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1. Introduction and preliminaries

Among many algebraic structures, algebras of logic form important class of algebras. Examples of
these are BCK-algebras [9], BCI-algebras [10], BE-algebras [12], UP-algebras [6], extension of
KU/UP-algebras [18] and others. They are strongly connected with logic. For example, BCI-algebras
introduced by Iséki [10] in 1966 have connections with BCI-logic being the BCI-system in
combinatory logic which has application in the language of functional programming. BCK and
BCI-algebras are two classes of logical algebras. They were introduced by Imai and Iséki [9, 10] in
1966 and have been extensively investigated by many researchers.

Jun and Song [11] said the following: In computer science, a block code is a type of channel coding.
It adds redundancy to a message so that, at the receiver, one can decode with minimal (theoretically
zero) errors, provided that the information rate would not exceed the channel capacity. The main
characterization of a block code is that it is a fixed length channel code (unlike source coding schemes
such as Huffman coding, and unlike channel coding methods like convolutional encoding). Typically,
a block code takes a k-digit information word, and transforms this into an n-digit codeword. Block
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coding is the primary type of channel coding used in earlier mobile communication systems. A block
code is a code which encodes strings formed an alphabet set S into code words by encoding each letter
of S separately.

Coding theory was applied to BCK-algebras in 2011 by Jun and Song [11] and in 2015 by Flaut [5].
They proved that every finite BCK-algebra determines a binary block-code. In 2015, Mostafa et al. [15]
applied coding theory to KU-algebras and gave some relation and connection between binary block-
codes and KU-algebras. They proved that every finite KU-algebra determines a binary block-code
which is isomorphic to it. In 2020, Koam et al. [13] defined and investigated KU-valued generalized
cut functions and their properties. They proved that for each n-ary block code K we can associate
a KU-algebra X, such that the constructed n-ary block codes generated by X, and proved that for
every n-ary block code K, there exists a KU-valued function on a KU-algebra which determines K.
Moreover, they have introduced and studied UP-valued functions in [3]. For many studies of KU-
algebras, see [14, 16, 23, 25].

In this paper, we establish binary block-codes by using the concept of UP-valued functions,
introduced by Ansari et al. [3]. We show that every finite UP-algebra A which has the order less than
or equal to the order of a finite set X determines a binary block-code V such that (A,≤) is isomorphic
to (V,�).

Before we begin our study, let’s review the definition of UP-algebras.

Definition 1.1. [6] An algebra A = (A, ·, 0) of type (2, 0) is called a UP-algebra, where A is a nonempty
set, · is a binary operation on A, and 0 is a fixed element of A (i.e., a nullary operation) if it satisfies the
following axioms:

(for all x, y, z ∈ A)((y · z) · ((x · y) · (x · z)) = 0), (1.1)
(for all x ∈ A)(0 · x = x), (1.2)
(for all x ∈ A)(x · 0 = 0), and (1.3)
(for all x, y ∈ A)(x · y = 0, y · x = 0⇒ x = y). (1.4)

From [6], we know that the concept of UP-algebras is a generalization of KU-algebras (see [17]).
The binary relation ≤ on a UP-algebra A = (A, ·, 0) defined as follows:

(for all x, y ∈ A)(x ≤ y⇔ x · y = 0) (1.5)

and the following assertions are valid (see [6, 7]).

(for all x ∈ A)(x ≤ x), (1.6)
(for all x, y, z ∈ A)(x ≤ y, y ≤ z⇒ x ≤ z), (1.7)
(for all x, y, z ∈ A)(x ≤ y⇒ z · x ≤ z · y), (1.8)
(for all x, y, z ∈ A)(x ≤ y⇒ y · z ≤ x · z), (1.9)
(for all x, y, z ∈ A)(x ≤ y · x, in particular, y · z ≤ x · (y · z)), (1.10)
(for all x, y ∈ A)(y · x ≤ x⇔ x = y · x), (1.11)
(for all x, y ∈ A)(x ≤ y · y), (1.12)
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(for all a, x, y, z ∈ A)(x · (y · z) ≤ x · ((a · y) · (a · z))), (1.13)
(for all a, x, y, z ∈ A)(((a · x) · (a · y)) · z ≤ (x · y) · z), (1.14)
(for all x, y, z ∈ A)((x · y) · z ≤ y · z), (1.15)
(for all x, y, z ∈ A)(x ≤ y⇒ x ≤ z · y), (1.16)
(for all x, y, z ∈ A)((x · y) · z ≤ x · (y · z)), and (1.17)
(for all a, x, y, z ∈ A)((x · y) · z ≤ y · (a · z)). (1.18)

