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1. Introduction

The Hermite-Hadamard inequality, which is one of the basic inequalities of inequality theory, has
many applications in statistics and optimization theory, as well as providing estimates about the mean
value of convex functions.

Assume that f : I € R — R is a convex mapping defined on the interval I of R where a < b. The
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following statement;

f(a+b) ff( \dx < (a)+f(b)

holds and known as Hermite-Hadamard inequality. Both inequalities hold in the reversed direction if
f is concave.

The concept of convex function, which is used in many classical and analytical inequalities,
especially the Hermite-Hadamard inequality, has attracted the attention of many researchers
see [4,7-9], and has expanded its application area with the construction of new convex function
classes. The introduction of this useful class of functions for functions of two variables gave a new
direction to convex analysis. In this sense, in [6], Dragomir mentioned about an expansion of the
concept of convex function, which is used in many inequalities in theory and has applications in
different fields of applied sciences and convex programming.

Definition 1.1. Let us consider the bidimensional interval A = [a,b] X [c,d] in R> witha < b,c < d. A
Sfunction f : A — R will be called convex on the co-ordinates if the partial mappings f, : [a,b] — R,

fw) = f(u,y) and f; : [c,d] — R, fi(v) = f(x,v) are convex where defined for all y € [c,d] and
x € [a, b]. Recall that the mapping f : A — R is convex on A if the following inequality holds,

fAx+ (A =Dz, Ay + (1 = Dw) < Af(x,y) + (1 =D f(z,w)

forall (x,y),(z,w) € Aand A € [0, 1].

Transferring the concept of convex function to coordinates inspired the presentation of Hermite-
Hadamard inequality in coordinates and Dragomir proved this inequality as follows.

Theorem 1.1. (See [6]) Suppose that f : A = [a,b] X [c,d] — R is convex on the co-ordinates on A.
Then one has the inequalities;

a+b c+d
f( ) ) (1.1)
1 1 b d 1 b
< slra [ g [57)e]
1 b
= (b—a)(d—c)j; fd Jnddy
<l;fb()d+1fb(d)d
= io-al, O e ), SO
1 ¢ 1
+mfc f(a,y)d)""mff(b,ﬁdy]
< f(a,C)+f(a,d)+f(b,6)+f(b,d).

4

The above inequalities are sharp.

To provide further information about convexity and inequalities that have been established on the
coordinates, see the papers [1,2,5, 10-15]).
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One of the trending problems of recent times is to present different types of convex functions and to
derive new inequalities for these function classes. Now we will continue by remembering the concept
of n-polynomial convex function.

Definition 1.2. (See [16]) Let n € N. A non-negative function f : I C R — R is called n-polynomial
convex function if for every x,y € I and t € [0, 1],

1< ) 1< ;
flx+(1-0y) < Z;(l—(l—t)‘)f(x)+;szz;(l—t)f(y).

We will denote by POLC(I) the class of all n-polynomial convex functions on interval /.
In the same paper, the authors have proved some new Hadamard type inequalities, we will mention
the following one:

Theorem 1.2. (See [16]) Let f : [a,b] — R be an n-polynomial convex function. If a < b and
f € Lla,b), then the following Hermite-Hadaamrd type inequalities hold:

%(n + 211’ — l)f(a;b) ff(x)d = = +f(b) Z s+1° (1.2)

Since some of the convex function classes can be described on the basis of means, averages have
an important place in convex function theory. In [3], Awan et al. gave the harmonic version on the n-
polynomial convexity described on the basis of the arithmetic mean as follows. They have also proved
several new integral inequalities of Hadamard type.

Definition 1.3. (See [3]) Let n € N and H C (0, ) be an interval. Then a nonnegative real-valued
function f : H — [0, ) is said to be an n-polynomial harmonically convex function if

f(L) Z(l—(l—r))f(y)+ Z(l—t)f(x)

tx+(1 -1y —

forall x,y € Handt € [0,1].

Theorem 1.3. (See [3]) Let f : [a,b] C (0,00) — [0, 00) be an n-polynomial harmonically convex
function. Then one has

n ) ( 2ab )< ab f(x) f(a) +f(b) Z (13)

1
§(n+2‘"—1 a+b]” b-a x2 -

a

s+1

if f € Lla, b].

