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1. Introduction and preliminaries

Among many algebraic structures, algebras of logic form important class of algebras. Examples of
these are BCK-algebras [9], BCl-algebras [10], BE-algebras [12], UP-algebras [6], extension of
KU/UP-algebras [18] and others. They are strongly connected with logic. For example, BCI-algebras
introduced by Iséki [10] in 1966 have connections with BCI-logic being the BCI-system in
combinatory logic which has application in the language of functional programming. BCK and
BCl-algebras are two classes of logical algebras. They were introduced by Imai and Iséki [9, 10] in
1966 and have been extensively investigated by many researchers.

Jun and Song [11] said the following: In computer science, a block code is a type of channel coding.
It adds redundancy to a message so that, at the receiver, one can decode with minimal (theoretically
zero) errors, provided that the information rate would not exceed the channel capacity. The main
characterization of a block code is that it is a fixed length channel code (unlike source coding schemes
such as Huffman coding, and unlike channel coding methods like convolutional encoding). Typically,
a block code takes a k-digit information word, and transforms this into an n-digit codeword. Block
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coding is the primary type of channel coding used in earlier mobile communication systems. A block
code is a code which encodes strings formed an alphabet set S into code words by encoding each letter
of S separately.

Coding theory was applied to BCK-algebras in 2011 by Jun and Song [11] and in 2015 by Flaut [5].
They proved that every finite BCK-algebra determines a binary block-code. In 2015, Mostafa et al. [15]
applied coding theory to KU-algebras and gave some relation and connection between binary block-
codes and KU-algebras. They proved that every finite KU-algebra determines a binary block-code
which is isomorphic to it. In 2020, Koam et al. [13] defined and investigated KU-valued generalized
cut functions and their properties. They proved that for each n-ary block code K we can associate
a KU-algebra X, such that the constructed n-ary block codes generated by X, and proved that for
every n-ary block code K, there exists a KU-valued function on a KU-algebra which determines K.
Moreover, they have introduced and studied UP-valued functions in [3]. For many studies of KU-
algebras, see [14,16,23,25].

In this paper, we establish binary block-codes by using the concept of UP-valued functions,
introduced by Ansari et al. [3]. We show that every finite UP-algebra A which has the order less than
or equal to the order of a finite set X determines a binary block-code V such that (A, <) is isomorphic
to (V, ).

Before we begin our study, let’s review the definition of UP-algebras.
Definition 1.1. [6] Analgebra A = (A, -,0) of type (2, 0) is called a UP-algebra, where A is a nonempty

set, - is a binary operation on A, and O is a fixed element of A (i.e., a nullary operation) if it satisfies the
following axioms:

(forall x,y,z € A)((y-2) - ((x-y) - (x-2)) =0), (1.1)
(forall x € A)(O - x = x), (1.2)
(for all x € A)(x-0 =0), and (1.3)
(forall x,y € A)(x-y=0,y-x=0=x=y). (1.4)

From [6], we know that the concept of UP-algebras is a generalization of KU-algebras (see [17]).
The binary relation < on a UP-algebra A = (A, -, 0) defined as follows:

(forall x,yc A)(x<yeox-y=0) (1.5

and the following assertions are valid (see [6,7]).

(for all x € A)(x < x), (1.6)
(forall x,y,z€ A)(x<y,y<z=x<2), (1.7)
(forall x,y,z€ A)x<y=>2z-x<7-Y), (1.8)
(forall x,y,z€e A)x<y=y-z<x-2), (1.9)
(for all x,y,z € A)(x <y-x, in particular, y -z < x - (y - 2)), (1.10)
(forall x,ycA)y-x<xo© x=y:x), (1.11)
(forall x,y e A)(x <y-y), (1.12)
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(forall a,x,y,z€ A)(x-(y-2) <x-((a-y) (a-2)), (1.13)
(forall a,x,y,z€ A)(((@a-x)-(a-y)-z<(x-y)-2), (1.14)
(forall x,y,z€ A)((x-y)-2<y-2), (1.15)
(forall x,y,z€e A)(x<y=x<2z-Y), (1.16)
(forall x,y,z€ A)((x-y)-z<x-(y-2)), and (1.17)
(forall a,x,y,z€ A)(x-y)-z2<y-(a-2). (1.18)

Example 1.2. [20] Let U be a nonempty set and let X € P(U) where £(U) means the power set of
U. Let Px(U) = {A € P(U) | X C A}. Define a binary operation A on Px(U) by putting A A B =
BN (A€ UX) forall A, B € Px(U) where A means the complement of a subset A. Then (Px(U), A, X)
is a UP-algebra. Let PX(U) = {A € P(U) | A C X}. Define a binary operation A on P*(U) by putting
AAB = BU (A nX) for all A, B € PX(U). Then (PX(U), A, X) is a UP-algebra.