Example 1.2. [20] Let U be a nonempty set and let X ∈ P(U) where P(U) means the power set of
U. Let PX(U) = {A ∈ P(U) | X ⊆ A}. Define a binary operation M on PX(U) by putting A M B =

B∩ (AC ∪ X) for all A, B ∈ PX(U) where AC means the complement of a subset A. Then (PX(U),M, X)
is a UP-algebra. Let PX(U) = {A ∈ P(U) | A ⊆ X}. Define a binary operation N on PX(U) by putting
ANB = B ∪ (AC ∩ X) for all A, B ∈ PX(U). Then (PX(U),N, X) is a UP-algebra.

Example 1.3. [4] Let Z∗ be the set of all nonnegative integers. Define two binary operations ◦ and ?
on Z∗ by:

(for all m, n ∈ Z∗)
(
m ◦ n =

{
n if m < n,
0 otherwise

)
and

(for all m, n ∈ Z∗)
(
m ? n =

{
n if m > n or m = 0,
0 otherwise

)
.

Then (Z∗, ◦, 0) and (Z∗, ?, 0) are UP-algebras.

For more examples of UP-algebras, see [1, 2, 7, 8, 19–22, 24].

2. UP-valued functions

First of all, we recall the definition of a UP-valued function on a nonempty set, which is introduced
by Ansari et al. [3]. In what follows let X and A denote a nonempty set and a UP-algebra respectively,
unless otherwise specified.

Definition 2.1. A mapping X̃ : X → A is called a UP-valued function on X.

Definition 2.2. A cut function of X̃, for a ∈ A is defined to be a mapping X̃a : X → {0, 1} such that

(for all x ∈ X)
(
X̃a(x) =

{
1 if X̃(x) · a = 0,
0 otherwise

)
. (2.1)

Equivalently,

(for all x ∈ X)
(
X̃a(x) =

{
1 if X̃(x) ≤ a,
0 otherwise

)
. (2.2)
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Obviously, X̃a is the characteristic function of the following subset of X, called a cut subset or an
a-cut of X̃:

Xa = {x ∈ X | X̃(x) · a = 0} = {x ∈ X | X̃(x) ≤ a}. (2.3)

Then
X0 = X (2.4)

and
(for all x ∈ X)(x ∈ XX̃(x)). (2.5)

By (2.1) and (2.3), we note that

Xa = {x ∈ X | X̃a(x) = 1}. (2.6)

Example 2.3. Let A = {0, 1, 2, 3, 4, 5, 6} be a UP-algebra with a fixed element 0 and a binary operation ·
defined by the following Cayley table, as Figure 1:

· 0 1 2 3 4 5 6

X̃(x) = 0 0 1 2 3 4 5 6
1 0 0 2 3 2 3 6

X̃(y) = 2 0 1 0 3 1 5 3
3 0 1 2 0 4 1 2
4 0 0 0 3 0 3 3
5 0 0 2 0 2 0 2

X̃(z) = 6 0 1 0 0 1 1 0

Figure 1. (A,≤).

Let X = {x, y, z} and we define a UP-valued function X̃ : X → A on X by:

X̃ =

( x
0

y
2

z
6

)
.

Then all cut subsets of X̃ are as follows:

X0 = X, X1 = ∅, X2 = {y, z}, X3 = {z}, X4 = ∅, X5 = ∅, and X6 = {z}.

Proposition 2.4. Every UP-valued function X̃ : X → A on X is represented by the minimum of the set
{q ∈ A | X̃q(x) = 1} for all x ∈ X, that is,

(for all x ∈ X)(X̃(x) = min{q ∈ A | X̃q(x) = 1}). (2.7)
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Proof. Let x ∈ X. Then X̃(x) = r for some r ∈ A. By (1.6), we have X̃(x) · r = 0 and so X̃r(x) = 1. Thus
r ∈ {q ∈ A | X̃q(x) = 1}. Let q ∈ A be such that X̃q(x) = 1. Then r · q = X̃(x) · q = 0, so r ≤ q. Hence,

X̃(x) = r = min{q ∈ A | X̃q(x) = 1}.

