Mathematics

## Research article

# On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space 

Manar A. Alqudah ${ }^{1}$, Artion Kashuri ${ }^{2}$, Pshtiwan Othman Mohammed ${ }^{3, *}$, Muhammad Raees ${ }^{4}$, Thabet Abdeljawad ${ }^{5,6,7, *}$, Matloob Anwar ${ }^{4}$ and Y. S. Hamed ${ }^{8}$<br>${ }^{1}$ Department of Mathematical Sciences, Faculty of Sciences, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia<br>${ }^{2}$ Department of Mathematics, Faculty of Technical Science, University Ismail Qemali, 9400, Vlora, Albania<br>${ }^{3}$ Department of Mathematics, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq<br>${ }^{4}$ School of Natural Sciences, National University of Sciences and Technology, Islamabad, Pakistan<br>${ }^{5}$ Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia<br>${ }^{6}$ Department of Medical Research, China Medical University, Taichung 40402, Taiwan<br>${ }^{7}$ Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan<br>${ }^{8}$ Department of Mathematics and Statistics, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia

* Correspondence: Email: pshtiwansangawi@gmail.com, tabdeljawad@psu.edu.sa.


#### Abstract

In this paper, we propose a new family of interval valued (IV) convex functions termed as generalized modified ( $p, h$ )-convex IV functions. We obtain the counterpart of Hermite-Hadamard $H \cdot H$ inequality by extending the IV fractional integral to the IV $\psi_{k}$-Riemann-Liouville ( $\psi_{k}-R L$ ) fractional integrals. Also, several inequalities using extended operations on the newly defined class of convex IV functions are given.


Keywords: $H \cdot H$ inequality; $\psi_{k}-R L$ fractional integrals; IV convex function
Mathematics Subject Classification: 26A51, 26A33, 26D07, 26D10, 26D15

## 1. Introduction

The function $H: \mathcal{T} \rightarrow \mathbb{R}(\mathcal{T}$ is a finite interval of $\mathbb{R})$ will be convex if the inequality:

$$
\begin{equation*}
H\left(\mu a_{1}+(1-\mu) a_{2}\right) \leq \mu H\left(a_{1}\right)+(1-\mu) H\left(a_{2}\right), \tag{1.1}
\end{equation*}
$$

holds for all $a_{1}, a_{2} \in \mathcal{T}, \mu \in[0,1]$. The beauty of mentioned functions was revealed when, Hermite and Hadamard [1] discovered the inequality

$$
\begin{equation*}
H\left(\frac{a_{1}+a_{2}}{2}\right) \leq \frac{1}{a_{2}-a_{1}} \int_{a_{1}}^{a_{2}} H(t) d t \leq \frac{H\left(a_{1}\right)+H\left(a_{2}\right)}{2} \tag{1.2}
\end{equation*}
$$

called $H \cdot H$ inequality, which ranked among the best-established inequalities. Due to a nice geometrical interpretation, various applications has been found, see for instance [2,3]. For a detailed study about the generalization of this inequality, we refer to [4-13].

Interval analysis is a special case of set-valued analysis. The subject emerged as an attempt to handle the interval uncertainty which appears in different computational or mathematical models of some deterministic real-world problems. One of the oldest example of an interval enclosure is Archimedes method which is related to computation of the circumference of a circle. In 1966, Moore [14] wrote the first manuscript on to the interval analysis. After his book, scientists began to explore the theory and application of interval arithmetic.

The interval analysis has its applications in robotics, computer graphics, chemical and structured engineering, economics, behavioral ecology, constraint satisfaction, signal processing and global optimization, neural network output optimization and many others [15-17].

Due to the mentioned applications, researchers have investigated several important inequalities including Jensen's inequality, $H \cdot H$ and Ostrowski inequalities etc. Chalco-Cano et al. [18, 19] obtained Ostrowski type inequalities via the Hukuhara derivative for IV functions. Romn-Flores et al. [20], established Minkowski and Beckenbachs inequalities. For some other inequalities, see [20-22]. Sadowska [23], gave the $H \cdot H$ inequality. For other studies, see [23, 24]. In [25], Zhao et al. proved $H \cdot H$ inequality for IV approximately $h$-convex functions via generalized fractional integrals. Recently, Kamran et al. [26], established the $H \cdot H$ inequality by introducing the notion of IV generalized $p$-convex functions.

Motivated by these papers, we develop some new $H \cdot H$ inequalities by introducing a new class of IV functions termed as modified generalized ( $p, h$ )-convex IV function. Furthermore we explore the counter part of $H \cdot H$ inequality for the new and larger class of IV convex functions. We also extend the concept from interval arithmetic to extended interval arithmetic for the deduction of the including sub-classes of modified generalized ( $p, h$ )-convex IV functions. We establish the $H \cdot H$ inequality via IV $\psi_{k}-R L$ fractional integrals, which is the extension of IV Riemann-Liouville fractional integral introduced in [27].

## 2. Preliminaries

In this section, we recall some useful definitions and results which will be helpful for the further study. Most of the literature has been taken from [28-30].

### 2.1. Interval arithmetic; $\mathcal{S}=(\mathcal{S},+, \times, \subseteq)$

In this subsection we recall some basic concepts of interval-arithmetic.
An interval $[u, v], u \leq v$ is a compact subset of $\mathbb{R}$, the real line, defined by $[u, v]=\{x \mid u \leq x \leq v\}$. The set $\{[u, v] \mid u, v \in \mathbb{R}\}$ of all intervals is denoted by $\mathcal{T} R$. The left end-point of any interval $U \in \mathcal{T} R$ is denoted by $u^{-}$or $U^{-}$, while the right end-point by $u^{+}$or $U^{+}$, so that $U=\left[u^{-}, u^{+}\right]=\left[U^{-}, U^{+}\right]$. So, for $U \in \mathcal{T} R$ the symbol $u^{r}$ (or $U^{r}$ ), with $r \in\{+,-\}$, represents the left or right end-point of $U$, depending on the value of $r$. Define the product $r s$ for $r, s \in\{+,-\}$ by setting $--=+=++,+-=$ $-+=-$, so that $u^{--}=u^{++}=u^{+}$etc. Let us denote the set of intervals containing zero by $\mathcal{Z}=$ $\{U \in \mathcal{T} R \mid 0 \in U\}=\left\{U \in \mathcal{T} R \mid u^{-} \leq 0, u^{+} \geq 0\right\}$ and the set of intervals which do not contain zero is $\mathcal{T} R \backslash \mathcal{Z}=\{U \in \mathcal{T} R \mid 0 \notin U\}$. Define $\varphi: \mathcal{T} R \backslash \mathcal{Z} \rightarrow\{+,-\}$ by means of

$$
\varphi(U)= \begin{cases}+, & \text { if } \quad 0<u^{-}  \tag{2.1}\\ -, & \text {if } \quad u^{+}<0\end{cases}
$$

The interval arithmetic $\mathcal{G}=(\mathcal{T} R,+, ., /, \subseteq)$ consists of the set $\mathcal{T} R$ together with a relation for inclusion $\subseteq$ and the basic operations addition $+: \mathcal{T} R \otimes \mathcal{T} R \rightarrow \mathcal{T} R$, multiplication. : $\mathcal{T} R \otimes \mathcal{T} R \rightarrow \mathcal{T} R$ and inversion (reciprocal value) /: $\mathcal{T} R \backslash \mathcal{Z} \rightarrow \mathcal{T} R$ defined by:

$$
\begin{gather*}
U \subseteq V \Leftrightarrow v^{-} \leq u^{-} \text {and } u^{+} \leq v^{+} \text {for } U, V \in \mathcal{T} R .  \tag{2.2}\\
U+V=\left[u^{-}+v^{-}, u^{+}+v^{+}\right] .  \tag{2.3}\\
U . V=\left\{\begin{array}{ll}
{\left[u^{-\varphi(V)} v^{-\varphi(U)}, u^{\varphi(V)} v^{\varphi(U)}\right],} & \text { for } \quad U, V \in \mathcal{T} R \backslash \mathcal{Z} ; \\
{\left[u^{\delta} v^{-\delta}, u^{\delta} v^{\delta}\right], \delta=\varphi(U)} & \text { for } \quad U \in \mathcal{T} R \backslash \mathcal{Z}, V \in \mathcal{Z} ; \\
{\left[u^{-\delta} v^{\delta}, u^{\delta} v^{\delta}\right], \delta=\varphi(V)} & \text { for } \quad U \in \mathcal{Z}, V \in \mathcal{T} R \backslash \mathcal{Z} . \\
U . V=\left[\min \left\{u^{-} v^{+}, u^{+} v^{-}\right\}, \max \left\{u^{-} v^{-}, u^{+} v^{+}\right\}\right], \quad \text { for all } U, V \in \mathcal{Z} . \\
1 / V=\left[\frac{1}{v^{+}}, \frac{1}{v^{-}}\right], V \in \mathcal{T} R \backslash \mathcal{Z} .
\end{array} .\right. \tag{2.4}
\end{gather*}
$$

In particular, if $U$ is a degenerate interval of the form $U=[u, u]=u$, then

$$
U . V=u . V= \begin{cases}{\left[u \nu^{-\varphi(u)}, u \nu^{\varphi(u)}\right]=\left[u \nu^{-}, u \nu^{+}\right],} & \text {for } \quad u \geq 0 ;  \tag{2.7}\\ {\left[u \nu^{-\varphi(u)}, u \nu^{\varphi(u)}\right]=\left[u v^{-}, u \nu^{+}\right],} & \text {for } \quad u<0 .\end{cases}
$$

For $u=-1$, we have $(-1) . V=-V=-\left[v^{-}, v^{+}\right]=\left[-v^{+},-v^{-}\right]$. The operation of subtraction $U-V$ and division $U / V$ are defined in $\mathcal{G}$ as composite operations respectively by

$$
\begin{gather*}
U-V=U+(-1) . V=U+(-V)=\left[u^{-}-v^{+}, u^{+}-v^{-}\right], \quad \text { for } U, V \in \mathcal{T} R,  \tag{2.8}\\
U / V=U .(1 / V)= \begin{cases}{\left[u^{-\varphi(V)} / v^{\varphi(U)}, u^{\varphi(V)} / v^{-\varphi(U)}\right],} & \text { for } \quad U, V \in \mathcal{T} R \backslash \mathcal{Z} ; \\
{\left[u^{-\delta} / v^{-\delta}, u^{\delta} / v^{-\delta}\right], \delta=\varphi(V)} & \text { for } \quad U \in \mathcal{Z}, V \in \mathcal{T} R \backslash \mathcal{Z} .\end{cases} \tag{2.9}
\end{gather*}
$$

Note that the operation inversion $1 / V$ in $\mathcal{G}$ can not be composed by means of " + " and "." and thus should be assumed as basic. One can observe that the operations,,.,$+- /$ in $\mathcal{G}$ defined by (2.3)-(2.8) satisfy: $U \circledast V=\{a \circledast b \mid a \in U, v \in V\}, \circledast \in\{+,-, ., /\}$. The properties of $\mathcal{G}=(\mathcal{T} R,+, ., /, \subseteq)$ are well established. Also note that:
$\mathbf{G}_{1}$. The operations " + " and "." satisfy the following associative laws:

$$
(U+V)+W=U+(V+W),(U . V) \cdot W=U .(V \cdot W)
$$

$\mathbf{G}_{\mathbf{2}}$. The operations (2.3)-(2.8) in $\mathcal{G}$ are isotone w. r. t. $\subseteq$ :
$U \subseteq U_{1}, V \subseteq V_{1} \Rightarrow U \circledast V \subseteq U_{1} \circledast V_{1}, \circledast \in\{+,-, ., /\}$. Furthermore, the distributive law holds in special case. For example, if $U=[2,4], V=[3,6]$ and $W=[-3,-1]$, then

$$
U .(V+W)=[0,20]
$$

and

$$
U . V+U . W=[-6,22] .
$$

The distributive law is valid if $V . W>0$ (see [14]).

### 2.2. Building the interval; $\mathcal{H}=(\mathcal{H},+, ., \subseteq)$

In this subsection we reload the concept of extended interval arithmetic. Recall that an interval $U=$ $\left[u^{-}, u^{+}\right] \in \mathcal{H}$ is a proper or regular interval if $u^{-} \leq u^{+}$, and improper interval if $u^{-} \geq u^{+}$. Let us denote the space of all proper intervals by $\mathcal{T} R$ and improper intervals by $\overline{\mathcal{T} R}$. Then $\mathcal{H}=\{[a, b] \mid a, b \in \mathbb{R}\} \cong$ $\mathbb{R}^{2}$ of all ordered couples of real numbers is the extended space. The basic operations are extended by replacing $\mathcal{T} R$ by $\mathcal{H}$ in the extended intervals space $\mathcal{H}$. For any $U \in \mathcal{T} R$, denote an improper interval $\left[-u^{-},-u^{+}\right]$by $-{ }_{h} U$. Obviously, $U+\left(-{ }_{h} U\right)=0$. Thus, $U$ and $-{ }_{h} U$ are additive inverses of each other. One should not confuse with opposite element $-U=\left[-u^{+},-u^{-}\right]$and the additive inverse $-_{h} U=\left[-u^{-},-u^{+}\right]$of $U$. Thus $\mathcal{H}$ is a group. For detail see [28-30]. The inclusion isotonicity property $\mathbf{G}_{2}$ and the association property $\mathbf{G}_{1}$ remain true in $\mathcal{H}$ in the same forms as developed in $\mathcal{G}$. Moreover, $U .(V+W)=U . V+U . W$ if $\varphi(U)=\varphi(V)=\varphi(U+V)$, for $U, V, W \in \mathcal{H}$, see [30, Example 3].