Example 1.3. [4] Let Z* be the set of all nonnegative integers. Define two binary operations o and %

on Z* by:

(forallm,neZ*)(mon:{n if m < n, )

0 otherwise
and

(for all m,neZ*)(m*n:{ n ifm>norm=0, )

0 otherwise

Then (Z*, 0,0) and (Z*, %, 0) are UP-algebras.
For more examples of UP-algebras, see [1,2,7,8,19-22,24].
2. UP-valued functions

First of all, we recall the definition of a UP-valued function on a nonempty set, which is introduced
by Ansari et al. [3]. In what follows let X and A denote a nonempty set and a UP-algebra respectively,
unless otherwise specified.

Definition 2.1. A mapping X: X — Ais called a UP-valued function on X.

Definition 2.2. A cut function of X, for a € A is defined to be a mapping X,: X — {0, 1} such that

(for all x € X) ()?a(x) = { L if X(x) -a =0, ) 2.1)
0 otherwise
Equivalently,
- 1 if X(x) <a,
for all X)X = . 2.2
(forall x & )( %) { 0 otherwise ) 2:2)
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Obviously, X, is the characteristic function of the following subset of X, called a cut subset or an
a-cut of X:

X,={xeX|X(x)-a=0}={xeX|Xx <al (2.3)
Then
Xo=X (2.4)
and
(for all x € X)(x € Xg,)- (2.5)

By (2.1) and (2.3), we note that
X, ={xeX|X,(x)=1}. (2.6)

Example 2.3. Let A = {0, 1,2,3,4,5, 6} be a UP-algebra with a fixed element 0 and a binary operation -
defined by the following Cayley table, as Figure 1:

0123456
X(x)=0l0 1 2 3 456
110 023236
Xy»=2/010231253
310120 41 2
410 003033
50 020202
X)=6/0 1 00110

4 6 5

Figure 1. (A, <).
Let X = {x,y, z} and we define a UP-valued function X:X—>AonX by:
—_ X y b
X = .
(0 2 6)
Then all cut subsets of X are as follows:

Xo=XX1=0,X,=1{y,2}, X3 = {2}, X4 =0, X5 = 0, and X¢ = {z}.

Proposition 2.4. Every UP-valued function X:X > AonXis represented by the minimum of the set
{qge A| X,(x) =1} forall x € X, that is,

(for all x € X)(X(x) = min{q € A | X,(x) = 1}). (2.7)
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Proof. Let x € X. Then )~((x) = r for some r € A. By (1.6), we have )?(xl- r = 0and so )~(r(x) = 1. Thus
re{geAl|X,(x)=1}. Let g € A be such that X,(x) = 1. Thenr - g = X(x) - ¢ = 0, so r < g. Hence,

X(x) = r =min{g € A | X,(x) = 1.

Proposition 2.5. Let X: X — A be a UP-valued function on X. Then
(forall g,r e A)(g<r= X, CX,). (2.8)

Proof. Letg,r € Abe suchthat g <r. Theng-r = 0. Let x € X,,. Then f(x)-q = 0. By (1.9) and (1.2),
wehave 0 =(g-r)- (X(x)-r)=0-(X(x)-r) = X(x) - r, thatis, x € X,. Hence, X, C X,. O

The following example shows that the converse of (2.8) of Proposition 2.5 is not true in general.
Example 2.6. From Example 2.3, we have X5 = 0 C {z} = Xs but 5 £ 6.
Corollary 2.7. Let X: X — A be a UP-valued Sfunction on X. Then
(for all x,y € X)(X(x) = X(v) & Xz = Xgi)- (2.9)
Proof. It is straightforward by Proposition 2.5, (1.6), (2.5), and (1.4). O
Corollary 2.8. Let X: X — A be a UP-valued Jfunction on X. Then

(for all x,y € X)(X(x) < X(y) © Xz € Xz()- (2.10)
Proof. It is straightforward by Proposition 2.5 and (2.5). O