�

Proposition 2.5. Let X̃ : X → A be a UP-valued function on X. Then

(for all q, r ∈ A)(q ≤ r ⇒ Xq ⊆ Xr). (2.8)

Proof. Let q, r ∈ A be such that q ≤ r. Then q · r = 0. Let x ∈ Xq. Then X̃(x) ·q = 0. By (1.9) and (1.2),
we have 0 = (q · r) · (X̃(x) · r) = 0 · (X̃(x) · r) = X̃(x) · r, that is, x ∈ Xr. Hence, Xq ⊆ Xr. �

The following example shows that the converse of (2.8) of Proposition 2.5 is not true in general.

Example 2.6. From Example 2.3, we have X5 = ∅ ⊆ {z} = X6 but 5 � 6.

Corollary 2.7. Let X̃ : X → A be a UP-valued function on X. Then

(for all x, y ∈ X)(X̃(x) = X̃(y)⇔ XX̃(x) = XX̃(y)). (2.9)

Proof. It is straightforward by Proposition 2.5, (1.6), (2.5), and (1.4). �

Corollary 2.8. Let X̃ : X → A be a UP-valued function on X. Then

(for all x, y ∈ X)(X̃(x) ≤ X̃(y)⇔ XX̃(x) ⊆ XX̃(y)). (2.10)

Proof. It is straightforward by Proposition 2.5 and (2.5). �

For a UP-valued function X̃ : X → A on X, consider the following sets:

XA = {Xa | a ∈ A}

and
X̃A = {X̃a | a ∈ A}.

Proposition 2.9. Let X̃ : X → A be a UP-valued function on X. Then

(for all Y ⊆ A, inf Y exists)(Xinf Y =
⋂
y∈Y

Xy). (2.11)

Proof. Let Y ⊆ A be such that inf Y exists and let x ∈ X. Then

x ∈ Xinf Y ⇔ X̃(x) · inf Y = 0

⇔ (for all y ∈ Y)(X̃(x) · y = 0) ((1.7))
⇔ (for all y ∈ Y)(x ∈ Xy)

⇔ x ∈
⋂
y∈Y

Xy.

Hence, Xinf Y =
⋂
y∈Y

Xy. �
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Corollary 2.10. Let X̃ : X → A be a UP-valued function on X. Then

(for all Y ⊆ A, inf Y exists)(
⋂
y∈Y

Xy ∈ XA). (2.12)

Proof. It is straightforward by Proposition 2.9. �

The following example shows that the result of Corollary 2.10 is not true in case of union operation.

Example 2.11. From Example 2.3, we define a new UP-valued function X̃ : X → A on X by:

X̃ =

( x
1

y
2

z
3

)
.

Then cut subsets of X̃ are

X0 = X, X1 = {x}, X2 = {y}, X3 = {z}, X4 = ∅, X5 = ∅, and X6 = ∅.

Let Y = {1, 2}. Then inf Y exists and equal 4 but X1 ∪ X2 = {x, y} < XA.

Proposition 2.12. Let X̃ : X → A be a UP-valued function on X. Then⋃
a∈A

Xa = X. (2.13)

(for all x ∈ X)(
⋃
a∈A

{Xa | x ∈ Xa} = X). (2.14)

Proof. It is straightforward by (2.4). �

For a UP-valued function X̃ : X → A on X, define the binary relation Θ on A by:

(for all a, b ∈ A)(aΘb⇔ Xa = Xb). (2.15)

Theorem 2.13. Let X̃ : X → A be a UP-valued function on X. Then the binary relation Θ which is
defined in (2.15) is an equivalence relation on A.

Proof. Straightforward. �

If x ∈ A, then the Θ-class of x is the set (x)Θ defined as follows:

(x)Θ = {y ∈ A | xΘy}.