## 3. Interval integration

This section deals with reloading the notion of integral for IV functions. Throughout the study, we will denote set of positive proper intervals by $\mathcal{T} R^{+}$, negative $\mathcal{T} R^{-}$and all proper intervals by $\mathcal{T} R$ and the set of extended interval set by $\mathcal{H}$, positive extended intervals by $\mathcal{H}^{+}$and negative by $\mathcal{H}^{-}$.

An IV function $F$ of $t$ on $\left[a_{1}, a_{2}\right]$ assigns a nonempty interval to each $t \in\left[a_{1}, a_{2}\right] F(t)=[\underline{F}(t), \bar{F}(t)]$.
Let $P$ be a partition of $\left[a_{1}, a_{2}\right]$ having the form $P: a_{1}=t_{0}<t_{1}<\ldots<t_{n}=a_{2}$ and $\operatorname{mesh}(P)=\max \left\{t_{j} t_{j-1}: j=1,2, \ldots, n\right\}$ be the mesh of the partition $P$. Also, the set of all partitions of $\left[a_{1}, a_{2}\right]$ is denote by $P\left(\left[a_{1}, a_{2}\right]\right)$. Let $P\left(\delta,\left[a_{1}, a_{2}\right]\right)$ be the set of all $P$ in $P\left(\left[a_{1}, a_{2}\right]\right)$ such that $\operatorname{mesh}(P)<\delta$. Let us choose an arbitrary point $\zeta_{j}$ in $\left[t_{j-1}, t_{j}\right],(i=1,2, \ldots, n)$ and let us define the sum $S(F, P, \delta)=\sum_{j=1}^{\infty} F\left(\zeta_{j}\right)\left[t_{j} t_{j-1}\right]$, where $F:\left[a_{1}, a_{2}\right] \rightarrow \mathbb{R}_{I}$. Then, we say that $S(F, P, \delta)$ is a Riemann sum of $F$ corresponding to $P \in P\left(\delta,\left[a_{1}, a_{2}\right]\right)$.

Definition 3.1 ( $[31,32])$. We say that a function $F:\left[a_{1}, a_{2}\right] \rightarrow \mathcal{T} R$ is an interval Riemann integrable $\left((I \mathfrak{R})\right.$-integrable) on $\left[a_{1}, a_{2}\right]$, if there exists $M \in \mathcal{T} R$ such that for any $\epsilon>0$, there exists $\delta>0$ with

$$
\begin{equation*}
d(S(F, P, \delta), M)<\epsilon . \tag{3.1}
\end{equation*}
$$

For any Riemann sum $S$ of $F$ corresponding to $P \in P\left(\delta,\left[a_{1}, a_{2}\right]\right)$ and independent from choice of $\zeta_{j} \in\left[t_{j-1}, t_{j}\right]$ for all $1 \leq j \leq n$, we call $M$ as the $(I \mathfrak{R})$-integral of $F$ on $\left[a_{1}, a_{2}\right]$ and denoted by

$$
\begin{equation*}
M=\int_{a_{1}}^{a_{2}} F(v) d v . \tag{3.2}
\end{equation*}
$$

Note that, $I \mathscr{R}\left(\left[a_{1}, a_{2}\right]\right)$ is the collection of all functions that are $(I \mathscr{R})$-integrable on $\left[a_{1}, a_{2}\right]$ and $\mathfrak{R}\left(\left[a_{1}, a_{2}\right]\right)$ is the collection of Riemann integrable function on $\left[a_{1}, a_{2}\right]$. In what follows we obtain a relation between $(I \Re)$-integrable and Riemann integrable ( $\mathfrak{R}$-integrable).

Theorem 3.1. [33] Assume that $H:\left[a_{1}, a_{2}\right] \rightarrow \mathcal{T} R$ is an IV function with $H(v)=\left[H^{-}(v), H^{+}(v)\right]$. Then, $H \in I \mathfrak{R}\left(\left[a_{1}, a_{2}\right]\right)$ if and only if $H^{-}(v), H^{+}(v) \in \mathfrak{R}\left(\left[a_{1}, a_{2}\right]\right)$ and

$$
\begin{equation*}
(I \Re) \int_{a_{1}}^{a_{2}} H(v) d v=\left[\Re \int_{a_{1}}^{a_{2}} H^{-}(v) d v, \mathfrak{R} \int_{a_{1}}^{a_{2}} H^{+}(v) d v\right] . \tag{3.3}
\end{equation*}
$$

In recent past, researchers have focused interval analysis and established different inequalities, for detail see [18-26, 34, 35]. In [36], Varos̆anec introduced the class of $S X$ functions as follows.

Definition 3.2. For a non-negative function $h:\left[a_{1}, a_{2}\right] \rightarrow \mathbb{R},(0,1) \subseteq\left[a_{1}, a_{2}\right]$ and $h \neq 0$, we say that $H:\left[a_{1}, a_{2}\right] \rightarrow \mathbb{R}$ is an $h$-convex function, or that $h$ belongs to the class $S X\left(h,\left[a_{1}, a_{2}\right], \mathbb{R}\right)$, if $h$ is non-negative and

$$
\begin{equation*}
H(v x+(1-v) y) \leq h(v) H(x)+h(1-v) H(y), \quad x, y \in\left[a_{1}, a_{2}\right], v \in(0,1) . \tag{3.4}
\end{equation*}
$$

In [37], Zhao et al. introduced the notion of $h$-convex IV function as follows.
Definition 3.3. For any non-negative function $h:\left[a_{1}, a_{2}\right] \rightarrow \mathbb{R},(0,1) \subseteq\left[a_{1}, a_{2}\right]$ and $h(v) \neq 0$, we say that $H:\left[a_{1}, a_{2}\right] \rightarrow \mathcal{T} R^{+}$is an $h$-convex IV function, if

$$
\begin{equation*}
h(v) H(x)+h(1-v) H(y) \subseteq H(v x+(1-v) y), \quad x, y \in\left[a_{1}, a_{2}\right], v \in(0,1) . \tag{3.5}
\end{equation*}
$$

Remark 3.1. The h-convex IV function (3.5) with $h(v)=v$ gives the convex IV function (see [38]).
Theorem 3.2 ([37]). Let $H:\left[a_{1}, a_{2}\right] \rightarrow \mathcal{T} R^{+}$be an IV function with $H(v)=\left[H^{-}(v), H^{+}(v)\right]$ such that $H \in I \mathfrak{R}\left(\left[a_{1}, a_{2}\right]\right), h:\left[a_{1}, a_{2}\right] \rightarrow \mathbb{R}$ be a non-negative function and $h\left(\frac{1}{2}\right) \neq 0$. If $H \in S X\left(h,\left[a_{1}, a_{2}\right], \mathcal{T} R^{+}\right)$, then

$$
\begin{equation*}
\frac{1}{2 h\left(\frac{1}{2}\right)} H\left(\frac{a_{1}+a_{2}}{2}\right) \supseteq \frac{1}{a_{2}-a_{1}}(I \mathfrak{R}) \int_{a_{1}}^{a_{2}} H(v) d v \supseteq\left[H\left(a_{1}\right)+H\left(a_{2}\right)\right] \int_{0}^{1} h(v) d v . \tag{3.6}
\end{equation*}
$$

Remark 3.2. For $h(v)=v$, the inequality (3.6) reduces to

$$
\begin{equation*}
H\left(\frac{a_{1}+a_{2}}{2}\right) \supseteq \frac{1}{a_{2}-a_{1}}(I \Re) \int_{a_{1}}^{a_{2}} H(v) d v \supseteq \frac{H\left(a_{1}\right)+H\left(a_{2}\right)}{2} . \tag{3.7}
\end{equation*}
$$

Lupulescu [27] derived the following IV definition for the left-sided $R L$ fractional integral.
Definition 3.4. Assume that $H:\left[a_{1}, a_{2}\right] \rightarrow \mathcal{T} R^{+}$is an IV function with $H(t)=\left[H^{-}(t), H^{+}(t)\right]$ and $H \in I \mathfrak{R}_{\left(\left[a_{1}, a_{2}\right]\right)}$. Then, the IV left-sided $R L$ fractional integral of function $H$ is given by

$$
\begin{equation*}
{ }^{R L} \mathcal{J}_{a_{1}^{+}}^{v} H(y)=\frac{1}{\Gamma(v)}(I \mathfrak{R}) \int_{a_{1}}^{y}(y-\mu)^{v-1} H(\mu) d \mu, \quad y>a_{1}, v>0 . \tag{3.8}
\end{equation*}
$$

Budak et al. [39] defined the IV right-sided $R L$ fractional integrals in the similar passion as following.

$$
\begin{equation*}
{ }^{R L} \mathcal{J}_{a_{2}}^{v} G(y)=\frac{1}{\Gamma(v)}(I \Re) \int_{y}^{a_{2}}(\mu-y)^{\nu-1} G(\mu) d \mu, \quad y<a_{2}, v>0 \tag{3.9}
\end{equation*}
$$

Budak et al. [39] establish the following $H \cdot H$ inequalities for convex IV functions.
Theorem 3.3. If $H:\left[a_{1}, a_{2}\right] \rightarrow \mathcal{T} R^{+}$is a convex IV function with $H(v)=[\underline{H}(v), \bar{H}(v)], v>0$, then

$$
\begin{equation*}
H\left(\frac{a_{1}+a_{2}}{2}\right) \supseteq \frac{\Gamma(v+1)}{2\left(a_{2}-a_{1}\right)^{v}}\left[R L \mathcal{J}_{a_{1}^{+}}^{v} H\left(a_{2}\right)+{ }^{R L} \mathcal{J}_{a_{2}}^{v} H\left(a_{1}\right)\right] \supseteq \frac{H\left(a_{1}\right)+H\left(a_{2}\right)}{2} . \tag{3.10}
\end{equation*}
$$

Theorem 3.4. If $H, K:\left[a_{1}, a_{2}\right] \rightarrow \mathcal{T} R^{+}$are two convex IV functions such that $H(t)=\left[H^{-}(t), H^{+}(t)\right]$, and $K(t)=\left[K^{-}(t), K^{+}(t)\right]$, then for $v>0$, we have

$$
\begin{align*}
\frac{\Gamma(v+1)}{2\left(a_{2}-a_{1}\right)^{v}}\left[{ }^{R L} \mathcal{J}_{a_{1}^{+}}^{v} H\left(a_{2}\right)+{ }^{R L} \mathcal{J}_{a_{2}^{-}}^{v}\right. & \left.H\left(a_{1}\right)\right] \\
& \supseteq\left(\frac{1}{2}-\frac{v}{(v+1)(v+2)}\right) M\left(a_{1}, a_{2}\right)+\frac{v}{(v+1)(v+2)} N\left(a_{1}, a_{2}\right), \tag{3.11}
\end{align*}
$$

and

$$
\begin{align*}
2 H\left(\frac{a_{1}+a_{2}}{2}\right) K\left(\frac{a_{1}+a_{2}}{2}\right) \supseteq \frac{\Gamma(v+1)}{2\left(a_{2}-a_{1}\right)^{v}}\left[{ }^{R L} \mathcal{J}_{a_{1}^{+}}^{v} H\left(a_{2}\right)+{ }^{R L} \mathcal{J}_{a_{2}^{-}}^{v} H\left(a_{1}\right)\right] \\
\quad+\frac{v}{(v+1)(v+2)} M\left(a_{1}, a_{2}\right)+\left(\frac{1}{2}-\frac{v}{(v+1)(v+2)}\right) N\left(a_{1}, a_{2}\right), \tag{3.12}
\end{align*}
$$

where $M\left(a_{1}, a_{2}\right)=H\left(a_{1}\right) K\left(a_{1}\right)+H\left(a_{2}\right) K\left(a_{2}\right)$ and $N\left(a_{1}, a_{2}\right)=H\left(a_{1}\right) K\left(a_{2}\right)+H\left(a_{2}\right) K\left(a_{1}\right)$.
Interested reader may see also the recent papers on inclusions of $H \cdot H$ type [40-42]. The purpose of this paper is to derive some new counterparts of $H \cdot H$ inequality via generalized ( $p, h$ )-convex IV functions in terms of $\psi_{k}-R L$ fractional integrals in interval form. In order to obtain the main results of the paper we first introduce the notion of ( $p, h$ )-convex IV functions on $\mathcal{S}$ and $\psi_{k}-R L$ fractional integrals in interval form. Then we obtain some subclasses of $(p, h)$-convex IV functions by considering the interval family $\mathcal{K}$. We obtain a number of inequalities for including classes for the extended class. Finally, the validity of our findings is checked by taking some particular examples.

