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Abstract: This paper is devoted to studying a class of modified Kirchhoff-type equations

−
(
a + b

∫
R3
|∇u|2dx

)
∆u + V(x)u − u∆(u2) = f (x, u), in R3,

where a > 0, b ≥ 0 are two constants and V : R3 → R is a potential function. The existence of non-
trivial solution to the above problem is obtained by the perturbation methods. Moreover, when u > 0
and f (x, u) = f (u), under suitable hypotheses on V(x) and f (u), we obtain the existence of a positive
ground state solution by using a monotonicity trick and a new version of global compactness lemma.
The character of this work is that for f (u) ∼ |u|p−2u we prove the existence of a positive ground state
solution in the case where p ∈ (2, 3], which has few results for the modified Kirchhoff equation. Hence
our results improve and extend the existence results in the related literatures.

Keywords: modified Kirchhoff-type equation; ground state solution; nehari manifold; pohozaev
identity
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1. Introduction

In the first part of this paper, we are dedicated to studying the following modified Kirchhoff-type
problem with general nonlinearity:

−

(
a + b

∫
R3
|∇u|2dx

)
∆u − u∆u2 + V(x)u = f (x, u), x ∈ R3, (1.1)

where a > 0, b ≥ 0 are two constants and V : R3 → R is a potential function satisfying:
(V): V(x) ∈ C(R3), V0 := inf

x∈R3
V(x) > 0. Furthermore, for any M > 0, there is r > 0 such that Br(y)
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centered at y with radius r satisfying

meas {x ∈ Br(y) : V(x) ≤ M} → 0, as |y| → ∞. (1.2)

In addition, we suppose that the function f (x, t) verifies:
( f1): f ∈ C(R3 × R,R), | f (x, t)| ≤ C1

(
1 + |t|p−1

)
for some C1 > 0 and p ∈ (4, 12);

( f2): f (x, t) = o(t) uniformly in x as t → 0;
( f3): F(x, t)/t4 → ∞ uniformly in x as |t| → ∞, where F(x, t) =

∫ t

0
f (x, s)ds;

( f4): t → f (x, t)/t3 is positive for t , 0, strictly decreasing on (−∞, 0) and strictly increasing on (0,∞).
Clearly, ( f1) and ( f2) show that for any ε > 0, there exists Cε > 0 such that

| f (x, t)| ≤ ε|t| + Cε|t|p−1 for all t ∈ R and x ∈ R3. (1.3)

And ( f2) and ( f4) tell that
f (x, t)t > 4F(x, t) > 0 , for t , 0, (1.4)

which is weaker than the following Ambrosetti-Rabinowitz type condition:

0 < F(x, t) :=
∫ t

0
f (x, s)ds ≤

1
γ

t f (x, t), where γ > 4. (A-R)

As is well known, the (A–R) condition is very useful in verifying the Palais-Smale condition for
the energy functional associated problem (1.1). This is very much crucial in the applications of critical
point theory. However, although (A–R) is a quite natural condition, it is somewhat restrictive and
eliminates many nonlinearities. For example, the function

f (x, t) = t3log(1 + |t|)

does not satisfy (A–R) condition for any γ > 4. But it satisfies our conditions ( f1) − ( f4). For this
reason, there have been efforts to remove (A–R) condition. For an overview of the relevant literature
in this direction, we refer to the pioneering papers [1–6].

Problem (1.1) is a nonlocal problem due to the presence of the term
∫
R3 |∇u|2dx, and this fact

indicates that (1.1) is not a pointwise identity. Moreover, problem (1.1) involves the quasilinear term
u∆(u2), whose natural energy functional is not well defined in H1(R3) ∩ D1,2(R3) and variational
methods cannot be used directly. These cause some mathematical difficulties, and in the meantime
make the study of such a problem more interesting.

Some interesting results by variational methods can be found in [7–9] for Kirchhoff-type problem.
Especially, in recent paper [10], Li and Ye studied the following problem:

−
(
a + b

∫
R3 |∇u|2dx

)
∆u + V(x)u = |u|p−2u, in R3,

u ∈ H1(R3), u > 0, in R3,

(K)

where p ∈ (3, 6). And they proved problem (K) has a positive ground state solution by using a
monotonicity trick and a new version of global compactness lemma.
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Thereafter, Guo [11] generalized the result in [10] to the following Kirchhoff-type problem with
general nonlinearity 

−
(
a + b

∫
R3 |∇u|2dx

)
∆u + V(x)u = f (u), in R3,

u ∈ H1(R3).
(K1)

Guo proved problem (K1) also has a positive ground state solution by using the similar way. But
applying Guo’s result to problem (K), the condition 3 < p < 6 in [10] can be weakened to 2 < p < 6.

And two years later, Tang and Chen in [12] have obtained a ground state solution of
Nehari-Pohozaev type for problem (K1) by using a more direct approach than [10, 11]. Moreover,
Tang and Chen in [12] found that it does not seems to be sufficient to prove the inequality cλ < mλ for
λ ∈ [δ, 1] in Lemma 3.3 of [11]. Then by referring to [12], we correct this problem in the following
Lemma 5.11 of the present paper.

In more recent paper [13], under more general assumptions on V(x) than [10–12], He, Qin and
Tang have proved the existence of ground state solutions for problem (K1) by using variational
method and some new analytical techniques. Moreover, under general assumptions on the
nonlinearity f (u), He, Qin and Wu in [14] have obtained the existence of positive solution for problem
(K1) by using property of the Pohozaev identity and some delicate analysis.

When a = 1 and b = 0, (1.1) is reduced to the well known modified nonlinear Schrödinger
equation

−∆u + V(x)u − u∆u2 = h(x, u), x ∈ RN . (1.5)

Solutions of equation (1.5) are standing waves of the following quasilinear Schrödinger equation of
the form:

iψt + ∆ψ − V(x)ψ + k∆
(
α
(
|ψ|2

))
α′

(
|ψ|2

)
ψ + g(x, ψ) = 0, x ∈ RN , (1.6)

where V(x) is a given potential, k is a real constant, α and g are real functions. The quasilinear
Schrödinger Eq (1.6) is derived as models of several physical phenomena, such as [15–17]. In [18],
Poppenberg firstly began with the studies for Eq (1.6) in mathematics. For Eq (1.5) , there are several
common ways to prove existence results, such as, the existence of a positive ground state solution has
been studied in [19, 20] by using a constrained minimization argument; the problem is transformed to
a semilinear one in [21,22] by a change of variables (dual approach); Nehari method is used to get the
existence results of ground state solutions in [23]. Especially, in [24], the following problem:

−
∑N

j=1 D j

(
a j(x, u)Diu

)
+ 1

2

∑N
j=1 D jai j(x, u)D juD ju = h(x, u), in Ω,

u = 0, on ∂Ω

was studied via a perturbation method, where Ω ⊂ RN is a bounded smooth domain.
Very recently, Huang and Jia in [25] studied the following autonomous modified Kirchhoff-type

equation:

−

(
1 + b

∫
R3
|∇u|2dx

)
∆u + u −

1
2

u∆u2 = |u|p−2u, x ∈ RN , (1.7)
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where b ≥ 0, p > 1. For p ∈ (1, 2] ∪ [12,∞), depending on the deduction of some suitable Pohozaev
identity, they obtained the nonexistence result for Eq (1.7). And for p ∈ (3, 4], they proved that the
existence of ground state solution for Eq (1.7) by using the Nehari-Pohozaev manifold. But for
p ∈ (2, 3], they didn’t give the existence of ground state solution for Eq (1.7). We refine the result in
this paper.