For a UP-valued function X: X — A on X , consider the following sets:
Xy ={X,|aecA}

and _ _
X4y =1{X,|ac€A}

Proposition 2.9. Let X: X > A be a UP-valued function on X. Then

(forall Y C A,inf Y exists)(Xinry = ﬂ X,). (2.11)

yeyY

Proof. Let Y C A be such that inf Y exists and let x € X. Then

X € Xinty © X(x)-inf Y =0
& (forall y € Y)(X(x)-y =0) ((1.7))
& (forall y € Y)(x € X;)

S xE me.

yey

Hence, X,y = ﬂ X,. O

yeY
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Corollary 2.10. Let X: X - A be a UP-valued Sfunction on X. Then

(forall Y C A,inf Y exists)(ﬂ X, € X,). (2.12)
yeY

Proof. 1t is straightforward by Proposition 2.9. i
The following example shows that the result of Corollary 2.10 is not true in case of union operation.

Example 2.11. From Example 2.3, we define a new UP-valued function X:X>AonX by:
= (X Yy z
X = .
(1 2 3)
Then cut subsets of X are
Xo=X. X1 ={x}, X2 ={y}, X3 ={z}, X4 = 0,X5 = 0, and X5 = 0.

Let Y = {1,2}. Then inf Y exists and equal 4 but X; U X, = {x,y} ¢ Xa.
Proposition 2.12. Let X: X — A be a UP-valued function on X. Then

U X, =X (2.13)
acA
(for all x € X)(U{Xa | xeX,)=X). (2.14)
aeA
Proof. It is straightforward by (2.4). O

For a UP-valued function X: X — A on X, define the binary relation ® on A by:
(for all a,b € A)(a®b & X, = X;). (2.15)

Theorem 2.13. Let X: X — A be a UP-valued function on X. Then the binary relation ® which is
defined in (2.15) is an equivalence relation on A.

Proof. Straightforward. O
If x € A, then the ®-class of x is the set (x)g defined as follows:
(0o = {y € A | xOy}.
We define two subsets of A by:
Im(X) = X(X) = {a € A | X(x) = a for some x € X} (2.16)

and
(forall be A)((b]={a€eA|la-b=0}={a€A|a<b)}. 2.17)

By (1.4), we have the following assertions:

(for all a,b € A)((a] = (b] & a=D). (2.18)
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Proposition 2.14. Let X: X — A be a UP-valued Sfunction on X. Then
(for all a,b € A)a®b < (a] N Im(X) = (b] N Im(X)). (2.19)
In particular, if X is surjective, then
(for all a,b € A)(a®b & (a] = (b] © a =Db). (2.20)

Proof. For all a,b € A, we have

a®b X, = X,
& (forall x€ X)(X(x)-a=0 X(x)-b =0) ((2.3))
S {xeX|X(x) €(a]} ={xe X |X(x) € (] ((2.17))

& (a] N Im(X) = (b] N Im(X).

Example 2.15. From Example 2.3, we have all cut subsets of X are as follows:
Xo=X,X1=0,X> ={y, 2z}, X5 = {2}, X4 = 0, X5 = 0, and X; = {z}.

Then all cut functions of X are as follows:

Xy z
Xol1 1 1
X, 10 00
X101 1
X0 01
X, 10 00
X510 00
Xs 10 0 1

3. Codewords generated by UP-valued functions

In this section, we establish codewords in a binary block-code generated by a UP-valued function.
Finally, we prove that every finite UP-algebra which has the order less than or equal to the order of a
finite set determines a binary block-code which is isomorphic to it.

Lemma 3.1. Let X: X — A be a UP-valued function on X. Then
(for all x € X)(X(x) = max(X(x))e N Im(X)). (3.1)
In particular, if X is surjective, then
(for all x € X)(X(x) = max(X(x))e). (3.2)
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Proof. Let x € X. Then X(x) € (X(x))@ N Im(X) Leta € (X(x))(;) N Im(X) By Proposmon 2.14,
we have a € (a] N Im(X) (X(x)] N Im(X) Thus a € (X(x)] that is, a < X(x) Hence, X(x)
maX(X ())e N Im(X). O

Let X be a nonempty set with n elements. We consider X = {1,2,3,...,n} and let A be a UP-algebra.
For each UP-valued function X: X — A on X, we can define a binary block-code V of length » in the
following way: Each ®-class (a)e where a € A, will corresponds to a codeword w, = aja»a3 . . . a, with