Before we start off our main results, let us recall some known fractional integrals.

Definition 3.5 ([43]). Let $\psi:\left[a_{1}, a_{2}\right] \rightarrow \mathbb{R}$ be an increasing and positive monotone function on $\left[a_{1}, a_{2}\right]$, and let $\psi^{\prime}(x)$ be continuous on $\left(a_{1}, a_{2}\right)$. The left and right-sided fractional integrals of $H$ with according to $\psi$ on $\left[a_{1}, a_{2}\right]$ of order $v>0$ are respectively given as follows:

$$
\begin{align*}
& { }^{R L} \mathcal{J}_{a_{1}^{+}}^{v, \psi} H(y)=\frac{1}{\Gamma(v)} \int_{a_{1}}^{y} \frac{\psi^{\prime}(\tau) H(\tau)}{[\psi(y)-\psi(\tau)]^{1-v}} d \tau, \quad y>a_{1},  \tag{3.13}\\
& { }^{R L} \mathcal{J}_{a_{2}^{-}}^{v, \psi} H(y)=\frac{1}{\Gamma(v)} \int_{y}^{a_{2}} \frac{\psi^{\prime}(\tau) H(\tau)}{[\psi(\tau)-\psi(y)]^{1-\nu}} d \tau, \quad y<a_{2} . \tag{3.14}
\end{align*}
$$

Kwun et al. [44] introduced the $k$-fractional version of the integrals (3.13) and (3.14) as follows:
Definition 3.6. Let $\psi:\left[a_{1}, a_{2}\right] \rightarrow \mathbb{R}$ be an increasing and positive monotone function on $\left[a_{1}, a_{2}\right]$, and let $\psi^{\prime}(x)$ be continuous on $\left(a_{1}, a_{2}\right)$. The left and right-sided fractional integrals of $H$ with according to $\psi$ on $\left[a_{1}, a_{2}\right]$ of order $v, k>0$ are respectively given as follows: defined by:

$$
\begin{align*}
&{ }^{R L} \mathcal{J}_{a_{1}}^{v, \psi, \psi} H(y)=\frac{1}{k \Gamma_{k}(v)} \int_{a_{1}}^{y} \frac{\psi^{\prime}(\tau) H(\tau)}{[\psi(y)-\psi(\tau)]^{1-\frac{v}{k}}} d \tau,  \tag{3.15}\\
& y>a_{1},  \tag{3.16}\\
&{ }^{R L} \mathcal{J}_{a_{1}^{+}}^{v, k, \psi} H(y)=\frac{1}{k \Gamma_{k}(v)} \int_{y}^{a_{2}} \frac{\psi^{\prime}(\tau) H(\tau)}{[\psi(\tau)-\psi(y)]^{1-\frac{v}{k}}} d \tau,
\end{align*} \quad y<a_{2}, ~ l, ~ l
$$

where $\Gamma_{k}(\cdot)$ is the $k$-gamma function. We call integrals (3.15) and (3.16) as $\psi_{k}-R L$ fractional integrals.
Remark 3.3. The operators given by (3.15) and (3.16) have following special cases.
(i) If we take $\psi(\tau)=\ln \tau, k=1$, then we achieve Hadamard fractional integral as follows [43]:

$$
\begin{align*}
{ }^{H} \mathcal{J}_{a_{1}^{+}}^{v} H(x) & =\frac{1}{\Gamma(v)} \int_{a_{1}}^{x}\left(\ln \frac{x}{\tau}\right)^{v-1} \frac{H(\tau)}{\tau} d \tau, \\
{ }^{H} \mathcal{J}_{a_{2}^{\prime}}^{v} H(x) & =\frac{1}{\Gamma(v)} \int_{x}^{a_{2}}\left(\ln \frac{\tau}{x}\right)^{v-1} \frac{H(\tau)}{\tau} d \tau, \tag{3.17}
\end{align*} \quad x<a_{2} .
$$

(ii) If $\psi(\tau)=\frac{\tau^{r+\beta}}{r+\beta}, r+\beta \neq 0$, then we have generalized conformable fractional integral as follows [45]:

$$
\begin{align*}
& { }^{G C} \mathcal{J}_{a_{1}^{+}}^{\nu, \beta, r} H(x)=\frac{(r+\beta)^{1-\nu}}{\Gamma(v)} \int_{a_{1}}^{x} \frac{\tau^{r} H(\tau)}{\left(x^{r+\beta}-\tau^{r+\beta}\right)^{1-v}} d_{\beta} \tau, \quad x>a_{1},  \tag{3.18}\\
& { }^{G C} \mathcal{J}_{a_{2}^{-}}^{v, \beta, r} H(x)=\frac{(r+\beta)^{1-v}}{\Gamma(v)} \int_{x}^{a_{2}} \frac{\tau^{r} H(\tau)}{\left(\tau^{r+\beta}-x^{r+\beta}\right)^{1-\nu}} d_{\beta} \tau, \quad x<a_{2} .
\end{align*}
$$

(iii) $\operatorname{For} \psi(\tau)=\frac{\tau^{\rho}}{\rho}, \rho>0$ and $k=1$, then we obtain Katugampola fractional integral [46].

$$
\begin{align*}
{ }^{K G} \mathcal{J}_{a_{1}^{\prime}}^{v \rho} H(x) & =\frac{\rho^{1-v}}{\Gamma(v)} \int_{a_{1}}^{x} \frac{\tau^{\rho-1} H(\tau)}{\left(x^{\rho}-\tau^{\rho}\right)^{1-v}} d \tau,  \tag{3.19}\\
{ }^{K G} \mathcal{J}_{a_{2}^{\prime}}^{v, \rho} H(x) & =\frac{\rho^{1-v}}{\Gamma(v)} \int_{x}^{a_{2}} \frac{\tau^{\rho-1} H(\tau)}{\left(\tau^{\rho}-x^{\rho}\right)^{1-v}} d \tau,
\end{align*}, x<a_{2} ., ~ l
$$

(iv) If we take $\psi(\tau)=\frac{\tau^{1+s}}{1+s}$, then we have $(k, s)$-fractional integral as follows [47]:

$$
\begin{array}{ll}
{ }^{K S} \mathcal{J}_{a_{1}}^{v, k, s} H(x) & =\frac{(s+1)^{1-\frac{v}{k}}}{k \Gamma_{k}(v)} \int_{a_{1}}^{x} \frac{\tau^{s} H(\tau)}{\left(x^{s+1}-\tau^{s+1}\right)^{1-\frac{v}{k}}} d \tau,  \tag{3.20}\\
{ }^{K S} \mathcal{J}_{a_{2}^{2}}^{v, k, s} H(x)=\frac{(s+1)^{1-\frac{v}{k}}}{k \Gamma_{k}(v)} \int_{x}^{a_{2}} \frac{\tau^{s} H(\tau)}{\left(\tau^{s+1}-x^{s+1}\right)^{1-\frac{v}{k}}} d \tau, & x<a_{2} .
\end{array}
$$

(v) For $\psi(\tau)=\tau$, the $k$ version of RL fractional integral can be obtained as follows [48]:

$$
\begin{array}{rlr}
{ }^{K R L} \mathcal{J}_{a_{1}^{1}}^{v, k} H(x) & =\frac{1}{\Gamma(v)} \int_{a_{1}}^{x}(x-\tau)^{\frac{v}{k}-1} H(\tau) d \tau, & x>a_{1}, \\
{ }^{K R L} \mathcal{J}_{a_{2}}^{v, k} H(x) & =\frac{1}{\Gamma(v)} \int_{x}^{a_{2}}(\tau-x)^{\frac{v}{k}-1} H(\tau) d \tau, & x<a_{2} . \tag{3.21}
\end{array}
$$

(vi) For $\psi(\tau)=\tau, k=1$, we can re-capture the RL fractional integral.

Definition 3.7 ([49]). Let $\psi:\left[a_{1}, a_{2}\right] \rightarrow \mathbb{R}$ be an increasing and positive function on $\left[a_{1}, a_{2}\right]$, and let $\psi^{\prime}$ be continuous on $\left(a_{1}, a_{2}\right)$. Assume that $H:\left[a_{1}, a_{2}\right] \rightarrow \mathcal{T} R^{+}$is an IV function with $H(\mu)=$ [ $\left.H^{-}(\mu), H^{+}(\mu)\right]$ and $H \in I \mathfrak{R}_{([a, b])}$. The IV left and right-sided $R L$ fractional integrals of $H$ according to $\psi$ on $\left[a_{1}, a_{2}\right]$ of order $v>0$ are respectively given by:

$$
\begin{align*}
& { }^{\text {IRL }} \mathcal{J}_{a_{1}^{+}}^{v, \psi} H(x)=\frac{1}{\Gamma(v)}(I \Re) \int_{a_{1}}^{x} \frac{\psi^{\prime}(\tau) H(\tau)}{[\psi(x)-\psi(\tau)]^{1-v}} d \tau, \quad x>a_{1},  \tag{3.22}\\
& { }^{I R L} \mathcal{J}_{a_{2}^{-}}^{v, \psi} H(x)=\frac{1}{\Gamma(v)}(I \mathfrak{R}) \int_{x}^{a_{2}} \frac{\psi^{\prime}(\tau) H(\tau)}{[\psi(\tau)-\psi(x)]^{1-\nu}} d \tau, \quad x<a_{2} . \tag{3.23}
\end{align*}
$$

Now, we can extend the above definition to the IV $\psi_{k}-R L$ fractional integrals.
Definition 3.8. Let $\psi:\left[a_{1}, a_{2}\right] \rightarrow \mathbb{R}$ be an increasing and positive function on $\left[a_{1}, a_{2}\right]$, and let $\psi^{\prime}$ be continuous on $\left(a_{1}, a_{2}\right)$. Assume that $H:\left[a_{1}, a_{2}\right] \rightarrow \mathcal{T} R^{+}$is an IV function with $H(\mu)=\left[H^{-}(\mu), H^{+}(\mu)\right]$ and $H \in I \mathfrak{R}_{([a, b]]}$. The IV left and right-sided $R L$ fractional integrals of $H$ according to $\psi$ on $\left[a_{1}, a_{2}\right]$ of order $v, k>0$ are respectively given by:

$$
\begin{array}{ll}
{ }^{I R L} \mathcal{J}_{a_{1}^{+}}^{v, \psi, \psi} H(x) & =\frac{1}{k \Gamma_{k}(v)}(I \mathfrak{R}) \int_{a_{1}}^{x} \frac{\psi^{\prime}(\tau) H(\tau)}{[\psi(x)-\psi(\tau)]^{1-\frac{v}{k}}} d \tau, \\
x>a_{1},  \tag{3.25}\\
{ }^{I R L} \mathcal{J}_{a_{2}^{-}}^{v, k, \psi} H(x) & =\frac{1}{k \Gamma_{k}(v)}(I \mathfrak{R}) \int_{x}^{a_{2}} \frac{\psi^{\prime}(\tau) H(\tau)}{[\psi(\tau)-\psi(x)]^{1-\frac{v}{k}}} d \tau,
\end{array} \quad x<a_{2}, ~ l i
$$

where $\Gamma_{k}(\cdot)$ is the $k$-gamma function.
Theorem 3.5. If $H:\left[a_{1}, a_{2}\right] \rightarrow \mathcal{T} R$ is an IV function with $H(t)=\left[H^{-}(t), H^{+}(t)\right]$ with $H^{-}(t), H^{+}(t) \in$ $\mathfrak{R}_{\left(\left[a_{1}, a_{2}\right]\right]}$, then we have

$$
\begin{equation*}
{ }^{I R L} \mathcal{J}_{a_{1}^{+}}^{\nu, k, \psi} H(t)=\left[{ }^{R L} \mathcal{J}_{a_{1}^{+}}^{v, k, \psi} H^{-}(t),{ }^{R L} \mathcal{J}_{a_{1}^{+}}^{v, k, \psi} H^{+}(t)\right], \tag{3.26}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }^{I R L} \mathcal{J}_{a_{2}^{-}}^{v, k, \psi} H(t)=\left[{ }^{R L} \mathcal{J}_{a_{2}^{-}}^{v, k, \psi} H^{-}(t),{ }^{R L} \mathcal{J}_{a_{2}^{-}}^{v, \psi, \psi} H^{+}(t)\right] . \tag{3.27}
\end{equation*}
$$

Proof. The desired result can be obtained by making use of Theorem 3.1.
Interval analysis have uncertainty while solving equations of the form $U+[1,2]=[4,6]$ are not solvable by interval arithmetic. To remove this kind of uncertainty, extended interval arithmetic is introduced. The main objective of this paper is to discover $H \cdot H$ for general classes where extended arithmetic can be use successfully. For the desirable results, we introduce the notion of generalized modified ( $p, h$ )-convex IV functions. We have develop several inequalities using extended operations on the newly defined class of convex IV functions.