We point out that f (x, t) is C1 with respect to t and f (x, t) satisfies the Ambrosetti-Rabinowitz
condition are very crucial in some related literatures. Since f (x, t) is not assumed to be differentiable
in t, the Nehari manifold of the corresponding Euler-Lagrange functional is not a C1 functional. And
if f (x, t) dose not satisfy the Ambrosetti-Rabinowitz condition, the boundedness of Palais-Smale
sequence (or minimizing sequence) seems hard to prove. In this case, their arguments become invalid.
The first part of this paper intends to deal with the existence of non-trivial solution to problem (1.1)
by the perturbation methods when f (x, t) is C1 in t and (A–R) condition are not established.

Now, we give our first main theorem as follows:

Theorem 1.1. If (V) and ( f1) − ( f4) hold, then problem (1.1) has a nontrivial solution.

Remark 1.1. The condition (V) was firstly introduced by Bartsch and Wang [26] to guarantee the
compactness of embeddings of the work space. The condition (V) can be replaced by one of the
following conditions:
(V1): V(x) ∈ C(R3), meas{x ∈ R3 : V(x) ≤ M} < ∞ for any M > 0;
(V2): V(x) ∈ C(R3), V(x) is coercive, i.e., lim

|x|→∞
V(x) = ∞.

Remark 1.2. Even though the condition (V) is critical to the proof of the compactness of the
minimizing sequence for the energy functional, the existence result can also be obtained when V is a
periodic potential because of the concentration-compactness principle.

Suppose that problem (1.1) has a periodic potential V and V satisfies
(V

′

): V(x) ∈ C(R3) is 1-periodic in xi for 1 ≤ i ≤ 3, V0 := inf
x∈R3

V(x) > 0,

and f (x, t) satisfies
( f ′1): f (x, t) ∈ C(R3 × R,R), f (x, t) is 1-periodic in xi for i = 1, 2, 3 and | f (x, t)| ≤ C2

(
1 + |t|p−1

)
for

some C2 > 0 and p ∈ (4, 12).
Our second main result is

Theorem 1.2. Suppose (V
′

), ( f ′1) and ( f2) − ( f4) hold. Then equation (1.1) has a nontrivial solution.

In the last part of our paper, we are absorbed in the following modified Kirchhoff-type equations
with general nonlinearity:

−
(
a + b

∫
R3 |∇u|2dx

)
∆u − u∆u2 + V(x)u = f (u), in R3,

u ∈ Ẽ, u > 0, in R3,

(1.8)

where a > 0, b ≥ 0, Ẽ is defined at the beginning of Section 5 and V(x) satisfies:

(V∗1): V ∈ C1(R3,R) and there exists a positive constant A < a such that

|(∇V(x), x)| 6
A

2|x|2
for all x ∈ R3\{0},
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where(·, ·) is the usual inner product in R3;
(V∗2): there exists a positive constant V∞ such that for all x ∈ R3,

0 < V(x) 6 lim inf
|y|→+∞

V(y) := V∞ < +∞.

Moreover, we assume that the function f (s) ∈ C1 (R+,R) verifies:
( f ∗1 ): f (s) = o(s) as s→ 0+;
( f ∗2 ): lim

s→+∞

f ′(s)
s10 = 0;

( f ∗3 ): lim
s→+∞

f (s)
s = +∞;

( f ∗4 ): f (s)
s is strictly increasing in (0,+∞).

Since we are only interested in positive solutions, we define f (s) ≡ 0 for s ≤ 0.

Remark 1.3. There are a number of functions which satisfy (V∗1) − (V∗2). For example, V(x) = V∞ −
A

8(1+|x|2) , where 0 < A < min{2a, 8V∞} is a constant. Moreover, by Lemma 5.1 mentioned later, we know
that | f (s)| ≤ ε(|s| + |s|11) + Cε|s|p−1 for every ε > 0 and p ∈ (2, 12).

The last main result is given below:

Theorem 1.3. If (V∗1)−(V∗2) and ( f ∗1 )−( f ∗4 ) hold, then problem (1.8) has a positive ground state solution.

In order to prove Theorem 1.3, we need to overcome several difficulties. First, since the
Ambrosetti-Rabinowitz condition or 4-superlinearity does not hold, for 2 < p < 12, it is difficult to
get the boundedness of any (PS ) sequence even if a (PS ) sequence has been obtained. To overcome
this difficulty, inspired by [27, 28], we use an indirect approach developed by Jeanjean. Second, the
usual Nehari manifold is not suitable because it is difficult to prove the boundedness of the
minimizing sequence. So we follow [29] to take the minimum on a new manifold, which is obtained
by combining the Nehari manifold and the corresponding Pohozaev type identity. Third, since the
Sobolev embedding H1

V(R3) ↪→ Lq(R3) for q ∈ [2, 2∗) is not compact, it seems to be hard to get a
critical point of the corresponding functional from the bounded (PS ) sequence. To solve this
difficulty, we need to establish a version of global compactness lemma [10].

Remark 1.4. In Theorem 1.3, we especially give the existence result for the case where p ∈ (2, 3],
which has few results for this modified Kirchhoff problems and can be viewed as a partial extension of
a main result in [10, 30], which dealt with the cases of p ∈ (3, 6) and p ∈ (4, 2 × 2∗), respectively.

This paper is organized as follows. In Section 2, we describe the related mathematical tools.
Theorem 1.1 and Theorem 1.2 are proved in Section 3 and in Section 4, respectively. In Section 5 we
give the proof of Theorem 1.3.

In the whole paper, Ci, Cε and C′ε always express distinct constants.

2. Preliminaries

Let Lp(R3) be the usual Lebesgue space with the norm ‖u‖p =
(∫
R3 |u|pdx

) 1
p . And H1(R3) is the

completion of C∞0 (R3) with respect to the norm ‖u‖H =
(∫
R3

(
|∇u|2 + u2

)
dx

)1/2
. Moreover, D1,2(R3) is

the completion of C∞0 (R3) with the norm ‖u‖D1,2 =
(∫
R3 |∇u|2dx

)1/2
.
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In order to deal with the perturbation functional Iλ (see Eq (2.3)), the work space E is defined by

E = W1,4(R3) ∩ H1
V(R3),

where

H1
V(R3) :=

{
u ∈ H1(R3) :

∫
R3

V(x)u2dx < +∞

}
endowed with the norm

‖u‖HV =

(∫
R3

(
|∇u|2 + V(x)u2

)
dx

)1/2

and W1,4(R3) endowed with the norm

‖u‖W =

(∫
R3

(|∇u|4 + u4)dx
)1/4

.

Moreover, when V(x) ≡ 1, we define

‖u‖H =

(∫
R3

(
|∇u|2 + u2

)
dx

)1/2

.

The norm of E is denoted by
‖u‖ =

(
‖u‖2W + ‖u‖2HV

)1/2
.

Notice that the embedding from H1
V(R3) into L2(R3) is compact ( [26]). Thus, by applying the

interpolation inequality, we get that the embedding from E into Ls(R3) for 2 ≤ s < 12 is compact.
A function u ∈ E is called a weak solution of problem (1.1), if for all ϕ ∈ E, there holds(

a + b
∫
R3
|∇u|2dx

) ∫
R3
∇u∇ϕdx + 2

∫
R3

(|∇u|2uϕ + u2∇u∇ϕ)dx

+

∫
R3

V(x)uϕdx −
∫
R3

f (x, u)ϕdx = 0,
(2.1)

which is formally associated to the energy functional given by

I(u) =
a
2

∫
R3
|∇u|2dx +

b
4

( ∫
R3
|∇u|2dx

)2
+

1
2

∫
R3

V(x)u2dx +

∫
R3

u2|∇u|2dx −
∫
R3

F(x, u)dx, (2.2)

for u ∈ E, where F(x, u) =
∫ u

0
f (x, s)ds.