The main motivation in this study is to give a new modification of (m, n)-harmonically polynomial
convex functions on the coordinates and to obtain Hadamard type inequalities via double integrals and
by using Holder inequality along with a few properties of this new class of functions.

AIMS Mathematics Volume 6, Issue 5, 4677-4690.



4680

2. Main results

In this section, we will give a new classes of convexity that will be called (m, n)-polynomial convex
function as following.

Definition 2.1. Let m,n € N and A = [a, b] X [c, d] be a bidimensional interval. Then a non-negative
real-valued function f : A — R is said to be (m, n)-harmonically polynomial convex function on A on
the co-ordinates if the following inequality holds:

Xz yw 1 « 1 &
! tz+(1—t)x’sw+(1—s)y) < ;;(1_(1‘” %; 1—(1—s)J f(xy)
+%;(1—(1-;)")%;(1_51)]0(&“})

1 ¢ By
+;Z(l—t %; 1=(1-9)f &y

+— Z l—t %]Z’:: l—s’ f(z,w)

i=1

where (x,y),(x,w),(z,y),(z,w) € Aand t,s € [0, 1].

Remark 2.1. If one choose m = n = 1, it is easy to see that the definition of (m,n)-harmonically
polynomial convex functions reduces to the class of the harmonically convex functions.

Remark 2.2. The (2,2)-harmonically polynomial convex functions satisfy the following inequality;

Xz w 3t—1* 35— s°
,— < £y
tx+(1-0z sz+(1—-5w 2 2
3t—1r2—s5—5°
2 2

2—t—t23s—s
> fzy

2—t—t22—s—s
2 2

f

fx,w)

fzw)

where (x,y),(x,w),(z,y),(z,w) € Aand t,s € [0, 1].

Theorem 2.1. Assume that b > a > 0,d > ¢ > 0, f, : [a,b] X [c,d] — [0,00) be a family of
the (m, n)-harmonically polynomial convex functions on A and f(u,v) = sup f,(u,v). Then, f is (m,n)-
harmonically polynomial convex function on the coordinates if K = {x,y € [a,b] X [c,d] : f(x,y) < oo}
is an interval.

Proof. Fort,s €[0,1] and (x,y),(x,w),(z,y),(z,w) € A, we can write

Xz yw Xz yw
i i) - i i

iz+ (1 -tx sw+(1 -5y iz+(l-tx sw+(1 -5y
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IA

(1 —(1 - t)f)

i=1 j=1

+% (1—(1—t)")%Z(l—sf)supfa(x,w)

1 =1

*% 2. (1=1) % D (1= =sY)sup fu (z.y)

1 j=1

(1= = 9)sup fu (x,3)

3 (1 )%Z(l—(l—sy)f(zy)

1 j=1

which completes the proof. O

Lemma 2.1. Every (m,n)-harmonically polynomial convex function on A is (m,n)-harmonically
polynomial convex function on the co-ordinates.

Proof. Consider the function f : A — R is (m,n)-harmonically polynomial convex function on A.
Then, the partial mapping f; : [c,d] — R, f; (v) = f (x,v) is valid. We can write

vw vw
fx(tw+(l—t)v) f(x’tw+(1—t)v)
B ( X2 W )
=/ tx+(1=0x"tw+ (1 =1t

—Z L= (=) f(xv)

+— Z l—t fx,w)

:;;(1—<1—r>")fx(v)

IA

+%Z(1 — 1) f (w)
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for all r € [0, 1] and v,w € [c,d]. This shows the (m, n)-harmonically polynomial convexity of f,.
By a similar argument, one can see the (m, n)-harmonically polynomial convexity of f;. O

Remark 2.3. Every (m,n)-harmonically polynomial convex function on the co-ordinates may not be
(m, n)-harmonically polynomial convex function on A .

A simple verification of the remark can be seen in the following example.