## 4. Main results

This section deals with introducing the notion of generalized modified ( $p, h$ )-convex IV function.
Definition 4.1 ( [50]). A set $\mathcal{K}_{1}$ is $p$-convex set, if for any $x_{1}, x_{2} \in \mathcal{K}_{1}, \mu \in[0,1]$, we have

$$
\begin{equation*}
\left[u a_{1}^{p}+(1-u) a_{2}^{p}\right]^{\frac{1}{p}} \in \mathcal{K}_{1}, \tag{4.1}
\end{equation*}
$$

where $p=2 r_{1}+1$ or $p=\frac{m_{1}}{n_{1}}, m_{1}=2 s_{1}, n_{1}=2 k_{1}+1$ and $r_{1}, s_{1}, k_{1} \in \mathbb{N}$.
Definition 4.2 ( [50]). A mapping $H$ defined from a $p$-convex set $\mathcal{K}_{1}$ to $\mathbb{R}$ is said to be $p$-convex function, if

$$
\begin{equation*}
H\left(\left[u a_{1}^{p}+(1-u) a_{2}^{p}\right]^{\frac{1}{p}}\right) \leq u H\left(a_{1}\right)+(1-u) H\left(a_{2}\right) \tag{4.2}
\end{equation*}
$$

for all $a_{1}, a_{2} \in \mathcal{K}_{1}, u \in[0,1]$.
Definition 4.3 ( [51]). The mapping $H$ defined from $\mathcal{K}_{1}$ to $\mathbb{R}$ is said to be $\eta$-convex if

$$
\begin{equation*}
H\left(\mu a_{1}+(1-\mu) a_{2}\right) \leq H\left(a_{2}\right)+\mu \eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right) \tag{4.3}
\end{equation*}
$$

with respect to $\eta: B_{2} \times B_{2} \rightarrow B_{3}$ for appropriate $B_{2}, B_{3} \subseteq \mathbb{R}$ for each $a_{1}, a_{2} \in \mathcal{K}_{1}, \mu \in[0,1]$.
Definition 4.4 ( [52]). The mapping $H$ defined from $\mathcal{K}_{1}$ to $\mathbb{R}$ is said to be generalized $p$-convex, if

$$
\begin{equation*}
H\left(\left[u a_{1}^{p}+(1-u) a_{2}^{p}\right]^{\frac{1}{p}}\right) \leq H\left(a_{2}\right)+\mu \eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right) \tag{4.4}
\end{equation*}
$$

for $\eta: B_{2} \times B_{2} \rightarrow B_{3}$ a bi-function for appropriate $B_{2}, B_{3} \subseteq \mathbb{R}$ and for each $a_{1}, a_{2} \in \mathcal{K}_{1}, \mu \in[0,1]$.
Definition 4.5 ([53]). Let $h:[0,1] \rightarrow \mathbb{R}_{0}^{+}:=[0, \infty)$ and $H: \Xi \subseteq \mathbb{R} \rightarrow \mathbb{R}_{0}^{+}$. Then, $H$ is called modified $h$-convex function if we have

$$
\begin{equation*}
H(\mu \gamma+(1-\mu) \delta) \leq h(\mu) H(\gamma)+(1-h(\mu)) H(\delta) \tag{4.5}
\end{equation*}
$$

for all $\gamma, \delta \in \Xi$ and $\mu \in(0,1)$. It is important to notice that we respectively have convex function and $(\alpha, 1)$-convex functions provided that $h(\mu)=\mu, h(\mu)=\mu^{\alpha}, \alpha \in(0,1)$.

Throughout the study, we consider an IV bi-function $\eta: \Delta_{\mathcal{T}} \times \Delta_{\mathcal{T}} \rightarrow \Delta_{\mathcal{T}}$ for suitable $\Delta_{\mathcal{T}} \subseteq \mathcal{H}$. Furthermore, if $U=[3,5]$ is a proper interval and $V=[-2,-3]$ an improper interval, then $U+V=$ [1,2] is a proper positive interval. By this motivation, we may restrict $\eta$, so that $U+\eta(V, W) \in \mathcal{T} R^{+}$.

Now we introduce the notion of generalized modified ( $p, h$ )-convex IV function.

Definition 4.6. Let $h:\left[a_{1}, a_{2}\right] \rightarrow \mathbb{R}$ be a non-negative function, $(0,1) \subset\left[a_{1}, a_{2}\right]$. Let $\eta: \Delta_{\mathcal{T}} \times \Delta_{\mathcal{T}} \rightarrow \Delta_{\mathcal{T}}$ where $\Delta_{\mathcal{T}} \subseteq \mathcal{H}$. A mapping $H: \mathcal{K}_{1} \rightarrow \mathcal{T} R^{+}$is said to be generalized modified $(p, h)$-convex IV function with respect to $\eta$, if

$$
\begin{equation*}
H\left(a_{2}\right)+h(\mu) \eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right) \subseteq H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right), \tag{4.6}
\end{equation*}
$$

for all $a_{1}, a_{2} \in \mathcal{K}_{1}, \mu \in[0,1]$.
Now we present some special cases by taking into account the algebraic properties of intervals.
Remark 4.1. The generalized modified ( $p, h$ )-convex IV function has following special cases.
(a) If $h(\mu)=\mu$, then $H$ is generalized p-convex IV function [26].
(b) If $p=1$, then $H$ is called generalized modified $h$-convex IV function.
(c) If $p=1$ and $\eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right)=H\left(a_{1}\right)-H\left(a_{2}\right)$, then (4.6) gives

$$
\begin{equation*}
h(\mu) H\left(a_{1}\right)+(1-h(\mu)) H\left(a_{2}\right) \subseteq H\left(\left[\mu a_{1}+(1-\mu) a_{2}\right]\right) . \tag{4.7}
\end{equation*}
$$

We call it modified h-convex IV function. Furthermore, if $h(\mu)=\mu^{s}, s \in(0,1)$, then $H$ is called $s$-convex IV function of first kind.
(d) If $\eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right)=H\left(a_{1}\right)-H\left(a_{2}\right)$, then

$$
\begin{equation*}
h(\mu) H\left(a_{1}\right)+(1-h(\mu)) H\left(a_{2}\right) \subseteq H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right) . \tag{4.8}
\end{equation*}
$$

In this case $H$ is modified $(p, h)$-convex IV function. Moreover, if $h(\mu)=\mu^{s}, s \in(0,1)$, then $H$ is $a(p, s)$-convex IV function of first kind. Furthermore, if $h$ is identity function, then we obtain p-convex IV function.
(e) If $h(\mu)=\mu, p=1$ and $\eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right)=H\left(a_{1}\right)-H\left(a_{2}\right)$,

$$
\begin{equation*}
\mu H\left(a_{1}\right)+(1-\mu) H\left(a_{2}\right) \subseteq H\left(\left[\mu a_{1}+(1-\mu) a_{2}\right]\right), \tag{4.9}
\end{equation*}
$$

which is convex IV function, see [39].
(f) If $p=-1$, then (4.6) gives

$$
\begin{equation*}
H\left(a_{2}\right)+h(\mu) \eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right) \subseteq H\left(\frac{a_{1} a_{2}}{(1-\mu) a_{1}+\mu a_{2}}\right), \tag{4.10}
\end{equation*}
$$

we say $H$ is a generalized modified harmonically $h$-convex IV function. We have following cases for harmonic convexity subject to the different choices of $h$ and $\eta$ as following.
(a) If $\eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right)=H\left(a_{1}\right)-H\left(a_{2}\right)$, then (4.10) reduces to

$$
\begin{equation*}
h(\mu) H\left(a_{1}\right)+(1-h(\mu)) H\left(a_{2}\right) \subseteq H\left(\frac{a_{1} a_{2}}{(1-\mu) a_{1}+\mu a_{2}}\right), \tag{4.11}
\end{equation*}
$$

we call it harmonically modified $h$-convex IV function.
(b) If $\eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right)=H\left(a_{1}\right)-H\left(a_{2}\right)$ and $h(\mu)=\mu^{s}, s \in(0,1)$, then (4.10) reduces to

$$
\begin{equation*}
\mu^{s} H\left(a_{1}\right)+\left(1-\mu^{s}\right) H\left(a_{2}\right) \subseteq H\left(\frac{a_{1} a_{2}}{(1-\mu) a_{1}+\mu a_{2}}\right) \tag{4.12}
\end{equation*}
$$

we call it harmonically s-convex IV function of first kind.
(c) If $\eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right)=H\left(a_{1}\right)-H\left(a_{2}\right)$ and $h(\mu)=\mu$, then (4.10) reduces to

$$
\begin{equation*}
\mu H\left(a_{1}\right)+(1-\mu) H\left(a_{2}\right) \subseteq H\left(\frac{a_{1} a_{2}}{(1-\mu) a_{1}+\mu a_{2}}\right), \tag{4.13}
\end{equation*}
$$

we call it harmonically convex IV function.
We start with the following double inequality of $H \cdot H$ type.
Theorem 4.1. Let $\eta: \Delta_{\mathcal{T}} \times \Delta_{\mathcal{T}} \rightarrow \Delta_{\mathcal{T}}$ where $\Delta_{\mathcal{T}} \subseteq \mathcal{H}$. Let $H:\left[a_{1}, a_{2}\right] \rightarrow \mathcal{T} R^{+}$be a generalized modified ( $p, h$ )-convex IV function with respect to $\eta$ such that $h(t)=\left[H^{-}(t), H^{+}(t)\right]$, then for $v, k>0$, we have

$$
\begin{align*}
H\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) & -Q \\
& \supseteq \frac{\Gamma_{k}(v+k)}{2\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{\nu}{k}}}\left[{ }^{I R L} \mathcal{J}_{\psi^{-1}\left(a_{1}^{p}\right)^{\nu}}^{v, k, \psi}(H \circ \Psi)\left(\psi^{-1}\left(a_{2}^{p}\right)\right)+{ }^{I R L} \mathcal{J}_{\psi^{-1}\left(a_{2}^{p}\right)^{\nu}}^{\nu, k, \psi}(H \circ \Psi)\left(\psi^{-1}\left(a_{1}^{p}\right)\right)\right] \\
& \supseteq \frac{H\left(a_{1}\right)+H\left(a_{2}\right)}{2}+\frac{v}{2 k}\left[\eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right)+\eta\left(H\left(a_{2}\right), H\left(a_{1}\right)\right)\right] \int_{0}^{1} \mu^{\frac{\nu}{k}-1} h(\mu) d \mu, \tag{4.14}
\end{align*}
$$

where

$$
\begin{align*}
Q=\frac{h\left(\frac{1}{2}\right)}{2}(I \mathfrak{R}) \int_{0}^{1} \mu^{\frac{\nu}{k}-1}\left\{\eta \left(H \left(\left[\mu a_{1}^{p}\right.\right.\right.\right. & \left.\left.\left.+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right), H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right) \\
& \left.+\eta\left(H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right), H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)\right)\right\} d \mu \tag{4.15}
\end{align*}
$$

and $\Psi(t)=(\psi(t))^{\frac{1}{p}}$.
Proof. By the notion of generalized modified ( $p, h$ )-convexity of IV function $H$, we have

$$
\begin{equation*}
H\left(\left[\frac{x_{1}^{p}+x_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) \supseteq H\left(x_{2}\right)+h\left(\frac{1}{2}\right) \eta\left(H\left(x_{1}\right), H\left(x_{2}\right)\right) \tag{4.16}
\end{equation*}
$$

for all $x_{1}, x_{2} \in\left[a_{1}, a_{2}\right]$. By taking $x_{1}^{p}=\mu a_{1}^{p}+(1-\mu) a_{2}^{p}$ and $x_{2}^{p}=\mu a_{2}^{p}+(1-\mu) a_{1}^{p}, \mu \in[0,1]$ in (4.16), we get

$$
\begin{align*}
H\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) & \supseteq H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right) \\
& +h\left(\frac{1}{2}\right) \eta\left(H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right), H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right) . \tag{4.17}
\end{align*}
$$

By choosing $x_{1}^{p}=\mu a_{2}^{p}+(1-\mu) a_{1}^{p}$ and $x_{2}^{p}=\mu a_{1}^{p}+(1-\mu) a_{2}^{p}$ in (4.16), we have

$$
\begin{align*}
H\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) & \supseteq H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right) \\
& +h\left(\frac{1}{2}\right) \eta\left(H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right), H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)\right) \tag{4.18}
\end{align*}
$$