Remind that
∫
R3 u2|∇u|2dx is not convex and well-defined in H1

V(R3), we need to take a perturbation
functional of (2.2) given by

Iλ(u) =
λ

4

∫
R3

(
|∇u|4 + u4

)
dx + I(u). (2.3)

From condition (V), (1.3) and (1.4), it is normal to verify that Iλ ∈ C1(E,R) and

〈I′λ(u), ϕ〉 =λ

∫
R3

(
|∇u|2∇u∇ϕ + u3ϕ

)
dx +

(
a + b

∫
R3
|∇u|2dx

) ∫
R3
∇u∇ϕdx

+ 2
∫
R3

(|∇u|2uϕ + u2∇u∇ϕ)dx +

∫
R3

V(x)uϕdx −
∫
R3

f (x, u)ϕdx, for all ϕ ∈ E.
(2.4)
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3. Proof of Theorem 1.1

First of all, let us briefly describe the proof of Theorem 1.1. We first discuss the properties of the
perturbed family of functionals Iλ on the Nehari manifold

Nλ =
{
u ∈ E \ {0} : 〈I′λ(u), u〉 = 0

}
.

Then we prove that Iλ(uλ) = infNλ
Iλ is achieved. Moreover, since the Nehari manifold Nλ is not a

C1-manifold, we use the general Nehari theory in [31] to prove that the minimizer uλ is a critical point
of Iλ. Finally, solutions of problem (1.1) can be obtained as limits of critical points of Iλ.

Lemma 3.1. Assume (V) and ( f1) − ( f4) hold. Then, for λ ∈ (0, 1], we get the following results:
(1) For u ∈ E \ {0}, there exists a unique tu = t(u) > 0 such that m(u) := tuu ∈ Nλ and

Iλ(m(u)) = max
t∈R+

Iλ(tu);

(2) For all u ∈ Nλ, there exists α0 > 0 such that ‖u‖W ≥ α0;
(3) There exists ρ > 0 such that c := inf

Nλ

Iλ ≥ inf
S ρ

Iλ > 0, where S ρ := {u ∈ E : ‖u‖ = ρ};

(4) If V ⊂ E \ {0} is a compact subset, there exists R > 0 such that Iλ ≤ 0 on W \ BR(0), where
W = {R+u : u ∈ V}.

Proof. (1) For any u ∈ E \ {0}, we define a function hu(t) = Iλ(tu) for t ∈ (0,∞), i.e.,

hu(t) =
λt4

4

∫
R3

(
|∇u|4 + u4

)
dx +

t2

2

∫
R3

(
a|∇u|2 + V(x)u2)dx +

bt4

4

( ∫
R3
|∇u|2dx

)2

+ t4
∫
R3

u2|∇u|2dx −
∫
R3

F(x, tu)dx.
(3.1)

And since the Sobolev embedding E ↪→ Ls(R3) for s ∈ [2, 12] is continuous, combined with (1.3), for
t > 0 and small ε > 0 one has

hu(t) ≥
λt4

4
‖u‖4W + min{a, 1}

t2

2
‖u‖2HV

+ t4
∫
R3

u2|∇u|2dx +
bt4

4

( ∫
R3
|∇u|2dx

)2

−
εt2

2

∫
R3
|u|2dx −

Cεtp

p

∫
R3
|u|pdx

≥
λt4

4
‖u‖4W + min{a, 1}

t2

4
‖u‖2HV

−C3tp‖u‖p
p,

where the constant C3 is independent of t. Since u , 0 and p > 4, then for t > 0 small enough, we
deduce hu(t) > 0.

On the other hand, noticing that |tu(x)| → ∞ if u(x) , 0 and t → ∞, by ( f3) and Fatou’s lemma, we
get

hu(t) ≤
λt4

4
‖u‖4W + max{a, 1}

t2

2
‖u‖2HV

+ C4t4‖u‖4W + C5t4‖u‖4HV

− t4
∫
R3

F(x, tu)
|tu|4

u4dx→ −∞, as t → ∞.
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Hence, hu(t) has a positive maximum and there exists a tu = t(u) > 0 such that h′u(tu) = 0 and tuu ∈ Nλ.
Next, we prove the uniqueness of tu. To this aim, we may suppose that there exists t∗u > 0 with

t∗u , tu such that h′u(t∗u) = 0. Then we obtain

λ‖u‖4W +
1

(t∗u)2

(
a
∫
R3
|∇u|2dx +

∫
R3

V(x)u2dx
)

+ b
( ∫
R3
|∇u|2dx

)2
+ 4

∫
R3

u2|∇u|2dx =

∫
R3

f (x, t∗uu)
(t∗uu)3 u4dx.

This together with

λ‖u‖4W +
1

(tu)2

(
a
∫
R3
|∇u|2dx +

∫
R3

V(x)u2dx
)

+ b
( ∫
R3
|∇u|2dx

)2
+ 4

∫
R3

u2|∇u|2dx =

∫
R3

f (x, tuu)
(tuu)3 u4dx

implies that(
1

(t∗u)2 −
1

(tu)2

) (
a
∫
R3
|∇u|2dx +

∫
R3

V(x)u2dx
)

=

∫
R3

(
f (x, t∗uu)
(t∗uu)3 −

f (x, tuu)
(tuu)3

)
u4dx,

which contradicts with ( f4).
(2) By u ∈ Nλ and (1.3), for ε > 0 small enough, one has

0 ≥ λ‖u‖4W + min{a, 1}‖u‖2HV
−
ε

2

∫
R3
|u|2dx −

Cε

p

∫
R3
|u|pdx

≥ λ‖u‖4W +
1
2

min{a, 1}‖u‖2HV
−C6‖u‖

p
W

≥ λ‖u‖4W −C6‖u‖
p
W ,

which implies that there exists a constant α0 > 0 such that ‖u‖W ≥ α0 > 0 for all u ∈ Nλ.
(3) For some ρ > 0 and u ∈ E \ {0} with ‖u‖ ≤ ρ, there exists C > 0 such that∫

R3
|u|2|∇u|2dx ≤ Cρ4.

By (V), ( f1), ( f2) and the Sobolev inequality, without loss of generality, we take ρ < 1 small enough
and ε = V0

4 min{a, 1}, then

Iλ(u) ≥
λ

4
‖u‖4W +

1
2

min{a, 1}‖u‖2HV
+

b
4

( ∫
R3
|∇u|2dx

)2
+

∫
R3

u2|∇u|2dx

− ε

∫
R3
|u|2dx −Cε

∫
R3
|u|12dx

≥
λ

4
‖u‖4W +

1
4

min{a, 1}‖u‖2HV
+

∫
R3

u2|∇u|2dx −C7

(∫
R3

u2|∇u|2dx
)3

≥
λ

4
‖u‖4W +

1
4

min{a, 1}‖u‖2HV

≥
1
8

min{λ, a, 1}‖u‖4,

(3.2)

whenever ‖u‖ ≤ ρ. For any u ∈ Nλ, Lemma 3.1-(1) implies that

Iλ(u) = max
t∈R+

Iλ(tu). (3.3)
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Take s > 0 with su ∈ S ρ. It follows from (3.2) and (3.3) that

Iλ(u) ≥ Iλ(su) ≥ inf
v∈S ρ

Iλ(v) ≥
1
8

min{λ, a, 1}ρ4 > 0.

Therefore
c := inf

Nλ

Iλ ≥ inf
S ρ

Iλ > 0.