We define two subsets of A by:

Im(X̃) = X̃(X) = {a ∈ A | X̃(x) = a for some x ∈ X} (2.16)

and
(for all b ∈ A)((b] = {a ∈ A | a · b = 0} = {a ∈ A | a ≤ b}). (2.17)

By (1.4), we have the following assertions:

(for all a, b ∈ A)((a] = (b]⇔ a = b). (2.18)
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Proposition 2.14. Let X̃ : X → A be a UP-valued function on X. Then

(for all a, b ∈ A)(aΘb⇔ (a] ∩ Im(X̃) = (b] ∩ Im(X̃)). (2.19)

In particular, if X̃ is surjective, then

(for all a, b ∈ A)(aΘb⇔ (a] = (b]⇔ a = b). (2.20)

Proof. For all a, b ∈ A, we have

aΘb⇔ Xa = Xb

⇔ (for all x ∈ X)(X̃(x) · a = 0⇔ X̃(x) · b = 0) ((2.3))

⇔ {x ∈ X | X̃(x) ∈ (a]} = {x ∈ X | X̃(x) ∈ (b]} ((2.17))

⇔ (a] ∩ Im(X̃) = (b] ∩ Im(X̃).

�

Example 2.15. From Example 2.3, we have all cut subsets of X̃ are as follows:

X0 = X, X1 = ∅, X2 = {y, z}, X3 = {z}, X4 = ∅, X5 = ∅, and X6 = {z}.

Then all cut functions of X̃ are as follows:

· x y z

X̃0 1 1 1
X̃1 0 0 0
X̃2 0 1 1
X̃3 0 0 1
X̃4 0 0 0
X̃5 0 0 0
X̃6 0 0 1

3. Codewords generated by UP-valued functions

In this section, we establish codewords in a binary block-code generated by a UP-valued function.
Finally, we prove that every finite UP-algebra which has the order less than or equal to the order of a
finite set determines a binary block-code which is isomorphic to it.

Lemma 3.1. Let X̃ : X → A be a UP-valued function on X. Then

(for all x ∈ X)(X̃(x) = max(X̃(x))Θ ∩ Im(X̃)). (3.1)

In particular, if X̃ is surjective, then

(for all x ∈ X)(X̃(x) = max(X̃(x))Θ). (3.2)
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Proof. Let x ∈ X. Then X̃(x) ∈ (X̃(x))Θ ∩ Im(X̃). Let a ∈ (X̃(x))Θ ∩ Im(X̃). By Proposition 2.14,
we have a ∈ (a] ∩ Im(X̃) = (X̃(x)] ∩ Im(X̃). Thus a ∈ (X̃(x)], that is, a ≤ X̃(x). Hence, X̃(x) =

max(X̃(x))Θ ∩ Im(X̃). �

Let X be a nonempty set with n elements. We consider X = {1, 2, 3, . . . , n} and let A be a UP-algebra.
For each UP-valued function X̃ : X → A on X, we can define a binary block-code V of length n in the
following way: Each Θ-class (a)Θ where a ∈ A, will corresponds to a codeword wa = a1a2a3 . . . an with

(for all i ∈ X, j ∈ {0, 1})(ai = j⇔ X̃a(i) = j). (3.3)

We observe that
(for all a, b ∈ A)((a)Θ = (b)Θ ⇔ wa = wb). (3.4)

Indeed,

(a)Θ = (b)Θ ⇔ Xa = Xb

⇔ {i ∈ X | X̃a(i) = 1} = {i ∈ X | X̃b(i) = 1} ((2.6))
⇔ (for all i ∈ X)(ai = bi)
⇔ wa = wb.

Let wa = a1a2a3 . . . an and wb = b1b2b3 . . . bn be two codewords belonging to a binary block-code
V . Define an order relation � on the set of codewords belonging to a binary block-code V as follows:

wa � wb ⇔ for all i ∈ X, ai ≤ bi. (3.5)

Example 3.2. From Example 2.3, we have all cut subsets of X̃ are as follows:

X0 = X, X1 = ∅, X2 = {y, z}, X3 = {z}, X4 = ∅, X5 = ∅, and X6 = {z}.

Then the equivalence relation Θ on A is as follows:

Θ = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 4), (4, 1), (1, 5), (5, 1), (4, 5), (5, 4), (3, 6), (6, 3)}.

From Example 2.15, we have all distinct codewords of the binary block-code V are as follows (see
Figure 2):

w0 = 111,w1 = w4 = w5 = 000,w2 = 011, and w3 = w6 = 001.