Summing up (4.17) and (4.18) and multiplying by $\mu^{\frac{\nu}{k}-1}$, we obtain

$$
\begin{align*}
& \mu^{\frac{v}{k}-1} H\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right)- \frac{h\left(\frac{1}{2}\right) \mu^{\frac{\nu}{k}-1}}{2}\left\{\eta\left(H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right), H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right)\right. \\
&\left.+\eta\left(H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right), H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)\right)\right\} \\
& \supseteq \frac{\mu^{\frac{\nu}{k}-1}}{2}\left[H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)+H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right] . \tag{4.19}
\end{align*}
$$

Now, by interval integration, we obtain

$$
\begin{align*}
&(I \Re) \int_{0}^{1} \mu^{\frac{\nu}{k}-1} H\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) d \mu \\
&-\frac{h\left(\frac{1}{2}\right)}{2}(I \Re) \int_{0}^{1} \mu^{\frac{v}{k}-1}\left\{\eta\left(H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right), H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right)\right. \\
&\left.+\eta\left(H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right), H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)\right)\right\} d \mu \\
& \supseteq(I \Re) \int_{0}^{1} \mu^{\frac{v}{k}-1}\left[H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)+H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right] d \mu \tag{4.20}
\end{align*}
$$

By the application of interval integration,

$$
\begin{align*}
& (I \mathfrak{R}) \int_{0}^{1} \mu^{\frac{v}{k}-1} H\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) d \mu \\
& =\left[(\mathfrak{R}) \int_{0}^{1} \mu^{\frac{v}{k}-1} H^{-}\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) d \mu,(\mathfrak{R}) \int_{0}^{1} \mu^{\frac{v}{k}-1} H^{+}\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) d \mu\right] \\
& =\left[H^{-}\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right)(\mathfrak{R}) \int_{0}^{1} \mu^{\frac{v}{k}-1} d \mu, H^{+}\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right)(\mathfrak{R}) \int_{0}^{1} \mu^{\frac{v}{k}-1} d \mu\right] \\
& =\left[\frac{k}{v} H^{-}\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right), \frac{k}{v} H^{+}\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right)\right]=\frac{k}{v} H\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) . \tag{4.21}
\end{align*}
$$

Furthermore,

$$
\begin{align*}
& (I \mathfrak{R}) \int_{0}^{1} \mu^{\frac{\nu}{k}-1}\left(H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)+H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right) d \mu \\
& =\left[(\mathfrak{R}) \int_{0}^{1} \mu^{\frac{v}{k}-1}\left(H^{-}\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)+H^{-}\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right) d \mu\right. \\
&  \tag{4.22}\\
& \left.\quad(\mathfrak{R}) \int_{0}^{1} \mu^{\frac{v}{k}-1}\left(H^{+}\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)+H^{+}\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right) d \mu\right] .
\end{align*}
$$

Since,

$$
\begin{align*}
& \text { ( } \mathfrak{R}) \int_{0}^{1} \mu^{\frac{\nu}{k}-1}\left(H^{-}\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)+H^{-}\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right) d \mu \\
& =(\mathfrak{R}) \int_{0}^{1} \mu^{\frac{\nu}{k}-1}\left(H^{-}\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right) d \mu+(\mathfrak{R}) \int_{0}^{1} \lambda^{\frac{\nu}{k}-1} H^{-}\left(\left[\lambda a_{2}^{p}+(1-\lambda) a_{1}^{p}\right]^{\frac{1}{p}}\right) d \lambda . \tag{4.23}
\end{align*}
$$

By selecting $\frac{\psi(\tau)-a_{1}^{p}}{a_{2}^{D} a_{1}^{D}}=\lambda$ and $\frac{a_{2}^{p}-\psi(\tau)}{a_{2}^{D}-a_{1}^{D}}=\mu$, then

$$
\begin{align*}
& (\mathfrak{R}) \int_{0}^{1} \mu^{\frac{v}{k}-1}\left(H^{-}\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right) d \mu+(\mathfrak{R}) \int_{0}^{1} \lambda^{\frac{v}{k}-1} H^{-}\left(\left[\lambda a_{2}^{p}+(1-\lambda) a_{1}^{p}\right]^{\frac{1}{p}}\right) d \lambda \\
& =\frac{1}{\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{v}{k}}}\left\{(\mathfrak{R}) \int_{\psi^{-1}\left(a_{1}^{p}\right)}^{\psi^{-1}\left(a_{2}^{p}\right)} \frac{\psi^{\prime}(\tau)}{\left(a_{2}^{p}-\psi(\tau)\right)^{1-\frac{v}{k}}} H^{-}\left([\psi(\tau)]^{\frac{1}{p}}\right) d \tau\right. \\
& \left.\quad+(\mathfrak{R}) \int_{\psi^{-1}\left(a_{2}^{p}\right)}^{\psi^{-1}\left(a_{1}^{p}\right)} \frac{\psi^{\prime}(\tau)}{\left(\psi(\tau)-a_{1}^{p}\right)^{1-\frac{v}{k}}} H^{-}\left([\psi(\tau)]^{\frac{1}{p}}\right) d \tau\right\} \\
& =\frac{k \Gamma_{k}(v)}{\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{v}{k}}}\left[R L \mathcal{J}_{\psi^{-1}\left(a_{1}^{p}\right)+}^{\nu, k, \psi}\left(H^{-} \circ \Psi\right)\left(\psi^{-1}\left(a_{2}^{p}\right)\right)+{ }^{I R L} \mathcal{J}_{\psi^{-1}\left(a_{2}^{p}\right)-}^{v, k, \psi}\left(H^{-} \circ \Psi\right)\left(\psi^{-1}\left(a_{1}^{p}\right)\right)\right], \tag{4.24}
\end{align*}
$$

where $\Psi(\tau)=[\psi(\tau)]^{\frac{1}{p}}$. Similarly,

$$
\begin{align*}
(\mathfrak{R}) \int_{0}^{1} \mu^{\frac{\nu}{k}-1}\left(H^{+}\right. & \left.\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)+H^{+}\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right) d \mu \\
& =\frac{k \Gamma_{k}(v)}{\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{v}{k}}}\left[R L \mathcal{J}_{\psi^{-1}\left(a_{1}^{p}\right)^{+}}^{\nu, k, \psi}\left(H^{+} \circ \Psi\right)\left(\psi^{-1}\left(a_{2}^{p}\right)\right)+{ }^{R L} \mathcal{J}_{\psi^{-1}\left(a_{2}^{p}\right)^{-}}^{\nu, k, \psi}\left(H^{+} \circ \Psi\right)\left(\psi^{-1}\left(a_{1}^{p}\right)\right)\right] . \tag{4.25}
\end{align*}
$$

Hence,

$$
\begin{align*}
(I \mathfrak{R}) \int_{0}^{1} \frac{\mu^{\frac{\nu}{k}-1}}{2}( & \left.H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)+H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right) d \mu \\
& =\frac{k \Gamma_{k}(v)}{2\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{v^{k}}{k}}}\left[{ }^{I R L} \mathcal{J}_{\psi^{-1}\left(a_{1}^{p}\right)^{v,}}^{v, k}(H \circ \Psi)\left(\psi^{-1}\left(a_{2}^{p}\right)\right)+{ }^{I R L} \mathcal{J}_{\psi^{4}\left(a_{2}^{p}\right)^{\nu}}^{v, k, \psi}(H \circ \Psi)\left(\psi^{-1}\left(a_{1}^{p}\right)\right)\right] . \tag{4.26}
\end{align*}
$$

By using (4.21) and (4.26) in (4.20), we have

$$
\begin{align*}
& H\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right)-Q \\
& \supseteq \frac{\Gamma_{k}(v+k)}{2\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{y^{k}}{k}}}\left[{ }^{I R L} \mathcal{J}_{\psi^{-1}\left(a_{1}^{v}\right)^{p}}+, \psi\right.  \tag{4.27}\\
&\left.(H \circ \Psi)\left(\psi^{-1}\left(a_{2}^{p}\right)\right)+{ }^{I R L} \mathcal{J}_{\psi^{-1}\left(a_{2}^{p}\right)^{-}}^{v, k, \psi}(H \circ \Psi)\left(\psi^{-1}\left(a_{1}^{p}\right)\right)\right] .
\end{align*}
$$

Again by the generalized modified ( $p, h$ )-convexity,

$$
\begin{align*}
& \frac{\mu^{\frac{v}{k}-1}}{2}\left[H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)+H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right] \\
& \supseteq \frac{\mu^{\frac{v}{k}-1}}{2}\left[H\left(a_{1}\right)+H\left(a_{2}\right)+h(\mu)\left(\eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right)+\eta\left(H\left(a_{2}\right), H\left(a_{1}\right)\right)\right)\right] . \tag{4.28}
\end{align*}
$$

After interval integration, we get the second inequality, which then completes the proof.
Example 4.1. Let $H(t)=\left[t^{p}, 4-e^{t^{p}}\right], \eta(U, V)=U-V$. Also let $a_{1}=-1, a_{2}=1$. Furthermore, $\psi$ is identity and $v=k=1$

$$
\begin{equation*}
H\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right)-Q=[0,3] \tag{4.29}
\end{equation*}
$$

and

$$
\begin{align*}
& (I \mathfrak{R}) \int_{0}^{1}\left(H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)+H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right) d \mu \\
& =(I \mathfrak{R}) \int_{0}^{1}(H(1-2 \mu)+H(2 \mu-1)) d \mu \\
& =\left[0, \mathfrak{R} \int_{0}^{1}\left(8-e^{1-2 \mu}+e^{2 \mu-1}\right) d \mu\right]=\left[0,8+\frac{e^{-1}-e^{1}}{2}\right] . \tag{4.30}
\end{align*}
$$

Also, we have

$$
\begin{equation*}
\frac{H\left(a_{1}\right)+H\left(a_{2}\right)}{2}=\frac{1}{2}\left[0,8-e^{-1}-e\right] . \tag{4.31}
\end{equation*}
$$

It is clear that this example support the result presented in (4.14).

Remark 4.2. If $h(\mu)=\mu$, then Theorem 4.1 gives the fractional counterpart of [26, Theorem 3].
Corollary 4.1. Let the conditions of Theorem 4.1 be satisfied, then it is easy to see that

- If $H$ is modified $h$-convex IV function, then we have

$$
\begin{align*}
& H\left(\frac{a_{1}+a_{2}}{2}\right) \\
& \quad \supseteq \frac{\Gamma_{k}(v+k)}{2\left(a_{2}-a_{1}\right)^{\frac{v}{k}}}\left[{ }^{I R L} \mathcal{J}_{\psi^{-1}\left(a_{1}\right)^{+}}^{v, k, 4}(H \circ \Psi)\left(\psi^{-1}\left(a_{2}\right)\right)+{ }^{I R L} \mathcal{J}_{\psi^{-1}\left(a_{2}\right)^{-}}^{v, k, 4}(H \circ \Psi)\left(\psi^{-1}\left(a_{1}\right)\right)\right] \\
& \supseteq \frac{H\left(a_{1}\right)+H\left(a_{2}\right)}{2} . \tag{4.32}
\end{align*}
$$

- If $H$ is modified $(p, h)$-convex IV function, then

$$
\begin{align*}
& H\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) \\
& \supseteq \frac{\Gamma_{k}(v+k)}{2\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{v}{k}}}\left[{ }^{I R L} \mathcal{J}_{\psi^{-1}\left(a_{1}^{p}\right)^{+}}^{v, k, \psi}(H \circ \Psi)\left(\psi^{-1}\left(a_{2}^{p}\right)\right)+{ }^{I R L} \mathcal{J}_{\psi^{-1}\left(a_{2}^{p}\right)}^{v, k, \psi}(H \circ \Psi)\left(\psi^{-1}\left(a_{1}^{p}\right)\right)\right] \\
& \supseteq \frac{H\left(a_{1}\right)+H\left(a_{2}\right)}{2} . \tag{4.33}
\end{align*}
$$

- If H is a generalized modified harmonically h-convex IV function, then

$$
\begin{align*}
& H\left(\frac{2 a_{1} a_{2}}{a_{1}+a_{2}}\right)-Q_{1} \supseteq \frac{\Gamma_{k}(v+k)}{2}\left(\frac{a_{1} a_{2}}{a_{2}-a_{1}}\right)^{\frac{v}{k}}\left[I R L \mathcal{J}_{\psi^{-1}\left(\frac{1}{a_{1}}\right)^{v, k}}^{-( }(H \circ \Psi)\left(\psi^{-1}\left(\frac{1}{a_{2}}\right)\right)\right. \\
&\left.\left.+{ }^{I R L} \mathcal{J}_{\psi^{-1}\left(\frac{1}{a_{2}}\right)^{v}}\right)^{+}(H \circ \Psi)\left(\psi^{-1}\left(\frac{1}{a_{1}}\right)\right)\right] \\
& \supseteq \frac{H\left(a_{1}\right)+H\left(a_{2}\right)}{2}+\frac{v}{2 k}\left[\eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right)+\eta\left(H\left(a_{2}\right), H\left(a_{1}\right)\right)\right] \int_{0}^{1} \mu^{\frac{v}{k}-1} h(\mu) d \mu \tag{4.34}
\end{align*}
$$