Example 2.1. Let us consider f : [1,3] X [2,3] — [0, 00), given by f(x,y) = (x—1)(y—2). It is
clear that f is harmonically polynomial convex on the coordinates but is not harmonically polynomial
convex on [1,3] X [2, 3], because if we choose (1,3),(2,3) € [1,3] X [2,3]and t € [0, 1], we have

RES (g wien) = (03) =
LHS 1y (1-(-0)f1.3)+1y(1-F)f@3)=0"
i=1 i=1

Then, it is easy to see that

( 2 9
f 2t+(1—t)’3t+3(1—t))

n

> %;(1—(1—z)f)f(1,3)+%2(1—#)]0(2,3).

i=1
This shows that f is not harmonically polynomial convex on [1,3] X [2,3].

Now, we will establish associated Hadamard inequality for (m, n)-harmonically polynomial convex
functions on the co-ordinates.

Theorem 2.2. Suppose that f : A — R is (m, n)-harmonically polynomial convex on the coordinates
on A. Then, the following inequalities hold:

1( m )( n )f 2ab  2cd
4\m+2"m—-1/\n+27"-1 a+b’ c+d

2.1)

1 m bf( ’c+d) n df(gil;’)
= 4 (m+2‘ —1) f x2 dx+(n+2‘"—1)d—c£ y? dy
- abcd f f(xy)

a (b—a)(d—c) ¢
. 1( ff(ay) ff(by) ) s
B (d-o) (d—C) s+1

Ms EM

~

f(xc) f(xd) R
((b—a)f Y- a)f ),1 +}

f(a,c) + f(a,d) + f(b,c) + f(b,d) 5w

s=1

~

IA
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Proof. Since f is (m,n)-harmonically polynomial convex function on the co-ordinates, it follows that
the mapping A, and h, are (m, n)-harmonically polynomial convex functions. Therefore, by using the
inequality (1.3) for the partial mappings, we can write

d
1 m 2cd cd hx(y) hy(c) + hx(d)
E(m+2‘m—1)h (c+d) d—cf y? B Zs+1 (22)
namely
1 m 2cd f(x, y) f(x, o)+ fx,d) s
§(m+2"”—1)f(xc+d) f m ;s+1' 23)

Dividing both sides of (2.2) by % and by integrating the resulting inequality over [a, b], we have

ab 2cd
2(b - a) m+ 2‘ ff( ) 24

ff(”)dx+abff(“’)d
abcd f f( y) < Z s
(b-a)(d-rc) - m(b—a) ; s+1°

=1

By a similar argument for (2.3) , but now for dividing both sides by ~—- ) C) and integrating over [c, d] and

by using the mapping h, is (m, n)-harmonically polynomial convex functlon we get

d a
cd ( n )ff(;l;’y)d (2.5)
2(d—-c)\n+2" -1 y? Y '
df() df(b)
cd | £L2dy + cd | L2224
abed f f(xy) . T dyred [ Sy,
b-a)d-0 = n(d—o) Liti 1

By summing the inequalities (2.4) and (2.5) side by side, we obtain the second and third inequalities
of (2.1). By the inequality (1.3), we also have:

%( m 1)f(2ab 2(:61)S cd fdf(m,y)dy

m+2"m — a+b’ c+d

and

b
1/ d2ab 2ed\  ab [ f(x %)
—( )f , < dx
2\n+27"-1 a+b c+d]” b-a x2
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which give by addition the first inequality of (2.1). Finally, by using the inequality (1.3), we obtain

d
d f(a,y) L J@o +f(a d)
- f y? Z

s+ 1’

d f'f(b,y) 6.0+ 6.0 Z

s+ 1°

f(XC) L@ C)+f(bC)Z

b a x? t+ 1
and ,
ff(x,d) P a’)+f(b d)Z
t+1
which give by addition the last inequality of (2.1). O

In order to prove our main findings, we need the following identity.

Lemma 2.2. Assume that f : A = [a,b] X [c,d] C (0,00) X (0,00) — R be a partial differentiable

mapping on A and 2L a5 € L(A) . Then, one has the following equality:

8

@ (f)
fa, o)+ f(b,c) +f(a d)+fb,d) __ abed f f(x y)
To-ad-o

[ f f(a y) f f(b, y)
f(x,C) f(x,d)
_afa 2 dx+b_afa 2 dx]

abcd(b — a)(d - ¢)

4
et =20 (1 -2s) &*f (ab cd
Xfo fo (AB)  0ids (A_, _s)d a

where A, =tb + (1 — t)a, B, = sd + (1 — s)c.

