2 + e = 0010 + 1000 = 1010 \notin V$, and $w_3 + e = 0001 + 1000 = 1001 \notin V$. Hence, V detects e.

Theorem 3.4. Every finite UP-algebra A which is equipotent to a nonempty set X determines a binary block-code V such that (A, \leq) is isomorphic to (V, \leq) .

Proof. Let $A = \{0, 1, 2, ..., n\}$ be a finite UP-algebra in which 0 is the maximum element, $X = \{x_0, x_1, x_2, ..., x_n\}$ and let $\widetilde{X} \colon X \to A$ be a bijective UP-valued function on X sending $x_a \mapsto a$. By (2.20) of Proposition 2.14 and (2.18), we have

$$(for all \ a \in A)((a)_{\Theta} = \{b \in A \mid (a] = (b)\} = \{a\}).$$
(3.6)

Thus $\Theta = \{(a, a) \mid a \in A\}$. By (3.4), we have all codewords w_a of the binary block-code V are distinct. Let $f : A \to V$ be a function defined by:

(for all
$$a \in A$$
)($f(a) = w_a$).

Clearly, f is surjective. By (3.4) and (3.6), we have f is injective. Thus f is bijective. Let $a, b \in A$ be such that $a \leq b$. By (2.8) of Proposition 2.5, we have $X_a \subseteq X_b$. This means that $w_a \leq w_b$, that is, $f(a) \leq f(b)$. Conversely, let $a, b \in A$ be such that $f(a) \leq f(b)$. Then $w_a \leq w_b$, so $X_a \subseteq X_b$. By (2.5), we have $x_a \in X_{\widetilde{X}(x_a)} = X_a \subseteq X_b$, that is, $a = \widetilde{X}(x_a) \leq b$. Hence, (A, \leq) is isomorphic to (V, \leq) .

Corollary 3.5. Every finite UP-algebra A determines a binary block-code V such that (A, \leq) is isomorphic to (V, \leq) .

Corollary 3.6. Every finite UP-algebra A which has the order less than or equal to the order of a finite set X determines a binary block-code V such that (A, \leq) is isomorphic to (V, \leq) .

Proof. Let $A = \{0, 1, 2, ..., n\}$ be a finite UP-algebra in which 0 is the maximum element, $X = \{x_0, x_1, x_2, ..., x_m\}$ for $m \ge n$ and let $\widetilde{X} : X \to A$ be a UP-valued function on X defined by:

 $\widetilde{X} = \begin{pmatrix} x_0 & x_1 & x_2 & \dots & x_n & x_{n+1} & x_{n+2} & & x_m \\ 0 & 1 & 2 & \dots & n & n & n & n \end{pmatrix}.$

The proof is also given in a similar way of the proof of Theorem 3.4. Hence, (A, \leq) is isomorphic to (V, \leq) .

It is not necessary for (A, \leq) and (V, \leq) to be isomorphic under the identity UP-valued function on *A*, which shown by the following example.

Example 3.7. Let $A = \{0, 1, 2, 3, 4, 5, 6, 7\}$ be a UP-algebra with a fixed element 0 and a binary

AIMS Mathematics

operation \cdot defined by the following Cayley table, as Figure 5:

•	0	1	2	3	4	5	6	7
$\widetilde{A}(1) = 0$	0	1	2	3	4	5	6	7
$\widetilde{A}(0) = 1$	0	0	0	0	0	0	0	0
$\widetilde{A}(7) = 2$	0	7	0	7	7	0	0	7
$\widetilde{A}(6) = 3$	0	6	6	0	6	0	6	0
$\widetilde{A}(5) = 4$	0	5	5	5	0	5	0	0
$\widetilde{A}(4) = 5$	0	4	6	7	4	0	6	7
$\widetilde{A}(3) = 6$	0	3	5	3	7	5	0	7
$\widetilde{A}(2) = 7$	0	2	2	5	6	5	6	0

Figure 5. (A, \leq) .