- If $H$ is harmonically modified $h$-convex function, then (4.34) reduces to

$$
\begin{align*}
H\left(\frac{2 a_{1} a_{2}}{a_{1}+a_{2}}\right) \supseteq \frac{\Gamma_{k}(v+k)}{2}\left(\frac{a_{1} a_{2}}{a_{2}-a_{1}}\right)^{\frac{v}{k}}\left[{ }^{I R L} \mathcal{J}_{\psi^{-1}\left(\frac{1}{a_{1}}\right)^{v, k, \psi}}(H \circ \Psi)\left(\psi^{-1}\left(\frac{1}{a_{2}}\right)\right)\right. & \\
& \left.\quad+{ }^{I R L} \mathcal{J}_{\psi^{-1}\left(\frac{1}{a_{2}}\right)^{v, k, \psi}}(H \circ \Psi)\left(\psi^{-1}\left(\frac{1}{a_{1}}\right)\right)\right] \\
& \supseteq \frac{H\left(a_{1}\right)+H\left(a_{2}\right)}{2} . \tag{4.35}
\end{align*}
$$

Remark 4.3. If $H$ is harmonically convex IV function, then (4.34) again produces (4.35).
Theorem 4.2. Let $\eta: \Delta_{\mathcal{T}} \times \Delta_{\mathcal{T}} \rightarrow \Delta_{\mathcal{T}}$ where $\Delta_{\mathcal{T}} \subseteq \mathcal{T} R^{+}$. Let $H, K:\left[a_{1}, a_{2}\right] \rightarrow \mathcal{T} R^{+}$be generalized modified ( $p, h$ )-convex functions with respect to $\eta$ such that $H(t)=\left[H^{-}(t), H^{+}(t)\right]$ and $K(t)=\left[K^{-}(t), K^{+}(t)\right]$, then we have:

$$
\begin{align*}
\frac{\Gamma_{k}(v+k)}{2\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{\nu}{k}}}\left[I R L \mathcal{J}_{\psi-\left(a_{1}^{p}\right)^{+}}^{v, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(a_{2}^{p}\right)\right)+{ }^{I R L} \mathcal{J}_{\psi-\left(a_{2}^{p}\right)^{-}}^{v, k, \psi}\right. & \left.(H K \circ \Psi)\left(\psi^{-}\left(a_{1}^{p}\right)\right)\right] \\
& \supseteq(I \mathfrak{R}) \int_{0}^{1} \mu^{\frac{\nu}{k}-1}[\mathcal{M}(\mu)+\mathcal{N}(\mu)] d \mu \tag{4.36}
\end{align*}
$$

where

$$
\begin{aligned}
\mathcal{M}(\mu) & =\left[H\left(a_{2}\right)+h(\mu) \eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right)\right]\left[K\left(a_{2}\right)+h(\mu) \eta\left(K\left(a_{1}\right), K\left(a_{2}\right)\right)\right], \\
\mathcal{N}(\mu) & =\left[H\left(a_{1}\right)+h(\mu) \eta\left(H\left(a_{2}\right), H\left(a_{1}\right)\right)\right]\left[K\left(a_{1}\right)+h(\mu) \eta\left(K\left(a_{2}\right), K\left(a_{1}\right)\right)\right] .
\end{aligned}
$$

Proof. By the indicated generalized ( $p, h$ )-convexity of $H$ and $K$, we have

$$
\begin{equation*}
H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right) \supseteq H\left(a_{2}\right)+h(\mu) \eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right), \tag{4.37}
\end{equation*}
$$

and

$$
\begin{equation*}
K\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right) \supseteq K\left(a_{2}\right)+h(\mu) \eta\left(K\left(a_{1}\right), K\left(a_{2}\right)\right) . \tag{4.38}
\end{equation*}
$$

Multiplying (4.37) and (4.38), we have

$$
\begin{align*}
H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right) K( & {\left.\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right) } \\
& \supseteq\left[H\left(a_{2}\right)+h(\mu) \eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right)\right]\left[K\left(a_{2}\right)+h(\mu) \eta\left(K\left(a_{1}\right), K\left(a_{2}\right)\right)\right] . \tag{4.39}
\end{align*}
$$

Similarly,

$$
\begin{align*}
H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right) K( & {\left.\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right) } \\
& \supseteq\left[H\left(a_{1}\right)+h(\mu) \eta\left(H\left(a_{2}\right), H\left(a_{1}\right)\right)\right]\left[K\left(a_{1}\right)+h(\mu) \eta\left(K\left(a_{2}\right), K\left(a_{1}\right)\right)\right] . \tag{4.40}
\end{align*}
$$

On summing (4.39) and (4.40), we get

$$
\begin{array}{r}
H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right) K\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)+H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right) K\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right) \\
 \tag{4.41}\\
\supseteq \mathcal{M}(\mu)+\mathcal{N}(\mu) .
\end{array}
$$

Multiplying the above inequality by $\frac{\mu^{\frac{k}{k}}-1}{2}$, and applying interval integration,

$$
\begin{aligned}
&(I \mathfrak{R}) \int_{0}^{1} \frac{\mu^{\frac{\nu}{k}-1}}{2} H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right) K\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right) d \mu \\
&+(I \mathfrak{R}) \int_{0}^{1} \frac{\mu^{\frac{\nu}{k}-1}}{2} H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right) K\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right) d \mu
\end{aligned}
$$

$$
\begin{equation*}
\supseteq(I \mathfrak{R}) \int_{0}^{1} \frac{\mu^{\frac{v}{k}-1}}{2}[\mathcal{M}(\mu)+\mathcal{N}(\mu)] d \mu \tag{4.42}
\end{equation*}
$$

By applying Theorem 4.1, we get

$$
\begin{align*}
(I \Re) \int_{0}^{1} \frac{\mu^{\frac{v}{k}-1}}{2} H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right) K\left(\left[\mu a_{1}^{p}+\right.\right. & \left.\left.(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right) d \mu \\
& =\frac{k \Gamma_{k}(v)}{2\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{v}{k}}} I R L \mathcal{J}_{\psi-\left(a_{1}^{p}\right)^{v}}^{v, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(a_{2}^{p}\right)\right) \tag{4.43}
\end{align*}
$$

and

$$
\begin{align*}
(I \Re) \int_{0}^{1} \frac{\mu^{\frac{v}{k}-1}}{2} H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right) K\left(\left[\mu a_{2}^{p}+\right.\right. & \left.\left.(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right) d \mu \\
& =\frac{k \Gamma_{k}(v)}{2\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{v}{k}}} I R L \mathcal{J}_{\psi^{-}\left(a_{2}^{p}\right)^{-}}^{v, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(a_{1}^{p}\right)\right) \tag{4.44}
\end{align*}
$$

Consequently, we can obtain the desired result (4.36) by substituting (4.43) and (4.44) in (4.42).
Corollary 4.2. If $H$ and $K$ are modified $(p, h)$-convex IV functions, then

$$
\begin{align*}
& \frac{\Gamma_{k}(v+k)}{2\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{\nu}{k}}}\left[{ }^{I R L} \mathcal{J}_{\psi,\left(a_{1}^{p}\right)+}^{v, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(a_{2}^{p}\right)\right)+{ }^{I R L} \mathcal{J}_{\psi, v,\left(a_{2}^{p}\right)^{-}}^{v, \psi}(H K \circ \Psi)\left(\psi^{-}\left(a_{1}^{p}\right)\right)\right] \\
& \supseteq \frac{v M\left(a_{1}, a_{2}\right)}{2 k} \int_{0}^{1} \mu^{\frac{v}{k}-1}\left[(h(\mu))^{2}+(1-h(\mu))^{2}\right] d \mu+\frac{v N\left(a_{1}, a_{2}\right)}{k} \int_{0}^{1} \mu^{\frac{v}{k}-1} h(\mu)(1-h(\mu)) d \mu \tag{4.45}
\end{align*}
$$

where $M\left(a_{1}, a_{2}\right)$ and $N\left(a_{1}, a_{2}\right)$ are same as defined in Theorem 3.4.
Proof. Let $\eta(U, V)=U-V$, then

$$
\begin{align*}
\mathcal{M}(\mu)+\mathcal{N}(\mu)= & {\left[h(\mu) H\left(a_{1}\right)+(1-h(\mu)) H\left(a_{2}\right)\right]\left[h(\mu) K\left(a_{1}\right)+(1-h(\mu)) K\left(a_{2}\right)\right] } \\
= & {\left[H\left(a_{1}\right) K\left(a_{1}\right)+H\left(a_{2}\right) K\left(a_{2}\right)\right]\left[(h(\mu))^{2}+(1-h(\mu))^{2}\right] }  \tag{4.46}\\
& +2\left[H\left(a_{1}\right) K\left(a_{2}\right)+H\left(a_{2}\right) K\left(a_{1}\right)\right] h(\mu)(1-h(\mu))
\end{align*}
$$

Using (4.46) in (4.36), we get the desired inequality.
Corollary 4.3. Let the conditions of Theorem 4.2 be satisfied, then one can see that

- If $H$ and $K$ are p-convex IV functions, then

$$
\begin{align*}
\frac{\Gamma_{k}(v+k)}{2\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{v}{k}}}\left[{ }^{I R L} \mathcal{J}_{\psi^{-}\left(a_{1}^{p}\right)^{+}}^{v, k, \psi}\right. & \left.(H K \circ \Psi)\left(\psi^{-}\left(a_{2}^{p}\right)\right)+{ }^{I R L} \mathcal{J}_{\psi-\left(a_{2}^{p}\right)^{-}}^{v, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(a_{1}^{p}\right)\right)\right] \\
& \supseteq\left[\frac{1}{2}-\frac{k v}{(v+k)(v+2 k)}\right] M\left(a_{1}, a_{2}\right)+\frac{k v}{(v+k)(v+2 k)} N\left(a_{1}, a_{2}\right), \tag{4.47}
\end{align*}
$$

where $M\left(a_{1}, a_{2}\right)$ and $N\left(a_{1}, a_{2}\right)$ are same as defined in Theorem 3.4.

- If $H$ and $K$ are modified h-convex IV functions, then

$$
\begin{align*}
& \frac{\Gamma_{k}(v+k)}{2\left(a_{2}-a_{1}\right)^{\frac{v}{k}}}\left[{ }^{I R L} \mathcal{J}_{\psi^{-\left(a_{1}\right)^{+}}}^{v, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(a_{2}\right)\right)+{ }^{I R L} \mathcal{J}_{\psi^{\prime-\left(a_{2}\right)^{-}}}^{v, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(a_{1}\right)\right)\right] \\
& \supseteq \frac{v M\left(a_{1}, a_{2}\right)}{2 k} \int_{0}^{1} \mu^{\frac{v}{k}-1}\left[(h(\mu))^{2}+(1-h(\mu))^{2}\right] d \mu+\frac{v N\left(a_{1}, a_{2}\right)}{k} \int_{0}^{1} \mu^{\frac{\nu}{k}-1} h(\mu)(1-h(\mu)) d \mu . \tag{4.48}
\end{align*}
$$

- If $H$ is convex IV function, then

$$
\begin{align*}
\frac{\Gamma_{k}(v+k)}{2\left(a_{2}-a_{1}\right)^{\frac{v}{k}}}\left[{ }^{I R L} \mathcal{J}_{\psi^{-\left(a_{1}\right)^{+}}}^{v, k, \psi}\right. & \left.(H K \circ \Psi)\left(\psi^{-}\left(a_{2}\right)\right)+{ }^{I R L} \mathcal{J}_{\psi^{\prime-\left(a_{2}\right)^{-}}}^{v, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(a_{1}\right)\right)\right] \\
& \supseteq\left[\frac{1}{2}-\frac{k v}{(v+k)(v+2 k)}\right] M\left(a_{1}, a_{2}\right)+\frac{k v}{(v+k)(v+2 k)} N\left(a_{1}, a_{2}\right) . \tag{4.49}
\end{align*}
$$