Theorem 2.3. Let f : A = a, b] X [¢,d] c (0, 00) X (0, 0) — R be a partial differentiable mapping on
A and gtﬁf eL(A).If ' a5 18 (m,n)-harmonically polynomial convex function on A, then one has the

following inequality:

1D ()l (2.6)
bd(b - a)(d - c)

dac (p + 1)

AIMS Mathematics Volume 6, Issue 5, 4677-4690.
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1
x|y %(a,c) +ca %(a,d) +c3 %(b,c) +C4 %(b,d) ]
where
li F(212la) ! F(21'+21“)
_ L AN . ir1-2
1 n,-:121 q, 1, 2, b i+121 q, 1, 5 b

1 © c 1 c
X— F 2,1;2;1——)— .F(2,1;'+2;1——),
mZ[z 1(4 d j+12 1\<q, 157 d]

J=1

1 & a 1 a
= N\, 2,1;2;1——)— .F(2,1;'+2;1——)
C py. 2 1(4 i+12 1144, 151 b]

1 & c 1 c
X F(2,1;2;1——)— .F(2,'+1;'+2;1——),
mZ[z 1{2q p j+12 144, J d

a 1 a
Fi(2 ,1;2;1——)——.F (2 ,'+1;'+2;1——)
ZA“(‘] p) i1 b]

1 & c 1 c
=S |,F 2,1;2;1——)—- .F(2,1;'+2;1——),
m;[z 1((] d J+121 q. 1] d]
N F(2121a) ! F(Z '+1'+21“)
= - sy L4l === 7. , 1 i
Cyq n L 201 | 2q b l+121 q,! b
xlzm: F(2 1:2:1 C) ! F(2 it 1 i+2:1 C)
ijl 241 Q9 9 &y d j+l'2 1 q’] a_] ’ d )

and A, = th + (1 — Ha, B; = sd + (1 — s)c for fixed t,s € [0,1],p,g> land p™' +q7' = 1.

Proof. By using the identity that is given in Lemma 2.2, we can write

1D ()
abed(b — a)(d - ¢) fl f‘ (1 =201 = 2s)]
4 0 Jo (A,B,)*

dsdt

0*f (ab ﬁi
otos

A, B,

By using the well known Holder inequality for double integrals and by taking into account the definition
of (m, n)-harmonically polynomial convex functions, we get

[ ()

b b— _ 1 1 %
< abced( 461)(01 c) (f f 11 =247 11 = 2s)? dl‘dS)
0 0

Volume 6, Issue 5, 4677-4690.
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dtds )

(92f (ab cd)

1 1
X(f f B 505\ &, B,
abcd(b — a)(d—c) (f f (A.B.)

1 © 1
{;zo—a—o) $0-a-99);

i=1 =1

IA

aZf q

—(a c)

q

%(Cl d)

f

q

1 m
l—t — 1— 1 —s))|=—— (b,
- ]Z (1= sY) |72 (b.¢)
1
1 1 « i !
= (1-7) —Z 1-s) —f(b d) ]dtds]
n m =
By computing the above integrals, we can easily see the followings
1 pl
f f (4B (1= (1 =) (1 - (1= 5))dds
o Jo
a 2q a 1 . a
- (5) [zFl (2q, 1:2:1 - E)_ ——oF) (2q, i+ 21— E)]

m

1 c 1 c
X— F(2,1;2;1——)—_ .F(2,1;'+2;1——),
mZ[2 1{4g d ]+12 1149, 15 d

=

1 1
-2 _ _p\i o
fo : (A,B,) ‘1(1 (1 t))(l s])dtds

a\% a 1 a
= (Y'LE (20.1:2:1 = - — R (20, 104+ 2:1 -
(b) [“(q’” b) i+12‘(q’ s b)]

1 & c 1 c
=S |,F 2,1;2;1——)— .F(2,'+1;'+2;1——),
mZ[zl((] d j+121 q,] J d]

a\X a 1 a
- Fil2g,1:2;1 — = |- —LF(2g,i+ 1;i+2;1 — =
b) [2 1( q, 152] b) i+12 1( q,1+ 11+ 2] b)]