(4) Arguing by contradiction, then there must exist un ∈ V and vn = tnun such that Iλ(vn) ≥ 0 for all
n and tn → ∞ as n → ∞. Without loss of generality, we may assume that ‖un‖ = 1 for every un ∈ V.
Up to a subsequence, there exists u ∈ E with ‖u‖ = 1 such that un → u strongly in E. Since |vn(x)| → ∞
if u(x) , 0, by ( f3) and Fatou’s lemma, then∫

R3

F(x, vn)
v4

n
u4

ndx→ ∞, as n→ ∞,

which implies that

0 ≤
Iλ(vn)
‖vn‖

4

=
1
‖vn‖

4

(
λ

4
‖vn‖

4
W +

a
2

∫
R3
|∇vn|

2dx +
1
2

∫
R3

V(x)v2
ndx +

b
4

( ∫
R3
|∇vn|

2dx
)2

+

∫
R3

v2
n|∇vn|

2dx
)

−

∫
R3

F(x, vn)
v4

n
u4

ndx

≤C8 −

∫
R3

F(x, vn)
v4

n
u4

ndx→ −∞ as n→ ∞.

This is a contradiction. �

Now we are ready to study the minimizing sequence for Iλ on Nλ.

Lemma 3.2. For fixed λ ∈ (0, 1], let {un} ⊂ Nλ be a minimizing sequence for Iλ. Then {un} is bounded
in E. Moreover, passing to a subsequence there exists u ∈ E(u , 0) such that un → u in E.

Proof. Let {un} ⊂ Nλ be a minimizing sequence of Iλ, i.e.,

Iλ(un)→ c := inf
Nλ

Iλ and 〈I′λ(un), un〉 = 0. (3.4)

From (3.4), we have

c + o(1) = Iλ(un) −
1
4
〈I′λ(un), un〉

=
a
4

∫
R3
|∇un|

2dx +
1
4

∫
R3

V(x)u2
ndx +

∫
R3

(
1
4

f (x, un)un − F(x, un)
)

dx

≥
1
4

min{a, 1}‖un‖
2
HV
.
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Thus, we deduce {‖un‖HV } is bounded.
Next, we need to prove that {‖un‖W} is also bounded. By contradiction, if {un} is unbounded in

W1,4(R3), setting ωn = ‖un‖
−1
W un, we have

ωn ⇀ ω weakly in W1,4(R3), ωn → ω strongly in Lp(R3), ωn → ω a.e. on x ∈ R3.

The proof is divided into two cases as follows:

Case 1: ω = 0. From Lemma 3.1-(1), we see

Iλ(un) = max
t∈R+

Iλ(tun).

For any m > 0 and setting vn = (8m)1/4ωn, since vn → 0 strongly in Lp(R3), we deduce from (1.3) that

lim
n→∞

∫
R3

F(x, vn)dx = 0. (3.5)

So for n large enough, (8m)1/4‖un‖
−1
W ∈ (0, 1), and

Iλ(un) ≥Iλ(vn)

=2λm + (2m)1/2 min{a, 1}
‖un‖

2
HV

‖un‖
2
W

+ 2bm

( ∫
R3 |∇un|

2dx
)2

‖un‖
4
W

+ 8m

∫
R3 u2

n|∇un|
2dx

‖un‖
4
W

−

∫
R3

F(x, vn)dx

≥λm + o(1).

That is, for fixed λ > 0, from the arbitrariness of m, we get Iλ(un) → ∞. This contradicts with
Iλ(un)→ c > 0.

Case 2: ω , 0. Due to ω , 0, the set Θ = {x ∈ R3 : ω(x) , 0} has a positive Lebesgue measure.
For x ∈ Θ, we have |un(x)| → ∞. This together with condition ( f3), implies

F(x, un(x))
|un(x)|4

|ωn(x)|4 → ∞ as n→ ∞.

It follows from Iλ(un)→ c, ( f3), Sobolev inequality and Fatou’s Lemma that

c + o(1)
‖un‖

4
W

=
λ

4
+

1
2‖un‖

4
W

(
a
∫
R3
|∇un|

2dx +

∫
R3

V(x)u2
ndx

)
+

b
4‖un‖

4
W

(∫
R3
|∇un|

2dx
)2

+
1
‖un‖

4
W

∫
R3

u2
n|∇un|

2dx −
1
‖un‖

4
W

∫
R3

F(x, un)dx

≤
λ

4
+ C9 −

(∫
ω,0

+

∫
ω=0

)
F(x, un(x))
|un(x)|4

|ωn(x)|4dx

≤
λ

4
+ C9 −

∫
ω,0

F(x, un(x))
|un(x)|4

|ωn(x)|4dx→ −∞, as n→ ∞,

where C9 is a constant independent on n. This is impossible.
In both cases, we all get a contradiction. Therefore, {un} is bounded in W1,4(R3). It follows that {un}
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is bounded in E, so un ⇀ u weakly in E after passing to a subsequence. If u = 0, for n large enough
and un ∈ Nλ, we see as in (3.5) that

c + 1 ≥ Iλ(un) ≥ Iλ(sun) ≥ C10s4 −

∫
R3

F(x, sun)dx→ C10s4

for all s > 0, where C10 = λ
4

(
inf

u∈Nλ

‖u‖W

)4

> 0. It is a contradiction. Hence u , 0.

Since the embedding H1
V(R3) ↪→ Lp(R3) is compact for each p ∈ [2, 12), similar to Lemma 2.2

in [30], it is well known that un → u strongly in E. �

Lemma 3.3. For fixed λ ∈ (0, 1], there exists u ∈ Nλ such that Iλ(u) = inf
Nλ

Iλ.

Proof. Let {un} ⊂ Nλ be a minimizing sequence of Iλ, then {un} is bounded in E by lemma 3.2. Thus,
up to a subsequence there exists u ∈ E(u , 0) such that un ⇀ u in E and I′λ(u) = 0. It follows that
u ∈ Nλ. Thus, Iλ(u) ≥ c > 0. In order to complete the proof, it suffices to show that Iλ(u) ≤ c. Indeed,
from (1.4), Fatou’s lemma and the weakly lower semi-continuity of norm, we have

c + o(1) = Iλ(un) −
1
4
〈I′λ(un), un〉

≥
a
4

∫
R3
|∇un|

2dx +
1
4

∫
R3

V(x)|un|
2dx +

∫
R3

(
1
4

f (x, un)un − F(x, un)
)

dx

≥
a
4

∫
R3
|∇u|2dx +

1
4

∫
R3

V(x)|u|2dx +

∫
R3

(
1
4

f (x, u)u − F(x, u)
)

dx + o(1)

= Iλ(u) + o(1).

The proof is completed. �

Let S be the unit sphere in E. Define a mapping m(ω) : S → Nλ and a functional Jλ(ω) : S → R
by

m(ω) = tωω and Jλ(ω) := Iλ(m(ω)),

where tω is as shown in Lemma 3.1-(1). As Proposition 2.9 and Corollary 2.10 in [31], the following
proposition is a consequence of Lemma 3.1 and the above observation.

Proposition 3.1. Assume (V) and ( f1) − ( f4) hold. For fixed λ ∈ (0, 1], then
(1) Jλ ∈ C1(S ,R), and

〈J′λ(ω), z〉 = ‖m(ω)‖〈I′λ(m(ω)), z〉

for any z ∈ TωS = {v ∈ E : 〈v, ω〉 = 0,∀ω ∈ S };
(2) {ωn} is a Palais-Smale sequence for Jλ if and only if {m(ωn)} is a Palais-Smale sequence for Iλ;
(3) ω ∈ S is a critical point of Jλ if and only if m(ω) ∈ N is a critical point of Iλ. Moreover, the
corresponding critical values of Jλ, Iλ coincide and c = inf

S
Jλ = inf

Nλ

Iλ.

Finally, for the proof of Theorem 1.1, we need to introduce the following result.
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Lemma 3.4. Assume the conditions (V) and ( f1)− ( f4) hold. Let {λn} ⊂ (0, 1] be such that λn → 0. Let
{un} ⊂ E be a sequence of critical points of Iλn with Iλn (un) ≤ C for some constant C independent of n.
Then, passing to a subsequence, we have un → ũ in H1

V(R3), un∇un → ũ∇ũ in L2(R3), λn

∫
R3

(
|∇un|

4 +

u4
n

)
dx→ 0, Iλn (un)→ I (̃u) and ũ is a critical point of I.