(forall i € X, j € {0, 1})(a; = j © X,(i) = j). (3.3)

We observe that
(forall a,b € A)((a)g = (b)g © W, = Wp). (3.4

Indeed,
(@o = (b)o © X, =X,

slieX|X,0)=1}={ieX|X0) =1} ((2.6))
< (for all i € X)(a; = b))
S Wy = Wy,

Let w, = ajaza; ...a, and w, = b1bybs ... b, be two codewords belonging to a binary block-code
V. Define an order relation < on the set of codewords belonging to a binary block-code V as follows:

w, <w, < forallie X, a;, <b,. 3.5
Example 3.2. From Example 2.3, we have all cut subsets of X are as follows:
Xo=XX1=0,X=1{,2,X3=1{2}, X4 = 0,X5 = 0, and X; = {z}.
Then the equivalence relation ® on A is as follows:
=1{(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,4),(4,1),(1,5), 5, ), (4,5), (5,4), (3, 6), (6, 3)}.

From Example 2.15, we have all distinct codewords of the binary block-code V are as follows (see
Figure 2):
wo =111, w; = ws = ws = 000, w, = 011, and w3 = we = 001.

w, =111 ’
w, =011 ’

w, =001 ®

w, =000 @
Figure 2. (V, <).

From Figures 1 and 2, we conclude that (A, <) is not isomorphic to (V, <).
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The following example will lead to the next important theorem.

Example 3.3. Let A = {0, 1,2,3} be a UP-algebra with a fixed element O and a binary operation -

defined by the following Cayley table, as Figure 3:

10 1 2 3
0/|0 1 2 3
110 0 1 3
2/0 0 0 3
310 1 10

2

Figure 3. (A, <).

LetA: A — A be the identity UP-valued function on A. Then all cut subsets of X are as follows:

Ao =A,A1 ={1,2},A;, = {2}, and A5 = {3}.

Thus all cut functions of A are as follows:

0123
Agl1 1 11
A0 110
A0 01 0
A3 |0 0 0 1

and the equivalence relation ® on A is as follows:
0 ={(0,0),(1,1),(2,2),(3,3)}.
Hence, all distinct codewords of the binary block-code V are as follows (see Figure 4):

wo = 1111,w; = 0110, w, = 0010, and w3 = 0001.

w, = 1111

w, =0110 w, = 0001

w, = 0010

Figure 4. (V, x).
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From Figures 3 and 4, we conclude that (A, <) is isomorphic to (V, <) under the isomorphism sending
a — w,. In addition, the error pattern e = 1000 can be detected because wy + e = 1111 + 1000 =
0111 ¢ V,w; +e = 0110+ 1000 = 1110 ¢ V,w, + e = 0010 + 1000 = 1010 ¢ V, and w3 + e =
0001 + 1000 = 1001 ¢ V. Hence, V detects e.

Theorem 3.4. Every finite UP-algebra A which is equipotent to a nonempty set X determines a binary
block-code V such that (A, <) is isomorphic to (V, X).

Proof. Let A = {0,1,2,..., Q} be a finite UP-algebra in which 0 is the maximum element,
X = {xp,x1,Xx2...,x,} and let X: X — A be a bijective UP-valued function on X sending x, — a.
By (2.20) of Proposition 2.14 and (2.18), we have

(forall a € A)((a)e = {b € A | (a] = (b]} = {a)}). (3.6)

Thus ©® = {(a,a) | a € A}. By (3.4), we have all codewords w, of the binary block-code V are distinct.
Let f: A — V be a function defined by:

(for all a € A)(f(a) = w,).

Clearly, f is surjective. By (3.4) and (3.6), we have f is injective. Thus f is bijective. Let a,b € A
be such that a < b. By (2.8) of Proposition 2.5, we have X, C X,,. This means that w, < wj, that is,
f(a) < f(b). Conversely, let a,b € A be such that f(a) < f(b). Then w, < wy, so X, C X,,. By (2.5),
we have x, € Xz, = X, € X), thatis, a = i(xa) < b. Hence, (A, <) is isomorphic to (V, <). O

Corollary 3.5. Every finite UP-algebra A determines a binary block-code V such that (A,<) is
isomorphic to (V, <).

Corollary 3.6. Every finite UP-algebra A which has the order less than or equal to the order of a finite
set X determines a binary block-code V such that (A, <) is isomorphic to (V, ).