1 & c 1 c
~“N'|,F 2,1;2;1——)— .F(2,1;' 2;1——),
Xm2[21(q a) iy g, 157+ d]

and

1 1
-2 i o
fo fo (A,B,) 4(1 t)(l sf)dzds

AIMS Mathematics Volume 6, Issue 5, 4677-4690.
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a\* a 1 a
= (Y'LE (20121 =8 = —— L F (20.i+ 1i+2:1 =4
(b) [2 l(q’ i b) it 172 l(q’H s b)]

1 & c 1 c
X— F(2,1;2;1——)— .F(2,'+1;'+2;1——)
mZ[z 1|9 d j+12 11<4,J J d

J=1

where , F'; is Hypergeometric function defined by

1
1
Fia,b,c;7) = —— | 7' =077 - 2074,
2F1(a,b; ¢ 2) B(b,c—b)f (1= -z
0

1

for ¢ > b > 0,|z] < 1 and Beta function is defind as B(x,y) = ftx‘l(l —1)~ldt, x,y > 0. This completes

0
the proof.

Corollary 2.1. If we set m = n = 1in (2.6) , we have the following new inequality.

1D ()l
bd(b - a)d - c)

dac (p + 1)

-

q q

2 q 62]0 62f aZf q
X [cin %(a,c) + %(a,d) + ¢33 %(b,c) + Ca4 %(b,d) ]
where
a ., a
ey = [zFl(zq,l,z,l—Z)—i+1.2F1(2q,1,l+2,1 b)]

X

dl  j+1

1
2F1(2C],1;2;1—£)— 2F1(2q,1;j+2;1—§)],

Cn =

2F1(2q,1;2;1—g)— 2F1(2q,1;i+2;1—g)]

b i+1
[ c 1 c
w |,F 2,1;2;1——)— .F(2,'+1;'+2;1——),
72 1(61 d j+12 1149, J J d]
- —F(2 1:2:1 “) ! F(2 it 21 “)
C33 = g2 1 q, 1, 2 b l+12 1 q,1 Ny 5 b
c 1 c
x| ,F 2,1;2;1——)— .F(Z,l;'+2;1——),
2 1(61 P j+121 q, 15 d]
- F(Z 1:2:1 “) ! F(Z i+ 21 a)
Cqq = 2471 q, 15 2] b l+12 1 q,! 51 » b

X

JF) (2q,1;2;1—5)—

y zFl(zq,j+1;j+2;1—f)],

j+ 1 d

O

AIMS Mathematics Volume 6, Issue 5, 4677-4690.



4688

P fts)|?

Corollary 2.2. Suppose that all the conditions of Theorem 2.3 hold. If we set 'W is bounded, i.e.,

P (t, s) Pf 5|
otos - (1,5)e(a,b)x(c,d) otos ’
we get
bdb —a)d—-c) ||0*f(t,s 1
@ ()] < AL ONTTCIN oy ey hey 4 el
4ac (p + 1)7 1ds

where ¢y, ¢, C3, C4 as in Theorem 2.3.

I + a 1 a
= - F 2,1;2;1——)——.F(2,1;' 2;1——)
€1 nz;[z 1(q p) iy bt b]

1 & c 1 c
=S |,F 2,1;2;1——)— .F(2,1;'+2;1——),
mZ[z 1((] d j+12 11«4, 1] d]

=

1 & a 1 a
= - |oF 2,1;2;1——)——.F(2,1;'+2;1——)
@ nl-zl[“(q YA R b]
ol f F(z 1:2:1 C) ! F(2 it 14201 C)
ijl 201 Q’ 9 &~y d j+1'21 q’] a] ’ d ’
15 F(212la) ! F(z '+1'+21“)
3 = = 32— — )=+ . L1 il 1 ==
3 niZI 21| 44, b l+121 q b

1 © c 1 c
X— F 2,1;2;1——)— .F(2,1;'+2;1——),
mZ[z 1(4 d j+12 1\<q, 157 d]

J=1

1 a 1 . ) _ a
cy = ’;; 2F1(2q,1;2;1—5)—i+1.2F1(2q,l+1,l+2,1—5)]

1 & c 1 c
X F(2,1;2;1——)— .F(2,'+1;'+2;1——),
mZ[z 1|49 d ].+12 1«4, J J d
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