Proof. First, similar to Lemma 3.2, we can get {un} is bounded in E. Then, this together with Theorem
3.1 in [30] can complete the proof. �

Proof of Theorem 1.1 Let {ωn} ⊂ S be a minimizing sequence for Jλ. As is mentioned above, we
may assume J′λ(ωn)→ 0 and Jλ(ωn)→ c by Ekeland’s variational principle. From Proposition 3.1-(2),
for un = m(ωn) we have Iλ(un)→ c and I′λ(un)→ 0. Therefore, {un} is a minimizing sequence for Iλ on
Nλ and from Lemma 3.3 there exists a minimizer u of Iλ|Nλ

. Then m−1(u) ∈ S is a minimizer of Jλ and
a critical point of Jλ, thus by Proposition 3.1-(3) u is a critical point of Iλ, as required.

Let λi ∈ (0, 1] with λi → 0 as i→ ∞. Let {ui} ⊂ E be a sequence of critical points of Iλi with Iλi(ui) =

cλi ≤ C. According to Lemma 3.4, there exists a critical point ũ of I such that ũ ∈ H1
V(R3) ∩ L∞(R3).

In the following, we will show that ũ is a non-trivial critical point of I. Considering 〈I′λi
(ui), ui〉 = 0, it

follows from Sobolev inequality, interpolation inequality, and Young’s inequality that

0 = λi‖ui‖
4
W + a

∫
R3
|∇ui|

2dx +

∫
R3

V(x)u2
i dx + b

(∫
R3
|∇ui|

2dx
)2

+ 4
∫
R3

u2
i |∇ui|

2dx −
∫
R3

f (x, ui)uidx

≥ min{a, 1}‖ui‖
2
HV

+ 4
∫
R3

u2
i |∇ui|

2dx −
ε

2

∫
R3
|ui|

2dx −
Cε

p

∫
R3
|ui|

pdx

≥
1
2

min{a, 1}‖ui‖
2
HV

+ C11‖ui‖
4
p −C12‖ui‖

p
p

≥ C11‖ui‖
4
p −C12‖ui‖

p
p,

which implies ‖ui‖p ≥ (C11
C12

)1/(p−4). Recall that ui → ũ strongly in Lp(R3) for 4 ≤ p < 12. Therefore, we
see that ũ , 0.

4. Proof of Theorem 1.2

The proof of Theorem 1.2 is similar to that made in Section 3. From Lemmas 3.1 and 3.2, it is
clear that the functional Iλ on Nλ has a bounded minimizing sequence {un}. But we cannot ensure this
sequence to be convergent in E∗ := W1,4(R3) ∩ H1(R3), which endowed with the norm

‖u‖E∗ =
(
‖u‖2W + ‖u‖2H

)1/2
.

Thus, we need to study some compact properties of the minimizing sequence for Iλ on the Nehari
manifold N∗λ , where

N∗λ = {u ∈ E∗ \ {0} : 〈I′λ(u), u〉 = 0}.

Firstly, we have the following result due to P.L. Lions ( [32]):

Lemma 4.1. Let r > 0. If {un} is bounded in E∗ and

lim
n→∞

sup
y∈R3

∫
Br(y)
|un|

2dx = 0,

we have un → 0 strongly in Ls(R3) for any s ∈ (2, 12).
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Next, we are going to discuss the minimizing sequence for Iλ on N∗λ .

Lemma 4.2. Let {un} ⊂ N
∗
λ be a minimizing sequence for Iλ. Then {un} is bounded in E∗. Moreover,

after a suitable Z3-translation, passing to a subsequence there exists u ∈ N∗λ such that un ⇀ u and
Iλ(u) = inf

N∗λ

Iλ.

Proof. Set c = inf
N∗λ

Iλ. Remind that {un} is bounded by Lemma 3.2, un ⇀ u weakly in E∗ after passing

to a subsequence. If

lim
n→∞

sup
y∈R3

∫
Br(y)
|un|

2dx = 0,

then un → 0 strongly in Ls(R3) for any s ∈ (2, 12) due to Lemma 4.1. Then, by (1.3) it is easy to see
that ∫

R3
f (x, un)undx = o(‖un‖W).

Therefore,

o (‖un‖E∗) = 〈I′λ(un), un〉

= λ‖un‖
4
W + a

∫
R3
|∇un|

2dx +

∫
R3

V(x)u2
ndx + b

(∫
R3
|∇un|

2dx
)2

+ 4
∫
R3

u2
n|∇un|

2dx −
∫
R3

f (x, un)undx

≥ λ‖un‖
4
W − o(‖un‖W),

which implies ‖un‖W → 0. This contradicts with Lemma 3.1-(2). Hence, there exist r, δ > 0 and a
sequence {yn} ⊂ R

3 such that

lim
n→∞

∫
Br(yn)
|un|

2dx ≥ δ > 0,

where we may assume yn ∈ Z
3. Due to the invariance of Iλ on N∗λ under translations, {yn} is bounded

in Z3. Hence, passing to a subsequence we imply un ⇀ u , 0 weakly in E∗ and I′λ(u) = 0. It follows
that u ∈ N∗λ , and then Iλ(u) ≥ c > 0.

From (1.4), Fatou’s lemma and the weakly lower semi-continuity of norm, we have

c + o(1) = Iλ(un) −
1
4
〈I′λ(un), un〉

≥
1
4

min{a, 1}‖un‖
2
HV

+

∫
R3

(
1
4

f (x, un)un − F(x, un)
)

dx

≥
1
4

min{a, 1}‖u‖2HV
+

∫
R3

(
1
4

f (x, u)u − F(x, u)
)

dx + o(1)

= Iλ(u) + o(1),

which implies Iλ(u) ≤ c. This completes the proof. �

Proof of Theorem 1.2 Combining Lemma 4.2 and the methods in proving Theorem 1.1, we can
prove that the conclusion of Theorem 1.2 is true.
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5. Proof of Theorem 1.3

In this section, we firstly need to consider the associated “limit problem” of (1.8):
−

(
a + b

∫
R3 |∇u|2dx

)
∆u − u∆u2 + V∞u = f (u), in R3,

u ∈ Ẽ, u > 0, in R3,

(5.1)

where a > 0, b ≥ 0, V∞ is defined as shown in (V∗2).
Since problem (5.1) involves the quasilinear term u∆(u2) and the nonlocal term, its natural energy

functional is not well defined in H1
V(R3). To solve this difficulty, we set

Ẽ =

{
u ∈ H1

V(R3) :
∫
R3

u2|∇u|2dx < +∞

}
=

{
u : u2 ∈ H1

V(R3)
}
.

In addition, for convenience, we make use of the following notations:
• H1

r (R3) :=
{
u : u ∈ Ẽ, u(x) = u(|x|)

}
;

• P :=
{
u ∈ Ẽ|u ≥ 0

}
denotes the positive cone of Ẽ and P+ = P\{0};

• u+ := max{u, 0} and u− = min{u, 0};
• For any u ∈ Ẽ\{0}, ut is defined as

ut(x) =

 0, t = 0,
√

tu
(

x
t

)
, t > 0.

(5.2)

Now we give some preliminary results as follows.

Lemma 5.1. Assume f ∈ C1(R+,R) satisfies ( f ∗1 ) − ( f ∗4 ), then
(i) For every ε > 0 and p ∈ (2, 12), there is Cε > 0 such that

| f (s)| ≤ ε(|s| + |s|11) + Cε|s|p−1;

(ii) F(s) > 0, s f (s) > 2F(s) and s f ′(s) > f (s) if s > 0.