Let \widetilde{A} : $A \to A$ be a UP-valued function on A defined by:

 $\widetilde{A} = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 0 & 7 & 6 & 5 & 4 & 3 & 2 \end{pmatrix}.$

Then all cut subsets of \widetilde{A} are as follows:

 $A_0 = A, A_1 = \{0\}, A_2 = \{0, 7\}, A_3 = \{0, 6\}, A_4 = \{0, 5\}, A_5 = \{0, 4, 6, 7\}, A_6 = \{0, 3, 5, 7\}, \text{ and } A_7 = \{0, 2, 5, 6\}.$

Thus all cut functions of \widetilde{A} are as follows:

	0	1	2	3	4	5	6	7
\widetilde{A}_0	1	1	1	1	1	1	1	1
\widetilde{A}_1	1	0	0	0	0	0	0	0
\widetilde{A}_2	1	0	0	0	0	0	0	1
\widetilde{A}_3	1	0	0	0	0	0	1	0
\widetilde{A}_4	1	0	0	0	0	1	0	0
\widetilde{A}_5	1	0	0	0	1	0	1	1
\widetilde{A}_6	1	0	0	1	0	1	0	1
\widetilde{A}_7	1	0	1	0	0	1	1	0

AIMS Mathematics

and the equivalence relation Θ on A is as follows:

$$\Theta = \{(0,0), (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7)\}.$$

Hence, all distinct codewords of the binary block-code V are as follows (see Figure 6):

 $w_0 = 11111111, w_1 = 1000000, w_2 = 1000001, w_3 = 10000010, w_4 = 10000100, w_5 = 10001011, w_6 = 10010101, and w_7 = 10100110.$

Figure 6. (*V*, ≤).

From Figures 7 and 8, we conclude that (A, \leq) is isomorphic to (V, \leq) under the isomorphism sending $a \mapsto w_a$.

The following last example supports Corollary 3.8.

Example 3.8. Let $A = \{0, 1, 2, 3\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table, as Figure 7:

•	0	1	2	3
$\widetilde{X}(u) = 0$	0	1	2	3
$\widetilde{X}(v) = 1$	0	0	2	3
$\widetilde{X}(w) = \widetilde{X}(x) = 2$	0	1	0	3
$\widetilde{X}(y) = \widetilde{X}(z) = 3$	0	1	2	0

Let $X = \{u, v, w, x, y, z\}$ and we define a UP-valued function $\widetilde{X} \colon X \to A$ on X by:

$$\widetilde{X} = \begin{pmatrix} u & v & w & x & y & z \\ 0 & 1 & 2 & 2 & 3 & 3 \end{pmatrix}.$$

AIMS Mathematics

Then all cut subsets of \widetilde{X} are as follows:

$$X_0 = X, X_1 = \{v\}, X_2 = \{w, x\}, \text{ and } X_3 = \{y, z\}.$$

Thus all cut functions of \widetilde{X} are as follows:

	и	V	W	х	у	Ζ.
\widetilde{X}_0	1	1	1	1	1	1
\widetilde{X}_1	0	1	0	0	0	0
\widetilde{X}_2	0	0	1	1	0	0
\widetilde{X}_3	0	0	0	0	1	1

and the equivalence relation Θ on A is as follows:

$$\Theta = \{(0,0), (1,1), (2,2), (3,3)\}.$$

Hence, all distinct codewords of the binary block-code V are as follows (see Figure 8):

 $w_0 = 111111, w_1 = 010000, w_2 = 001100, \text{ and } w_3 = 000011.$

From Figures 7 and 8, we conclude that (A, \leq) is isomorphic to (V, \leq) under the isomorphism sending $a \mapsto w_a$. In addition, V has the minimum distance 3. This means that can correct at most 1-error. For example, if $w_3 = 000011$ is sent and 000111 is received, then 000111 will be decoded to $w_3 = 000011$. If $w_3 = 000011$ is sent and 010111 is received, then 010111 will be decoded to $w_1 = 010000$ using the minimum distance decoding rule.

4. Conclusions

Codewords in a binary block-code generated by a UP-valued function are established and some interesting results are obtained. The main result is proved that every finite UP-algebra A which has the order less than or equal to the order of a finite set X determines a binary block-code V such that (A, \leq) is isomorphic to (V, \leq) . Many examples were provided to support the results.

Acknowledgments

This work was supported by the Unit of Excellence in Mathematics, University of Phayao.

AIMS Mathematics

Conflict of interest

The authors declare no conflict of interest.