Figure 2. (V,�).

From Figures 1 and 2, we conclude that (A,≤) is not isomorphic to (V,�).
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The following example will lead to the next important theorem.

Example 3.3. Let A = {0, 1, 2, 3} be a UP-algebra with a fixed element 0 and a binary operation ·
defined by the following Cayley table, as Figure 3:

· 0 1 2 3
0 0 1 2 3
1 0 0 1 3
2 0 0 0 3
3 0 1 1 0

Figure 3. (A,≤).

Let Ã : A→ A be the identity UP-valued function on A. Then all cut subsets of X̃ are as follows:

A0 = A, A1 = {1, 2}, A2 = {2}, and A3 = {3}.

Thus all cut functions of Ã are as follows:

0 1 2 3

Ã0 1 1 1 1
Ã1 0 1 1 0
Ã2 0 0 1 0
Ã3 0 0 0 1

and the equivalence relation Θ on A is as follows:

Θ = {(0, 0), (1, 1), (2, 2), (3, 3)}.

Hence, all distinct codewords of the binary block-code V are as follows (see Figure 4):

w0 = 1111,w1 = 0110,w2 = 0010, and w3 = 0001.

Figure 4. (V,�).
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From Figures 3 and 4, we conclude that (A,≤) is isomorphic to (V,�) under the isomorphism sending
a 7→ wa. In addition, the error pattern e = 1000 can be detected because w0 + e = 1111 + 1000 =

0111 < V,w1 + e = 0110 + 1000 = 1110 < V,w2 + e = 0010 + 1000 = 1010 < V , and w3 + e =

0001 + 1000 = 1001 < V . Hence, V detects e.

Theorem 3.4. Every finite UP-algebra A which is equipotent to a nonempty set X determines a binary
block-code V such that (A,≤) is isomorphic to (V,�).

Proof. Let A = {0, 1, 2, . . . , n} be a finite UP-algebra in which 0 is the maximum element,
X = {x0, x1, x2 . . . , xn} and let X̃ : X → A be a bijective UP-valued function on X sending xa 7→ a.
By (2.20) of Proposition 2.14 and (2.18), we have

(for all a ∈ A)((a)Θ = {b ∈ A | (a] = (b]} = {a}). (3.6)

Thus Θ = {(a, a) | a ∈ A}. By (3.4), we have all codewords wa of the binary block-code V are distinct.
Let f : A→ V be a function defined by:

(for all a ∈ A)( f (a) = wa).

Clearly, f is surjective. By (3.4) and (3.6), we have f is injective. Thus f is bijective. Let a, b ∈ A
be such that a ≤ b. By (2.8) of Proposition 2.5, we have Xa ⊆ Xb. This means that wa � wb, that is,
f (a) � f (b). Conversely, let a, b ∈ A be such that f (a) � f (b). Then wa � wb, so Xa ⊆ Xb. By (2.5),
we have xa ∈ XX̃(xa) = Xa ⊆ Xb, that is, a = X̃(xa) ≤ b. Hence, (A,≤) is isomorphic to (V,�). �

Corollary 3.5. Every finite UP-algebra A determines a binary block-code V such that (A,≤) is
isomorphic to (V,�).

Corollary 3.6. Every finite UP-algebra A which has the order less than or equal to the order of a finite
set X determines a binary block-code V such that (A,≤) is isomorphic to (V,�).

Proof. Let A = {0, 1, 2, . . . , n} be a finite UP-algebra in which 0 is the maximum element,
X = {x0, x1, x2, . . . , xm} for m ≥ n and let X̃ : X → A be a UP-valued function on X defined by:

X̃ =

( x0

0
x1

1
x2

2
. . .

. . .

xn

n
xn+1

n
xn+2

n
xm

n

)
.

The proof is also given in a similar way of the proof of Theorem 3.4. Hence, (A,≤) is isomorphic to
(V,�). �

It is not necessary for (A,≤) and (V,�) to be isomorphic under the identity UP-valued function on
A, which shown by the following example.