Proof. It is easy to get the results by direct calculation, so we omit the proof. �

Lemma 5.2. (Pohozaev identity, [33]) Assume that ( f ∗1 ) − ( f ∗4 ) hold. If u ∈ Ẽ is a weak solution to
equation (5.1), then the following Pohozaev identity holds:

P(u) :=
a
2

∫
R3
|∇u|2dx +

3
2

∫
R3

V∞|u|2dx +
b
2

(∫
R3
|∇u|2dx

)2

+

∫
R3

u2|∇u|2dx − 3
∫
R3

F(u)dx = 0. (5.3)

Proof. The proof is standard, so we omit it. �

Lemma 5.3. Assume that ( f ∗3 ) holds. Then the functional

IV∞(u) :=
a
2

∫
R3
|∇u|2dx +

1
2

∫
R3

V∞|u|2dx +
b
4

(∫
R3
|∇u|2dx

)2

+

∫
R3

u2|∇u|2dx −
∫
R3

F(u)dx

is not bounded from below.
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Proof. For any u ∈ P+, we obtain

IV∞(ut) =
a
2

t2
∫
R3
|∇u|2dx +

1
2

t4
∫
R3

V∞|u|2dx +
b
4

t4
(∫
R3
|∇u|2dx

)2

+ t3
∫
R3

u2|∇u|2dx − t4
∫
R3

F(
√

tu)

(
√

tu)2
u2dx.

(5.4)

By ( f ∗3 ), it is clear that IV∞(ut)→ −∞ as t → +∞. �

Lemma 5.4. Let C13,C14,C15 be positive constants and u ∈ P+. If f ∈ C1 satisfies ( f ∗1 )− ( f ∗4 ), then the
function

η(t) = C13t2 + C14t3 + C15t4 − t3
∫
R3

F(
√

tu)dx f or t ≥ 0

has a unique positive critical point which corresponds to its maximum.

Proof. The conclusion is easily obtained by elementary calculation. �

Now set

M =

{
u ∈ Ẽ\{0}|u ∈ P+,G(u) =

1
2
〈I′V∞(u), u〉 + P(u) = 0

}
,

where P(u) is given by (5.3). Then, by direct calculation we have

G(u) =a
∫
R3
|∇u|2dx + 2

∫
R3

V∞|u|2dx + b
(∫
R3
|∇u|2dx

)2

+ 3
∫
R3

u2|∇u|2dx

− 3
∫
R3

F(u)dx −
1
2

∫
R3

f (u)udx

=
dIV∞(ut)

dt

∣∣∣∣
t=1
.

Lemma 5.5. For any u ∈ P+, there exists a unique t̃ > 0 such that ut̃ ∈ M. Moreover, IV∞(ut̃) =

max
t>0

IV∞(ut).

Proof. For any u ∈ P+ and t > 0, let γ(t) := IV∞(ut). By Lemma 5.4, γ(t) has a unique critical point t̃ > 0
corresponding to its maximum, i.e., γ(̃t) = max

t>0
γ(t) and γ′(̃t) = 0. It follows that G(ut̃) = t̃γ′(̃t) = 0.

Thus, ut̃ ∈ M. �

We define

z1 = inf
η∈Γ

max
t∈[0,1]

IV∞(η(t)), z2 = inf
u∈P+

max
t>0

IV∞(ut(x)),

and

z3 = inf
u∈M

IV∞(u), z4 = inf
u∈H1

r (R3)∩M
IV∞(u),

where ut(x) is given by (5.2) and

Γ =
{
η ∈ C([0, 1], Ẽ)|η(0) = 0, IV∞(η(1)) ≤ 0, η(1) , 0

}
.

AIMS Mathematics Volume 6, Issue 5, 4614–4637.



4629

Lemma 5.6. z1 = z2 = z3 = z4 > 0.

Proof. We divide the proof into the following three steps:
Step 1. z3 > 0. For any u ∈ M, by Lemma 5.1-(i), the continuous embedding Ẽ ↪→ Ls(R3) for

s ∈ [2, 12) and Sobolev inequality, we get

IV∞(u) = max
t>0

IV∞(ut)

≥
a
2

t2
∫
R3
|∇u|2dx +

1
2

t4
∫
R3

V∞|u|2dx +
b
4

t4
(∫
R3
|∇u|2dx

)2

+ t3
∫
R3

u2|∇u|2dx − t3
∫
R3

F(
√

tu)dx

≥
a
2

t2
∫
R3
|∇u|2dx +

1
2

t4
∫
R3

V∞|u|2dx + t3
∫
R3

u2|∇u|2dx

−
ε

2
t4

∫
R3
|u|2dx −

ε

12
t9

∫
R3
|u|12dx −Cεt

6+p
2

∫
R3
|u|pdx,

where Cε > 0 is a constant depending on ε. Since u , 0 and p > 2, then for ε, t > 0 small enough, we
deduce IV∞(u) > 0. Furthermore, we get z3 > 0.

Step 2. z1 = z2 = z3. The proof is similar to the argument of Nehari manifold method in [34]. One
can make obvious modification by Lemma 5.4 and 5.5.

Step 3. z3 = z4. Since equation (5.1) is autonomous, the proof is standard by Schwartz symmetric
arrangement. �

In the following discussion, for convenience, we set z = z1(= z2 = z3 = z4).

Lemma 5.7. If z is attained at some u ∈ M, then u is a critical point of IV∞ in Ẽ.

Proof. Since this proof is analogous to the proof of Lemma 2.7 in [11], we omit it. �

Lemma 5.8. Assume ( f ∗1 ) − ( f ∗4 ) hold. Then problem (5.1) has a positive ground state solution.

Proof. From Lemma 5.6 and Lemma 5.7, we only need to prove that z is achieved for some u ∈
H1

r (R3) ∩M.
Letting {un} ⊂ H1

r (R3) ∩M be a minimizing sequence of IV∞ , then we have

1 + z > IV∞ (un) = IV∞ (un) −
1
4

G (un)

=
a
4

∫
R3
|∇un|

2 dx +
1
4

∫
R3

u2
n|∇un|

2dx −
1
8

∫
R3

[
2F (un) − f (un) un

]
dx,

for n large enough. Therefore,
{
‖∇un‖

2
2

}
and

{
‖∇(u2

n)‖22
}

are bounded. In the following we prove
{
‖un‖

2
2

}
is also bounded. By un ∈ M and Lemma 5.1-(ii) we obtain

2
∫
R3

V∞ |un|
2 dx

=3
∫
R3

F (un) dx +
1
2

∫
R3

f (un) undx − a
∫
R3
|∇un|

2 dx − b
(∫
R3
|∇un|

2 dx
)2

− 3
∫
R3

u2
n|∇un|

2dx

≤ε
(
‖un‖

2
2 + ‖un‖

12
12

)
+ Cε‖un‖

q
q + C16,

AIMS Mathematics Volume 6, Issue 5, 4614–4637.



4630

where q ∈ (2, 12). According to the interpolation and Sobolev inequalities, we have

‖un‖
q
q ≤ ‖un‖

qθ
2 ‖un‖

q(1−θ)
12 ≤ C17‖un‖

qθ
2 ‖∇(u2

n)‖
q(1−θ)

2
2 ,

where 1
q = θ

2 + 1−θ
12 . Noting qθ < 2, by Young’s inequality, we derive for some C′ε > 0

Cε‖un‖
q
q ≤ ε‖un‖

2
2 + C′ε‖∇(u2

n)‖
q(1−θ)
2−qθ

2 .

Hence we obtain
{
‖un‖

2
2

}
is also bounded if we pick ε = 1

2V∞. Therefore, {un} is bounded in Ẽ.
Recall the compact embedding H1

r (R3) ↪→ Lp(R3) for p ∈ (2, 12). Thus, going if necessary to a
subsequence, we may assume that there exists a function u ∈ Ẽ such that

un → u in H1
r (R3),

un → u in Ls(R3), ∀s ∈ (2, 12),
un → u a.e. on R3.