References

- 1. M. A. Ansari, A. Haidar, A. N. A. Koam, On a graph associated to UP-algebras, *Math. Comput. Appl.*, **23** (2018), 61.
- 2. M. A. Ansari, A. N. A. Koam, A. Haider, Rough set theory applied to UP-algebras, *Ital. J. Pure Appl. Math.*, **42** (2019), 388–402.
- 3. M. A. Ansari, A. N. A. Koam, A. Haider, On binary block codes associated to UP-algebras, *Ital. J. Pure Appl. Math.*, (2020), Accepted.
- 4. N. Dokkhamdang, A. Kesorn, A. Iampan, Generalized fuzzy sets in UP-algebras, *Ann. Fuzzy Math. Inform.*, **16** (2018), 171–190.
- 5. C. Flaut, BCK-algebras arising from block codes, J. Intell. Fuzzy Syst., 28 (2015), 1829–1833.
- 6. A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top., 5 (2017), 35–54.
- A. Iampan, Introducing fully UP-semigroups, *Discuss. Math., Gen. Algebra Appl.*, 38 (2018), 297– 306.
- 8. A. Iampan, M. Songsaeng, G. Muhiuddin, Fuzzy duplex UP-algebras, *Eur. J. Pure Appl. Math.*, **13** (2020), 459–471.
- 9. Y. Imai, K. Iséki, On axiom systems of propositional calculi XIV, *Proc. Japan Acad.*, **42** (1966), 19–22.
- 10. K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26-29.
- 11. Y. B. Jun, S. Z. Song, Codes based on BCK-algebras, Inf. Sci., 181 (2011), 5102–5109.
- 12. H. S. Kim, Y. H. Kim, On BE-algebras, Math. Japon., 66 (2007), 113-116.
- 13. A. N. A. Koam, M. A. Ansari, A. Haider, *n*-ary block codes related to KU-algebras, *J. Taibah Univ. Sci.*, **14** (2020), 172–176.
- 14. A. N. A. Koam, A. Haider, M. A. Ansari, On an extension of KU-algebras, *AIMS Math.*, **6** (2021), 1249–1257.
- 15. S. M. Mostafa, B. Youssef, H. A. Jad, Coding theory applied to KU-algebras, *J. New Theory*, **6** (2015), 43–53.
- G. Muhiuddin, Bipolar fuzzy KU-subalgebras/ideals of KU-algebras, Ann. Fuzzy Math. Inform, 8 (2014), 409–418.
- 17. C. Prabpayak, U. Leerawat, On ideals and congruences in KU-algebras, *Sci. Magna*, **5** (2009), 54–57.
- A. Satirad, R. Chinram, A. Iampan, Four new concepts of extension of KU/UP-algebras, *Missouri J. Math. Sci.*, **32** (2020), 138–157.

- 19. A. Satirad, P. Mosrijai, A. Iampan, Formulas for finding UP-algebras, *Int. J. Math. Comput. Sci.*, **14** (2019), 403–409.
- 20. A. Satirad, P. Mosrijai, A. Iampan, Generalized power UP-algebras, *Int. J. Math. Comput. Sci.*, 14 (2019), 17–25.
- 21. T. Senapati, Y. B. Jun, K. P. Shum, Cubic set structure applied in UP-algebras, *Discrete Math. Algorithms Appl.*, **10** (2018), 1850049.
- 22. T. Senapati, G. Muhiuddin, K. P. Shum, Representation of UP-algebras in interval-valued intuitionistic fuzzy environment, *Ital. J. Pure Appl. Math.*, **38** (2017), 497–517.
- 23. T. Senapati, K. P. Shum, Atanassov's intuitionistic fuzzy bi-normed KU-ideals of a KU-algebra, *J. Intell. Fuzzy Syst.*, **30** (2016), 1169–1180.
- 24. S. Thongarsa, P. Burandate, A. Iampan, Some operations of fuzzy sets in UP-algebras with respect to a triangular norm, *Ann. Commun. Math.*, **2** (2019), 1–10.
- N. Yaqoob, S. M. Mostafa, M. A. Ansari, On cubic KU-ideals of KU-algebras, *Int. Sch. Res. Not.*, 2013 (2013), 1–10.

© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)