- If $H$ and $K$ are $(p, s)$-convex IV functions of first kind, then

$$
\begin{align*}
& \frac{\Gamma_{k}(v+k)}{2\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{v}{k}}}\left[{ }^{I R L} \mathcal{J}_{\psi^{-}\left(a_{1}^{p}\right)^{+}}^{v, v, \psi}(H K \circ \Psi)\left(\psi^{-}\left(a_{2}^{p}\right)\right)+{ }^{I R L} \mathcal{J}_{\psi^{-}\left(a_{2}^{p}\right)^{-}}^{v, k}(H K \circ \Psi)\left(\psi^{-}\left(a_{1}^{p}\right)\right)\right] \\
& \supseteq\left[\frac{1}{2}-\frac{k v s}{(v+k s)(v+2 k s)}\right] M\left(a_{1}, a_{2}\right)+\frac{k v s}{(v+k s)(v+2 k s)} N\left(a_{1}, a_{2}\right) . \tag{4.50}
\end{align*}
$$

- If $H$ and $K$ are harmonically convex IV functions, then

$$
\begin{align*}
& \frac{\Gamma_{k}(v+k)}{2}\left(\frac{a_{1} a_{2}}{a_{2}-a_{1}}\right)^{\frac{\nu}{k}}\left[{ }^{I R L} \mathcal{J}_{\psi\left(-\frac{1}{a_{2}}\right)^{\nu}}^{v, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(\frac{1}{a_{1}}\right)\right)\right. \\
& \left.+{ }^{I R L} \mathcal{J}_{\psi-\left(\frac{1}{a_{1}}\right)^{-}}^{v, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(\frac{1}{a_{2}}\right)\right)\right] \\
& \supseteq\left[\frac{1}{2}-\frac{k v}{(v+k)(v+2 k)}\right] M\left(a_{1}, a_{2}\right)+\frac{k v}{(v+k)(v+2 k)} N\left(a_{1}, a_{2}\right) . \tag{4.51}
\end{align*}
$$

- If $H$ and $K$ are modified harmonically h-convex IV functions, then

$$
\begin{align*}
& \frac{\Gamma_{k}(v+k)}{2}\left(\frac{a_{1} a_{2}}{a_{2}-a_{1}}\right)^{\frac{\nu}{k}}\left[{ }^{I R L} \mathcal{J}_{\left.\left.\psi^{-( }\right) \frac{1}{a_{2}}\right)^{+}}^{v,{ }^{+}}(H K \circ \Psi)\left(\psi^{-}\left(\frac{1}{a_{1}}\right)\right)\right. \\
& \left.+{ }^{I R L} \mathcal{J}_{\psi-\left(\frac{1}{a_{1}}\right)^{v}}^{\mathcal{V}^{v, \psi}}(H K \circ \Psi)\left(\psi^{-}\left(\frac{1}{a_{2}}\right)\right)\right] \\
& \supseteq \frac{\nu M\left(a_{1}, a_{2}\right)}{2 k} \int_{0}^{1} \mu^{\frac{\nu}{k}-1}\left[(h(\mu))^{2}+(1-h(\mu))^{2}\right] d \mu+\frac{\nu N\left(a_{1}, a_{2}\right)}{k} \int_{0}^{1} \mu^{\frac{\nu}{k}-1} h(\mu)(1-h(\mu)) d \mu . \tag{4.52}
\end{align*}
$$

- If $H$ and $K$ are harmonically s-convex IV functions of first kind, then

$$
\begin{align*}
& \frac{\Gamma_{k}(v+k)}{2}\left(\frac{a_{1} a_{2}}{a_{2}-a_{1}}\right)^{\frac{v}{k}}\left[\begin{array}{l}
I R L \\
\mathcal{J}^{v, k},\left(\frac{1}{a_{2}}\right)^{+}
\end{array}\right.H K \circ \Psi)\left(\psi^{-}\left(\frac{1}{a_{1}}\right)\right) \\
&\left.\quad+{ }^{I R L} \mathcal{J}_{\psi-\left(\frac{1}{a_{1}}\right)^{-}}^{v, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(\frac{1}{a_{2}}\right)\right)\right] \\
& \supseteq\left[\frac{1}{2}-\frac{k v s}{(v+k s)(v+2 k s)}\right] M\left(a_{1}, a_{2}\right)+\frac{k v s}{(v+k s)(v+2 k s)} N\left(a_{1}, a_{2}\right) . \tag{4.53}
\end{align*}
$$

Theorem 4.3. Let $\eta: \Delta_{I} \times \Delta_{I} \rightarrow \Delta_{I}$, where $\Delta_{I} \subset \mathcal{T} R^{+}$. Let $H, K:\left[a_{1}, a_{2}\right] \rightarrow \mathcal{T} R^{+}$be generalized modified ( $p, h$ )-convex functions with respect to $\eta$ such that $H(t)=\left[H^{-}(t), H^{+}(t)\right]$ and $K(t)=\left[K^{-}(t), K^{+}(t)\right]$. then we have:

$$
\begin{align*}
& 2 H\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) K\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) \\
& \supseteq \frac{\Gamma_{k}(v+k)}{2\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{v}{k}}}\left[{ }^{I R L} \mathcal{J}_{\psi^{-}\left(a_{1}^{p}\right)+}^{v, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(a_{2}^{p}\right)\right)+{ }^{I R L} \mathcal{J}_{\left.\psi^{-( } a_{2}^{p}\right)-}^{v, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(a_{1}^{p}\right)\right)\right] \\
& \\
& \quad+\frac{1}{2}\left[N\left(a_{1}, a_{2}\right)+\frac{v}{k} \mathcal{P}\left(a_{1}, a_{2}\right) \int_{0}^{1} \mu^{\frac{v}{k}-1} h(\mu) d \mu+\frac{v}{k} \mathcal{S} \int_{0}^{1} \mu^{\frac{v}{k}-1} h^{2}(\mu) d \mu\right]  \tag{4.54}\\
& \\
& \quad+\frac{h\left(\frac{1}{2}\right)}{2}(I R) \int_{0}^{1} \mu^{\frac{v}{k}-1} \mathcal{A} d \mu+\frac{h^{2}\left(\frac{1}{2}\right)}{2}(I R) \int_{0}^{1} \mu^{\frac{v}{k}-1} C d \mu .
\end{align*}
$$

where

$$
\begin{align*}
& \mathcal{A}=\left(H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)+H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right) \\
& \times\left\{\eta\left(K\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right), K\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right)\right. \\
&\left.+\eta\left(K\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right), K\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)\right)\right\} \\
&+\left(K\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)+K\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right) \\
& \times\left\{\eta\left(H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right), H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right)\right. \\
&\left.+\eta\left(H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right), H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)\right)\right\},  \tag{4.55}\\
& \begin{aligned}
C=\left(\eta\left(H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right), H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right)\right.
\end{aligned} \\
&\left.+\eta\left(H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right), H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)\right)\right) \\
& \times\left(\eta\left(K\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right), K\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right)\right.
\end{align*}
$$

$$
\left.\begin{array}{c}
\left.+\eta\left(K\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right), K\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)\right)\right), \\
\mathcal{P}=H\left(a_{1}\right) \eta\left(K\left(a_{1}\right), K\left(a_{2}\right)\right)+H\left(a_{2}\right) \eta\left(K\left(a_{2}\right), K\left(a_{1}\right)\right)+K\left(a_{1}\right) \eta\left(H\left(a_{1}\right), H\left(a_{2}\right)\right) \\
+
\end{array}\right)
$$

and $N\left(a_{1}, a_{2}\right)$ is defined in Theorem 3.4.
Proof. By the IV generalized modified ( $p, h$ )-convexity of $H$ and $K$, we have

$$
\begin{align*}
& H\left(\left[\frac{x^{p}+y^{p}}{2}\right]^{\frac{1}{p}}\right) K\left(\left[\frac{x^{p}+y^{p}}{2}\right]^{\frac{1}{p}}\right) \\
& \quad \supseteq\left(\frac{1}{2}[H(x)+H(y)]+\frac{h\left(\frac{1}{2}\right)}{2}\{\eta(H(x), H(y))+\eta(H(y), H(x))\}\right) \\
& \quad \times\left(\frac{1}{2}[K(x)+K(y)]+\frac{h\left(\frac{1}{2}\right)}{2}\{\eta(K(x), K(y))+\eta(K(y), K(x))\}\right) \\
& =\frac{1}{4}[H(x) K(x)+H(y) K(y)]+\frac{1}{4}[H(x) K(y)+H(y) K(x)] \\
& +\frac{h\left(\frac{1}{2}\right)}{4}\{[H(x)+H(y)][\eta(K(x), K(y))+\eta(K(y), K(x))]\} \\
& +\frac{h\left(\frac{1}{2}\right)}{4}\{[K(x)+K(y)][\eta(H(x), H(y))+\eta(H(y), H(x))]\} \\
& +\frac{h^{2}\left(\frac{1}{2}\right)}{4}\{\eta(H(x), H(y))+\eta(H(y), H(x))\}\{\eta(K(x), K(y))+\eta(K(y), K(x))\} . \tag{4.59}
\end{align*}
$$

Using $x=\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}$ and $y=\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}$ and using indicated convexity, we have

$$
\begin{align*}
& H\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) K\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) d \mu \supseteq \frac{1}{4}\left[H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right) K\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)\right. \\
&\left.+H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right) K\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right] \\
&+\frac{1}{4}\left[N\left(a_{1}, a_{2}\right)+\mathcal{P}\left(a_{1}, a_{2}\right) h(\mu)+\mathcal{S}\left(a_{1}, a_{2}\right) h^{2}(\mu)\right]+\frac{h\left(\frac{1}{2}\right)}{4} \mathcal{A}+\frac{h^{2}\left(\frac{1}{2}\right)}{4} C . \tag{4.60}
\end{align*}
$$

After multiplying the last inequality with $\mu^{\frac{\nu}{k}-1}$ and then applying the interval integration over $[0,1]$, the desired inequality (4.54) yields.

Remark 4.4. It is important to notice that, if $B_{I}$ is a suitable subset of $\mathcal{H}$ the extended interval space, then we could not use the distributive property. In that case the inequality of Theorem 4.3 will be:

$$
\begin{equation*}
2 H\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) K\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) \supseteq \frac{v}{k}(I \Re) \int_{0}^{1} \mu^{\frac{v}{k}-1} A B d \mu \tag{4.61}
\end{equation*}
$$

where

$$
\begin{align*}
& A=\frac{1}{2}\left[H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)+H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right] \\
&+\frac{h\left(\frac{1}{2}\right)}{2}\left\{\eta\left(H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right), H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right)\right. \\
&\left.+\eta\left(H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right), H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)\right)\right\} \tag{4.62}
\end{align*}
$$

and

$$
\begin{align*}
& B=\frac{1}{2}\left[K\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)+K\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right] \\
& +\frac{h\left(\frac{1}{2}\right)}{2}\left\{\eta\left(K\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right), K\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right)\right)\right. \\
&  \tag{4.63}\\
& \left.+\eta\left(K\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right), K\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right)\right)\right\} .
\end{align*}
$$

Corollary 4.4. If $H$ and $K$ are modified ( $p, h$ )-convex IV functions in Theorem 4.3, then

$$
\begin{align*}
& 2 H\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) K\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) \\
& \quad \supseteq \frac{\Gamma_{k}(v+k)}{2\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{v}{k}}}\left[\operatorname{IRL} \mathcal{J}_{\psi\left(\left(a_{1}^{p+)}\right.\right.}^{v, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(a_{2}^{p}\right)\right)+{ }^{I R L} \mathcal{J}_{\psi\left(a_{2}^{p}\right)}^{\nu, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(a_{1}^{p}\right)\right)\right] \\
&  \tag{4.64}\\
& \quad+\frac{v}{2 k} N\left(a_{1}, a_{2}\right) \int_{0}^{1}\left((h(\mu))^{2}+(1-h(\mu))^{2}\right) d \mu+\frac{v}{k} M\left(a_{1}, a_{2}\right) \int_{0}^{1} h(\mu)(1-h(\mu)) d \mu,
\end{align*}
$$

where $M\left(a_{1}, a_{2}\right)$ and $N\left(a_{1}, a_{2}\right)$ are defined in Theorem 3.4.
Proof. For the desired inequality, we choose $\eta(U, V)=U-V$, then by applying the mentioned convexity of $H$ and $K$, we have from (4.62) and (4.63)

$$
\left.\begin{array}{l}
4 A B \supseteq H\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right) K\left(\left[\mu a_{1}^{p}+(1-\mu) a_{2}^{p}\right]^{\frac{1}{p}}\right) \\
+H\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right) K\left(\left[\mu a_{2}^{p}+(1-\mu) a_{1}^{p}\right]^{\frac{1}{p}}\right) \\
 \tag{4.65}\\
+
\end{array}\right) N\left(a_{1}, a_{2}\right)\left[(h(\mu))^{2}+(1-h(\mu))^{2}\right]+2 M\left(a_{1}, a_{2}\right) h(\mu)(1-h(\mu)) . .
$$

The required inequality yields by using (4.65) in (4.61).