It is easy to check u+ , 0 and G(u) ≤ 0. By Lemma 5.5, ut0 ∈ M for some 0 < t0 6 1. If t0 ∈ (0, 1), one
can easily verify IV∞

(
ut0

)
< z. Hence t0 = 1 and z is attained at some u ∈ M.

The strong maximum principle and standard argument [35] imply that u(x) is positive for all x ∈ R3.
Therefore, u is a positive ground state solution of problem (5.1). �

So far, we have proved that the associated “limit problem” of (1.8) has a ground state solution. Next,
on this basis, we are going to prove Theorem 1.3.

Since V is not a constant, that is to say, problem (1.8) is no longer autonomous, the method to
prove Lemma 5.8 cannot be applied. Moreover, due to the lack of the variant Ambrosetti-Rabinowitz
condition, we could not obtain the boundedness of any (PS )c sequence. In order to overcome this
difficulty, we make use of the monotone method due to L. Jeanjean.

Proposition 5.1. ( [36], Theorem 1.1) Let
(
Ẽ, ‖ · ‖HV

)
be a Banach space and T ⊂ R+ be an interval.

Consider a family of C1 functionals on Ẽ of the form

Φλ(u) = A(u) − λB(u), ∀λ ∈ T,

with B(u) > 0 and either A(u) → +∞ or B(u) → +∞ as ‖u‖HV → +∞. Assume that there are two
points v1, v2 ∈ Ẽ such that

cλ = inf
γ∈Γ

max
t∈[0,1]

Φλ(γ(t)) > max {Φλ (v1) ,Φλ (v2)} , ∀λ ∈ T,

where
Γ =

{
γ ∈ C([0, 1], Ẽ)|γ(0) = v1, γ(1) = v2

}
.

Then, for almost every λ ∈ T, there is a bounded (PS )cλ sequence in Ẽ.

Letting T = [δ, 1], where δ ∈ (0, 1) is a positive constant, we investigate a family of functionals on
Ẽ with the following form

IV,λ(u) =
1
2

∫
R3

(
a|∇u|2 + V(x)|u|2

)
dx +

b
4

(∫
R3
|∇u|2dx

)2

+

∫
R3

u2|∇u|2dx − λ
∫
R3

F(u)dx, ∀λ ∈ [δ, 1].
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Then let IV,λ(u) = A(u) − λB(u), where

A(u) =
1
2

∫
R3

(
a|∇u|2 + V(x)|u|2

)
dx +

b
4

(∫
R3
|∇u|2dx

)2

+

∫
R3

u2|∇u|2dx,

and
B(u) =

∫
R3

F(u)dx.

It is easy to see that A(u)→ ∞ as ‖u‖HV → ∞ and B(u) ≥ 0.

Lemma 5.9. Under the assumptions of Theorem 1.3 we have
(i) there exists v ∈ Ẽ\{0} such that IV,λ(v) 6 0 for all λ ∈ [δ, 1];
(ii) cλ = inf

γ∈Γ
max
t∈[0,1]

IV,λ(γ(t)) > max
{
IV,λ(0), IV,λ(v)

}
for all λ ∈ [δ, 1], where

Γ =
{
γ ∈ C([0, 1], Ẽ)|γ(0) = 0, γ(1) = v

}
.

Proof. (i) For any λ ∈ [δ, 1], t > 0 and u ∈ P+, we get

IV,λ (ut) ≤ IV∞,δ (ut) =
at2

2

∫
R3
|∇u|2dx +

t4

2

∫
R3

V∞|u|2dx +
bt4

4

(∫
R3
|∇u|2dx

)2

+ t3
∫
R3

u2|∇u|2dx − δt4
∫
R3

F(
√

tu)

(
√

tu)2
u2dx.

Then by ( f ∗3 ), we infer that there exists t > 0 such that IV,λ (ut) ≤ IV∞,δ (ut) < 0.
(ii) Depending on Lemma 5.1-(i), for ε > 0 small enough and p ∈ (2, 12), there exists Cε > 0 such

that
IV,λ(u) >

1
2

min{a, 1}‖u‖2HV
+

∫
R3

u2|∇u|2dx −
∫
R3

F(u)dx

≥
1
2

min{a, 1}‖u‖2HV
+

∫
R3

u2|∇u|2dx −
∫
R3

[
ε
(
|u|2 + |u|12

)
+ Cε |u|p

]
dx

≥
1
4

min{a, 1}‖u‖2HV
−Cε

∫
R3
|u|p dx.

Then by standard argument there exists r > 0 such that

b = inf
‖u‖HV =r

IV,λ(u) > 0 = IV,λ(0) > IV,λ(v),

and hence cλ > max
{
IV,λ(0), IV,λ (ut)

}
. Then the conclusion follows with v = ut. �

Lemma 5.10. ( [36], Lemma 2.3) Under the assumptions of Proposition 5.1, the map λ → cλ is
non-increasing and left continuous.

By Lemma 5.8, we infer that for any λ ∈ [δ, 1], the “limit problem” of the following type:
−

(
a + b

∫
|∇u|2dx

)
∆u + V∞u − ∆(u2)u = λ f (u), in R3,

u ∈ Ẽ, u > 0, in R3

(5.5)
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has a positive ground state solution in Ẽ. Thus we further derive that for any λ ∈ [δ, 1], there exists

uλ ∈ Mλ :=
{
u ∈ Ẽ|u , 0,Gλ(u) = 0

}
such that uλ(x) > 0 for all x ∈ R3, I′V∞,λ (uλ) = 0 and

IV∞,λ (uλ) = mλ := inf
u∈Mλ

IV∞,λ(u), (5.6)

where

Gλ(u) =a
∫
R3
|∇u|2dx + 2

∫
R3

V∞|u|2dx + b
(∫
R3
|∇u|2dx

)2

+ 3
∫
R3

u2|∇u|2dx − 3λ
∫
R3

F(u)dx −
λ

2

∫
R3

u f (u)dx.
(5.7)

Lemma 5.11. Suppose that (V∗1) − (V∗2), ( f ∗1 ) − ( f ∗4 ) hold and V(x) . V∞. Then there exists λ̄ ∈ [δ, 1)
such that cλ < mλ for any λ ∈ [λ̄, 1].

Proof. First of all, for convenience, we set IV,λ(u) = IV,1(u), mλ = m1 and cλ = c1 when λ = 1.
And let uλ, u1 be the minimizer of IV,λ, IV,1, respectively. By Lemma 5.3, we see that there exists
K > 0 independent of λ such that IV,λ((u1)K) < 0 for all λ ∈ [δ, 1]. Moreover, It is easy to see that
IV,λ ((u1)t) is continuous on t ∈ [0,∞). Hence for any λ ∈ [δ, 1), we can choose tλ ∈ (0,K) such that
IV,λ

(
(u1)tλ

)
= max

t∈[0,K]
IV,λ ((u1)t). Note that IV,δ ((u1)t)→ −∞ as t → ∞, thus there exists K0 > 0 such that

IV,δ ((u1)t) ≤ IV,1 (u1) − 1, ∀t ≥ K0.

By the definition of tλ, one has

IV,1 (u1) ≤ IV,λ (u1) ≤ IV,λ

(
(u1)tλ

)
≤ IV,δ

(
(u1)tλ

)
, ∀λ ∈ [δ, 1].

Then the above two inequalities implies tλ < K0 for λ ∈ [δ, 1]. Let β0 = inf
λ∈[δ,1]

tλ. If β0 = 0, then by

contradiction, there exists a sequence {λn} ⊂ [δ, 1] such that λn → λ0 ∈ [δ, 1] and tλn → 0. It follows
that

0 < c1 ≤ cλn ≤ Iλn

(
(u1)tλn

)
= o(1),

which implies β0 > 0. Thus
0 < β0 ≤ tλ < K0, ∀λ ∈ [δ, 1].