Proof. Let A = {0,1,2,...,n} be a Enite UP-algebra in which 0 is the maximum element,
X = {x0, X1, X2, ..., %y} form > nandlet X: X — A be a UP-valued function on X defined by:

~_(Xo X1 X2 ... Xp Xprl  Xps2 xm)
0 1 2 ... n n n nl

The proof is also given in a similar way of the proof of Theorem 3.4. Hence, (A, <) is isomorphic to
(V,3). O

It is not necessary for (A, <) and (V, <) to be isomorphic under the identity UP-valued function on
A, which shown by the following example.

Example 3.7. Let A = {0,1,2,3,4,5,6,7} be a UP-algebra with a fixed element 0 and a binary
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operation - defined by the following Cayley table, as Figure 5:

01234567
AD=0]/0 12 3 456 7
A0)=1/0 00 0 0 0 00
AN=2|0 707 7007
A6)=3/0 6 6 06 0 6 0
AB)=4/0 5550500
A =5/0 46 7 406 7
AB3)=6|0 353 7507
A2)=710 2256 5 6 0

Figure 5. (A, <).

Let A: A — A be a UP-valued function on A defined by:

— (001 234567
“\1 07 6 5 4 3 2/

Then all cut subsets of A are as follows:
AO = A7Al = {0}5A2 = {Oa 7}5A3 = {0’ 6}’A4 = {0’5}’A5 = {O’ 4’ 6’ 7}’A6 = {O, 37 5’ 7}’ al’1(1147 = {Oa 2’ 5’ 6}

Thus all cut functions of A are as follows:

01234567
Aol1 1 111111
A1 00O0O0O0GO0O
A1 0000001
A1 0000O0T10
A1 0000100
As[1 000101 1
As|1 0010101
A, /1 0100110
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and the equivalence relation ® on A is as follows:
0 ={(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(6,6), (7, N}
Hence, all distinct codewords of the binary block-code V are as follows (see Figure 6):

wo = 11111111, w; = 10000000, w, = 10000001, ws = 10000010, w,4 = 10000100, ws = 10001011,
we = 10010101, and w7 = 10100110.

w, = 11111111

ws = 10001011 we = 10010101 w, =10100110

<<

w, = 10000010

w, = 10000001 w, = 10000100

w, = 10000000

Figure 6. (V, <).
From Figures 7 and 8, we conclude that (A, <) is isomorphic to (V, <) under the isomorphism sending
am w,.
The following last example supports Corollary 3.8.

Example 3.8. Let A = {0,1,2,3} be a UP-algebra with a fixed element O and a binary operation -
defined by the following Cayley table, as Figure 7:

0123
Xw=0[0 1 2 3
X»=1[0 0 2 3

Xw)=X(x)=2|01 0 3

X»)=Xz=3[01 20

1 2 3
Figure 7. (A, <).
Let X = {u,v,w, x,y, z} and we define a UP-valued function X:X—>AonX by:

~_(uvwxyz)
o1 2 2 3 3)
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Then all cut subsets of X are as follows:
Xo =X, X1 ={v},Xo ={w,x}, and X5 = {y, z}.

Thus all cut functions of X are as follows:

u v w x 'y
Xol1 1 1111
X, /01 0000
X100 1100
X0 00 011

and the equivalence relation ® on A is as follows:
0 =1{0,0),1,1),(2,2),3,3)}.
Hence, all distinct codewords of the binary block-code V are as follows (see Figure 8):

wo = 111111, w; = 010000, w, = 001100, and ws = 000011.

w, = 111111

w, = 010000 w, = 000011
w, = 001100

Figure 8. (V, x).

From Figures 7 and 8, we conclude that (A, <) is isomorphic to (V, <) under the isomorphism sending
a — w,. In addition, V has the minimum distance 3. This means that can correct at most 1-error. For
example, if w3 = 000011 is sent and 000111 is received, then 000111 will be decoded to w3 = 000011.
If w3 = 000011 is sent and 010111 is received, then 010111 will be decoded to w; = 010000 using the
minimum distance decoding rule.

4. Conclusions
Codewords in a binary block-code generated by a UP-valued function are established and some
interesting results are obtained. The main result is proved that every finite UP-algebra A which has the

order less than or equal to the order of a finite set X determines a binary block-code V such that (A, <)
is isomorphic to (V, <). Many examples were provided to support the results.
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