Example 3.7. Let A = {0, 1, 2, 3, 4, 5, 6, 7} be a UP-algebra with a fixed element 0 and a binary
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operation · defined by the following Cayley table, as Figure 5:

· 0 1 2 3 4 5 6 7

Ã(1) = 0 0 1 2 3 4 5 6 7
Ã(0) = 1 0 0 0 0 0 0 0 0
Ã(7) = 2 0 7 0 7 7 0 0 7
Ã(6) = 3 0 6 6 0 6 0 6 0
Ã(5) = 4 0 5 5 5 0 5 0 0
Ã(4) = 5 0 4 6 7 4 0 6 7
Ã(3) = 6 0 3 5 3 7 5 0 7
Ã(2) = 7 0 2 2 5 6 5 6 0

Figure 5. (A,≤).

Let Ã : A→ A be a UP-valued function on A defined by:

Ã =

(
0
1

1
0

2
7

3
6

4
5

5
4

6
3

7
2

)
.

Then all cut subsets of Ã are as follows:

A0 = A, A1 = {0}, A2 = {0, 7}, A3 = {0, 6}, A4 = {0, 5}, A5 = {0, 4, 6, 7}, A6 = {0, 3, 5, 7}, and A7 = {0, 2, 5, 6}.

Thus all cut functions of Ã are as follows:

0 1 2 3 4 5 6 7

Ã0 1 1 1 1 1 1 1 1
Ã1 1 0 0 0 0 0 0 0
Ã2 1 0 0 0 0 0 0 1
Ã3 1 0 0 0 0 0 1 0
Ã4 1 0 0 0 0 1 0 0
Ã5 1 0 0 0 1 0 1 1
Ã6 1 0 0 1 0 1 0 1
Ã7 1 0 1 0 0 1 1 0
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and the equivalence relation Θ on A is as follows:

Θ = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7)}.

Hence, all distinct codewords of the binary block-code V are as follows (see Figure 6):

w0 = 11111111,w1 = 10000000,w2 = 10000001,w3 = 10000010,w4 = 10000100,w5 = 10001011,
w6 = 10010101, and w7 = 10100110.

Figure 6. (V,�).

From Figures 7 and 8, we conclude that (A,≤) is isomorphic to (V,�) under the isomorphism sending
a 7→ wa.

The following last example supports Corollary 3.8.

Example 3.8. Let A = {0, 1, 2, 3} be a UP-algebra with a fixed element 0 and a binary operation ·
defined by the following Cayley table, as Figure 7:

· 0 1 2 3

X̃(u) = 0 0 1 2 3
X̃(v) = 1 0 0 2 3

X̃(w) = X̃(x) = 2 0 1 0 3
X̃(y) = X̃(z) = 3 0 1 2 0

Figure 7. (A,≤).

Let X = {u, v,w, x, y, z} and we define a UP-valued function X̃ : X → A on X by:

X̃ =

(u
0

v
1

w
2

x
2

y
3

z
3

)
.
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Then all cut subsets of X̃ are as follows:

X0 = X, X1 = {v}, X2 = {w, x}, and X3 = {y, z}.

Thus all cut functions of X̃ are as follows:

u v w x y z

X̃0 1 1 1 1 1 1
X̃1 0 1 0 0 0 0
X̃2 0 0 1 1 0 0
X̃3 0 0 0 0 1 1

and the equivalence relation Θ on A is as follows:

Θ = {(0, 0), (1, 1), (2, 2), (3, 3)}.

Hence, all distinct codewords of the binary block-code V are as follows (see Figure 8):

w0 = 111111,w1 = 010000,w2 = 001100, and w3 = 000011.

Figure 8. (V,�).

From Figures 7 and 8, we conclude that (A,≤) is isomorphic to (V,�) under the isomorphism sending
a 7→ wa. In addition, V has the minimum distance 3. This means that can correct at most 1-error. For
example, if w3 = 000011 is sent and 000111 is received, then 000111 will be decoded to w3 = 000011.
If w3 = 000011 is sent and 010111 is received, then 010111 will be decoded to w1 = 010000 using the
minimum distance decoding rule.

4. Conclusions

Codewords in a binary block-code generated by a UP-valued function are established and some
interesting results are obtained. The main result is proved that every finite UP-algebra A which has the
order less than or equal to the order of a finite set X determines a binary block-code V such that (A,≤)
is isomorphic to (V,�). Many examples were provided to support the results.
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