Let

λ̄ := max

δ, 1 −
β4

0 min
β0≤s≤T0

∫
R3 [V∞ − V(sx)] |u1|

2 dx

2K3
0

∫
R3 F

(
K1/2

0 u1

)
dx

 .
Then δ ≤ λ̄ < 1. From the definition of λ̄ and 0 < β0 ≤ tλ < K0 for ∀λ ∈ [δ, 1], we have

mλ ≥ m1 = IV∞,1 (u1) ≥ IV∞,1

(
(u1)tλ

)
= IV,λ

(
(u1)tλ

)
− (1 − λ)t3

λ

∫
R3

F
(
t1/2
λ u1

)
dx +

t4
λ

2

∫
R3

[V∞ − V (tλx)] |u1|
2 dx

> cλ − (1 − λ)K3
0

∫
R3

F
(
K1/2

0 u1

)
dx +

β4
0

2
min

β0≤s≤T0

∫
R3

[V∞ − V(sx)] |u1|
2 dx

≥ cλ, ∀λ ∈ [λ̄, 1].
�
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Next, we will introduce the following global compactness lemma, which is used for proving that
the functional IV,λ satisfies (PS )cλ condition for all λ ∈ [λ̄, 1].

Lemma 5.12. Suppose that (V∗1) − (V∗2) and ( f ∗1 ) − ( f ∗4 ) hold. For c > 0 and λ ∈ [δ, 1], let {un} ⊂ Ẽ be
a bounded (PS )c sequence for IV,λ. Then there exists v0 ∈ Ẽ and A ∈ R such that J′V,λ (v0) = 0, where

JV,λ(u) =
a + bA2

2

∫
R3
|∇u|2dx +

1
2

∫
R3

(
V(x)|u|2 + 2|u|2|∇u|2

)
dx − λ

∫
R3

F(u)dx. (5.8)

Moreover, there exists a finite (possibly empty) set {v1, . . . , vl} ⊂ Ẽ of nontrivial solutions for

−
(
a + bA2

)
∆u + V∞u − ∆(u2)u = λ f (u), (5.9)

and
{
yk

n

}
⊂ R3 for k = 1, . . . , l such that∣∣∣yk

n

∣∣∣→ ∞, ∣∣∣yk
n − yk′

n

∣∣∣→ ∞, k , k′, n→ ∞,

c +
bA4

4
= JV,λ (v0) +

l∑
k=1

JV∞,λ (vk) ,∥∥∥∥∥∥∥un − v0 −

l∑
k=1

vk

(
· − yk

n

)∥∥∥∥∥∥∥
HV

→ 0,

A2 = ‖∇v0‖
2
2 +

l∑
k=1

‖∇vk‖
2
2.

Proof. The proof is analogous to Lemma 5.3 in [10]. Here we only point out the difference. Since f
satisfies ( f ∗1 ) − ( f ∗4 ), for un ⇀ u in Ẽ, we have

f (un) − f (un − u)→ f (u) in Ẽ′,

where Ẽ′ is the conjugate space of Ẽ. Moreover, by referring to Lemma 3.4-(12) in [23], we can get∫
R3
|un|

2|∇un|
2dx −

∫
R3
|un − u|2|∇un − ∇u|2dx→

∫
R3
|u|2|∇u|2dx.

Then the rest proof can be derived by obvious modification from line to line. �

Lemma 5.13. Suppose that (V∗1) − (V∗2) and ( f ∗1 ) − ( f ∗4 ) hold. For λ ∈ [λ̄, 1], let {un} ⊂ Ẽ be a bounded
(PS )cλ sequence of IV,λ. Then there exists a nontrivial uλ ∈ Ẽ such that

un → uλ in Ẽ.

Proof. According to Lemma 5.12 and referring to the proof of Lemma 3.5 in [10], we can easily
complete this proof. So we omit the detailed proof. �

In order to prove that the problem (1.8) has a positive ground state solution, we define

m = inf
X

IV(u),

where X :=
{
u ∈ Ẽ\{0} : I′V(u) = 0

}
.
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Lemma 5.14. X , ∅.

Proof. Depending on Lemma 5.9 and Proposition 5.1, we see for almost everywhere λ ∈ [λ̄, 1], there
exists a bounded sequence {un} ⊂ Ẽ such that

IV,λ (un)→ cλ, I′V,λ (un)→ 0.

It follows from Lemma 5.13 that IV,λ has a nontrivial critical point uλ ∈ Ẽ and IV,λ (uλ) = cλ.
Based on the above discussion, there exists a sequence {λn} ⊂ [λ̄, 1] with λn → 1− and an associated

sequence
{
uλn

}
⊂ Ẽ such that IV,λn

(
uλn

)
= cλn , I

′
V,λn

(
uλn

)
= 0.

Next, we prove that
{
uλn

}
is bounded in Ẽ. By (V∗1) and Hardy inequality, using the proof of Lemma

5.8, we can refer that
{
‖∇uλn‖2

}
and

{
‖uλn‖2

}
are bounded. Thus,

{
uλn

}
is bounded in Ẽ.

Since λn → 1−, we claim that
{
uλn

}
is a (PS )c1 sequence of IV = IV,1. Indeed, by Lemma 5.10 we

obtain that

lim
n→∞

IV,1
(
uλn

)
= lim

n→∞

(
IV,λn

(
uλn

)
+ (λn − 1)

∫
R3

F
(
uλn

)
dx

)
= lim

n→∞
cλn = c1,

and for all ϕ ∈ H1(R3)\{0},

lim
n→∞

∣∣∣∣〈I′V,1
(
uλn

)
, ϕ

〉∣∣∣∣
‖ϕ‖H

≤ lim
n→∞

1
‖ϕ‖H

|λn − 1|
∫
R3

(∣∣∣uλn

∣∣∣ + C18

∣∣∣uλn

∣∣∣11
)

dx‖ϕ||H = 0.

Hence
{
uλn

}
is a bounded (PS )c1 sequence of IV . Then by Lemma 5.13, IV has a nontrivial critical point

u0 ∈ Ẽ and IV (u0) = c1. Thus, X , ∅. �

Proof of Theorem 1.3 Firstly, in order to get a nontrivial (PS )m sequence, we need to prove m > 0.
For all u ∈ X, we have 〈I′V(u), u〉 = 0. Thus by standard argument we see ‖u‖HV ≥ ξ for some

positive constant ξ. On the other hand, the Pohozaev identity (5.3) holds, i.e., PV(u) = 0. Now by
Lemma 5.1-(ii) we can get

IV(u) = IV(u) −
1
8

[
〈I′V(u), u〉 + 2PV(u)

]
≥

1
4

a
∫
|∇u|2dx −

1
8

∫
R3

(∇V(x), x) u2dx.

Then from (V∗1) and Hardy inequality, we infer

IV(u) ≥ C19

∫
R3
|∇u|2dx.

Therefore, we obtain m ≥ 0.
In the following let us rule out m = 0. By contradiction, let {un} be a (PS )0 sequence of IV . Then it

is easy to show that lim
n→∞
‖un‖HV

= 0, which contradicts with ‖un‖HV
≥ ξ > 0 for all n ∈ N.

Next, we may assume that there exists a sequence {un} ⊂ P+ satisfying I′V (un) = 0 and IV (un)→ m.
Similar to the argument in the proofs of Lemma 5.14, we can conclude that {un} is a bounded (PS )m

sequence of IV . Then by Lemma 5.13 and strong maximal principle, there exists a function u ∈ Ẽ such
that

IV(u) = m, I′V(u) = 0 and u(x) > 0 for all x ∈ R3.

So u is a positive ground state solution for problem (1.8). The proof is completed.
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