Corollary 4.5. Let the conditions of Theorem 4.3 be satisfied, then it is easy to see that

- If $H$ and $K$ are p-convex IV functions, then

$$
\begin{align*}
& 2 H\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) K\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) \\
& \quad \supseteq \frac{\Gamma_{k}(v+k)}{2\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{v}{k}}}\left[\begin{array}{l}
I R L \\
\left.\mathcal{J}_{\psi^{-}\left(a_{1}^{p}\right)+}^{v, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(a_{2}^{p}\right)\right)+{ }^{I R L} \mathcal{J}_{\psi^{-( }\left(a_{2}^{p}\right)-}^{v, k, \psi}(H K \circ \Psi)\left(\psi^{-}\left(a_{1}^{p}\right)\right)\right] \\
\quad+\left[\frac{1}{2}-\frac{k v}{(v+k)(v+2 k)}\right] N\left(a_{1}, a_{2}\right)+\frac{k v}{(v+k)(v+2 k)} M\left(a_{1}, a_{2}\right) .
\end{array}\right.
\end{align*}
$$

- If $H$ and $K$ are convex IV functions, then

$$
\begin{align*}
& 2 H\left(\frac{a_{1}+a_{2}}{2}\right) K\left(\frac{a_{1}+a_{2}}{2}\right) \\
& \quad \supseteq \frac{\Gamma_{k}(v+k)}{2\left(a_{2}-a_{1}\right)^{\frac{v}{k}}}\left[\begin{array}{l}
I R L \\
\\
\end{array} \quad+\left[\frac{1}{2}-\frac{k v}{(v+k)(v+2 k)}\right] N\left(a_{1}, a_{2}\right)+\frac{k v,\left(a_{1}\right)^{+}}{(v+k)(v+2 k)} M\left(a_{1}, a_{2}\right)\right.
\end{align*}
$$

- If $H$ and $K$ are $(p, s)$-convex IV functions of first kind, then

$$
\begin{align*}
& 2 H\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) K\left(\left[\frac{a_{1}^{p}+a_{2}^{p}}{2}\right]^{\frac{1}{p}}\right) \\
& \supseteq \frac{\Gamma_{k}(v+k)}{2\left(a_{2}^{p}-a_{1}^{p}\right)^{\frac{\nu}{k}}}\left[\begin{array}{ll}
I R L & \left.\mathcal{J}_{\psi}^{v, k,\left(a_{1}^{p}\right)^{+}}(H K \circ \Psi)\left(\psi^{-}\left(a_{2}^{p}\right)\right)+{ }^{I R L} \mathcal{J}_{\psi}^{v, k,\left(a_{2}^{p}\right)^{-}}(H K \circ \Psi)\left(\psi^{-}\left(a_{1}^{p}\right)\right)\right] \\
& \quad\left[\frac{1}{2}-\frac{k v s}{(v+k s)(v+2 k s)}\right] N\left(a_{1}, a_{2}\right)+\frac{k v s}{(v+k s)(v+2 k s)} M\left(a_{1}, a_{2}\right) .
\end{array} .\right.
\end{align*}
$$

- If $H$ and $K$ are harmonically convex IV functions, then

$$
\begin{align*}
2 H\left(\frac{2 a_{1} a_{2}}{a_{1}+a_{2}}\right) K\left(\frac{2 a_{1} a_{2}}{a_{1}+a_{2}}\right) & \supseteq \frac{\Gamma_{k}(v+k)}{2}\left(\frac{a_{1} a_{2}}{a_{2}-a_{1}}\right)^{\frac{v}{k}} \\
\times\left[{ }^{I R L} \mathcal{J}_{\psi,\left(\frac{1}{a_{2}}\right)^{+}}^{v, k, \psi}\right. & \left.(H K \circ \Psi)\left(\psi^{-}\left(\frac{1}{a_{1}}\right)\right)+{ }^{I R L} \mathcal{J}_{\psi,\left(\frac{1}{a_{1}}\right)^{v}}^{v, \psi}(H K \circ \Psi)\left(\psi^{-}\left(\frac{1}{a_{2}}\right)\right)\right] \\
& +\left[\frac{1}{2}-\frac{k v}{(v+k)(v+2 k)}\right] N\left(a_{1}, a_{2}\right)+\frac{k v}{(v+k)(v+2 k)} M\left(a_{1}, a_{2}\right) . \tag{4.69}
\end{align*}
$$

## 5. Conclusions

In this study, we have obtain a several of $H \cdot H$ integral type for different classes of IV convex functions. We have introduced a general class which includes many classes of IV convex functions. The new class is termed as generalized modified ( $p, h$ )-convex functions. We have also coin the notion
of $\psi_{k}-R L$ fractional integrals for interval calculus. We have used the new concept for extended interval arithmetic. This is the first effort to obtain the results for classical and fractional integral inequalities for extended interval space. We hope that current work will attract the attention of researchers working in mathematical analysis, fractional calculus and other related fields.

## Acknowledgements

This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-Track Research Funding Program, and the Taif University Researchers Supporting Project (No. TURSP-2020/155), Taif University, Taif, Saudi Arabia.

## Conflict of interest

The authors agree with the contents of the manuscript, and there is no conflict of interest among the authors.

## References

1. S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, Science Direct Working Paper, 2003. Available from: https://ssrn.com/abstract=3158351.
2. J. J. Ruel, M. P. Ayres, Jensen's inequality predicts effects of environmental variations, Trends Ecol. Evol., 14 (1999), 361-366.
3. M. Grinalatt, J. T. Linnainmaa, Jensen's Inequality, Parameter Uncertainty, and Multiperiod Investment, Chicago Booth Research Paper, CRSP Working Paper, 2010. Available from: https://ssrn.com/abstract=1629189.
4. J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794-806.
5. P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equations, 2020 (2020), 1-22.
6. P. O. Mohammed, I. Brevik, A New version of the Hermite-Hadamard inequality for RiemannLiouville fractional Integrals, Symmetry, 12 (2020), 610.
7. T. Abdeljawad, M. A. Ali, P. O. Mohammed, A. Kashuri, On inequalities of Hermite-HadamardMercer type involving Riemann-Liouville fractional integrals, AIMS Math., 5 (2020), 7316-7331.
8. P. O. Mohammed, T. Abdeljawad, S. Zeng, A. Kashuri, Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1485.
9. A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Methods Appl. Sci., (2020), 1-18. Available from: https://doi.org/10.1002/mma. 6188.
10. D. Baleanu, P. O. Mohammed, S. Zeng, Inequalities of trapezoidal type involving generalized fractional integrals, Alexandria Eng. J., 59 (2020), 2975-2984.
11. P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595.
12. P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740.
13. P. O. Mohammed, M. Vivas-Cortez, T. Abdeljawad, Y. Rangel-Oliveros, Integral inequalities of Hermite-Hadamard type for quasi-convex functions with applications, AIMS Math., 5 (2020), 7316-7331.
14. R. E. Moore, Interval Analysis, Englewood Cliffs: Prentice-Hall, 1996.
15. E. de Weerdt, Q. P. Chu, J. A. Mulder, Neural network output optimization using interval analysis, IEEE Trans. Neural Networks, 20 (2009), 638-653.
16. T. M. Costa, H. Bouwmeester, W. A. Lodwick, C. Lavor, Calculating the possible conformations arising from uncertainty in the molecular distance geometry problem using constraint interval analysis, Inf. Sci., 415 (2017), 41-52.
17. R. Osuna-Gomez, Y. Chalco-Cano, B. Hernandez-Jimenezz, G. Ruiz-Garzon, Optimality conditions for generalized differentiable interval-valued functions, Inf. Sci., 321 (2015), 136-146.
18. Y. Chalco-Cano, A. Flores-Franulic, H. Roman-Flores, Ostrowski type inequalities for intervalvalued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012).
19. Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293-3300.
20. H. Roman-Flores, Y. Chalco-Cano, W. A. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math., 37 (2018), 1306-1318.
21. T. M. Costa, Jensen's inequality type integral for fuzzy-interval-valued functions, Fuzzy Sets Syst., 327 (2017), 31-47.
22. A. Flores-Franulic, Y. Chalco-Cano, H. R. Flores, An Ostrowski type inequality for interval-valued functions, (IFSA/NAFIPS), IEEE, (2013), 1459-1462.
23. E. Sadowska, Hadamard inequality and a refinement of Jensen inequality for set-valued functions, Results Math., 32 (1997), 332-337.
24. F. C. Mitroi, K. Nikodem, S. Wasowicz, Hermite-Hadamard inequalities for convex set-valued functions, Demonstratio Math., 46 (2013), 655-662.
25. D. Zhao, M. A. Ali, A. Kashuri, H. Budak, M. Z. Sarikaya, Hermite-Hadamard-type inequalities for the interval-valued approximately $h$-convex functions via generalized fractional integrals, $J$. Inequal. Appl., 2020 (2020), 222.
26. Z. B. Li, M. S. Zahoor, H. Akhtar, Hermite-Hadamard and fractional integral inequalities for interval-valued generalized $p$-convex function, J. Math., 2020 (2020), 4606439.
27. V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Sets Syst., 265 (2015), 6385.
28. E. Kaucher, Über Eigenschaften und anwendungsmöglichkeiten der erweiterten intervallrechnung und des hyperbolischen fastkörpers über R, In: R. Albrecht, U. Kulisch, Grundlagen der Computer-Arithmetik, Computing Supplementum, Vienna: Springer, 1 (1977), 81-94.
29. E. Kaucher, Interval analysis in the extended interval space IR, In: G. Alefeld, R. D. Grigorieff, Fundamentals of Numerical Computation (Computer-Oriented Numerical Analysis), Computing Supplementum, Vienna: Springer, 2 (1980), 33-49.
30. N. S. Dimitrova, S. M. Markov, E. D. Popova, Extended interval arithmetics: new results and applications, In: L. Atanassova, J. Herzberger, Computer Arithmetic and Enclosure Methods, Elsevier Sci. Publishers B. V., (1992), 225-232.
31. A. Dinghas, Zum minkowskischen integralbegriff abgeschlossener mengen, Math. Z., 66 (1956), 173-188.
32. B. Piatek, On the Riemann integral of set-valued functions, Zesz. Nauk. Mat. Stosow/Politech Saska, 2 (2012), 5-18.
33. R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to Interval Analysis, Society for Industrial and Applied Mathematics, Philadelphia, 2009.
34. J. P. Aubin, A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Berlin: Springer, 2012.
35. X. Liu, G. Ye, D. Zhao, W. Liu, Fractional Hermite-Hadamard type inequalities for interval-valued functions, J. Inequalities Appl., 2019 (2019), 266.
36. S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311.
37. D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for $h$-convex interval-valued functions, J. Inequalities Appl., 2018 (2018), 302.
38. K. Nikodem, On midpoint convex set-valued functions, Aequationes Math., 33 (1987), 46-56.
39. H. Budak, T. Tunç, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for intervalvalued functions, Proc. Am. Math. Soc., 2019. Available from:
https://doi.org/10.1090/proc/14741.
40. F. Shi, G. Ye, D. Zhao, W. Liu, Some fractional Hermite-Hadamard-type inequalities for intervalvalued coordinated functions, Adv. Differ. Equations, 2021 (2021), 32.
41. H. Kara, M. A. Ali, H. Budak, Hermite-Hadamard-type inequalities for interval-valued coordinated convex functions involving generalized fractional integrals, Math. Methods Appl. Sci., 44 (2021), 104-123.
42. Z. Sha, G. Ye, D. Zhao, W. Liu, On interval-valued $\mathbb{K}$-Riemann integral and Hermite-Hadamard type inequalities, AIMS Math., 6 (2021), 1276-1295.
43. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Application of Fractional Differential Equations, Amsterdam: Elsevier, 2006.
44. Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville $k$ fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946-64953.
45. T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378-389.
46. U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865.
47. M. Z. Sarikaya, M. Dahmani, M. E. Kiris, F. Ahmad, $(k, s)$-Riemann-Liouville fractional integral and applications, Hacettepe J. Math. Stat., 45 (2016), 77-89.
48. S. Mubeen, G. M. Habibullah, $k$-Fractional integrals and application, Int. J. Contemp. Math. Sciences, 7 (2012), 89-94.
49. T. Tunç, Hermite-Hadamard type inequalities for interval-valued fractional integrals with respect to another function, 2020. Available from:
https://www.researchgate.net/publication/338834107.
50. K. S. Zhang, J. P. Wan, P-convex functions and their properties, Pure Appl. Math., 1 (2007), 130133.
51. M. E. Gordji, M. Rostamian, M. Delasen, On $\phi$-convex functions, J. Math. Inequal., 10 (2016), 173-183.
52. C. Y. Jung, M. S. Saleem, W. Nazeer, M. S. Zahoor, A. Latif, S. M. Kang, Unification of generalized and p-convexity, J. Funct. Spaces, 23 (2020), 1-6.
53. M. A. Noor, K. I. Noor, M. U. Awan, Hermite-Hadamard inequalities for modified $h$-convex functions, Transylv. J. Math. Mech., 6 (2014), 171-180.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
