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1. Introduction

The setting of this paper is in the n-dimensional Euclidean space Rn with inner product 〈·, ·〉. A set
of points K in Rn is convex if for all x, y ∈ K satisfying [x, y] ⊆ K. If C,D are compact convex sets in
Rn and λ ≥ 0, the Minkowski sum of C and D is

C + D = {x + y : x ∈ C, y ∈ D},

and the scalar product λC is λC = {λx : x ∈ C}. Let K and K0 be the class of convex bodies (compact
convex set with nonempty interior) and the class of convex bodies which contain the origin o in their
interiors, respectively.

The variation of volume of Minkowski sum of K ∈ K and the unit ball Bn
2 ⊂ R

n is the classical
Borel measure, that is, the surface area of the convex body K can be formulated as:

S (K) = lim
ε→0

|K + εBn
2| − |K|
ε

,

where |K| is the volume of K. More generally, for a fixed convex body Q, the relative surface area of a
convex body K (relative to a convex body Q) can be given by

S (K,Q) = lim
ε→0

|K + εQ| − |K|
ε

. (1.1)
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However, if Q with |Q◦| = |Bn
2| is taking over on K , then Petty (see [28]) considered the following

optimization problem and provided the solution as follows: there exists a convex body M with |M◦| =

|Bn
2| such that

S (K,M) = inf{S (K,Q) : Q ∈ K with |Q◦| = |Bn
2|}, (1.2)

where Q◦ is the polar body of Q defined by Q◦ = {x ∈ Rn : 〈x, y〉 ≤ 1, for all y ∈ Q}. The mini-
mum S (K,M) is called the geominimal surface area of K, denoted by G(K) = S (K,M) for geometric
meaning, by Petty (see [28]).

On the other hand, it has been proved that the variational formula (1.1) can be viewed as the integral
formula of the mixed volume of convex bodies K and Q:

V1(K,Q) =
1
n

∫
S n−1

hQ(u)dS (K, u), (1.3)

where hQ is the support function of Q on the unit sphere S n−1 in Rn, i.e., hQ(u) = max{〈x, u〉 : x ∈ Q}
for any u ∈ S n−1, and S (K, ·) is the surface area measure of K (see e.g., [1, 7]). Combining (1.1), (1.2)
and (1.3), one can conclude that the geominimal surface area G(K) of a convex body K can be written
as

G(K) = inf{nV1(K,Q) : Q ∈ K with |Q◦| = |Bn
2|}. (1.4)

Based on (1.4), Petty proved some affine isoperimetric inequalities for the geominimal surface area
G(K) of a convex body K (see [28, 29]). Along the development of the Lp Brunn-Minkowski theory
(see e.g., [3,8,14,20–22,26,30,31,33]), the classical geominimal surface area was extended to Lp form
by Lutwak (see [21] for p ≥ 1) and Ye (see [35] for p ∈ R). One can also find more references for Lp

geominimal surface area (see e.g., [17, 38, 41, 44, 45]). Recently, the Lp Brunn-Minkowski theory was
extended to the Orlicz-Brunn-Minkowski theory by Lutwak, Yang and Zhang (see [23,24]), the Orlicz
addition was also introduced by Gardner, Hug and Weil [9] and Xi, Jin and Leng [34], separately.
This new theory is widely extended (see e.g., [2, 4, 9–13, 18, 27, 36, 43, 46, 47]). Simultaneously, the
geominimal surface area is developed to Orlicz geominimal surface area (see e.g., [25, 32, 37, 39, 40]).
Quite recently, the geominimal surface area associated with the capacity is also considered (see e.g.,
[15, 19, 42]).

In [16], Li and Zhu proved the Orlicz version of the Hadamard variational formula for torsional
rigidity, and introduced the Orlicz Lϕ mixed torsional rigidity: for K, L ∈ K0 and a continuous function
ϕ : (0,∞)→ (0,∞), define the Orlicz Lϕ mixed torsional rigidity as follows

τ1,ϕ(K, L) =
1

n + 2

∫
S n−1

ϕ

(
hL(u)
hK(u)

)
hK(u)dµτ(K, u), (1.5)

where µτ is the torsional measure given in (2.5). Obviously, τ1,ϕ(·, ·) is nonhomogeneous in its variables.
Therefore, we introduce the definition of the homogeneous Orlicz mixed torsional rigidity in Section 3
as follows: for K, L ∈ K0 and a continuous function ϕ : (0,∞) → (0,∞), we define the homogeneous
Orlicz mixed torsional rigidity, denoted by τ̂1,ϕ(K, L), of K and L as∫

S n−1
ϕ

(
τ(K) · hL(u)

τ̂1,ϕ(K, L) · hK(u)

)
dµ∗τ(K, u) = 1,
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where µ∗τ is a probability measure given by (2.7). In section 3, we will discuss some good properties
for the nonhomogeneous and homogeneous Orlicz mixed torsional rigidities, such as the continuity of
τ1,ϕ(·, ·) and τ̂1,ϕ(·, ·).

In Section 4, we consider the following optimization problems associated with τ1,ϕ(·, ·) and τ̂1,ϕ(·, ·):
under what conditions on ϕ, the following problems have solutions

sup / inf{τ1,ϕ(K, L) : L ∈ K0 and |L◦| = |Bn
2|};

sup / inf {̂τ1,ϕ(K, L) : L ∈ K0 and |L◦| = |Bn
2|}.

On the help of the properties of τ1,ϕ(·, ·) and τ̂1,ϕ(·, ·), we prove that the above problems may be solvable.
For example:

Theorem 1.1. Suppose K ∈ K0 and ϕ : (0,∞) → (0,∞) is a strictly increasing function with
limt→0+ ϕ(t) = 0, limt→∞ ϕ(t) = ∞ and ϕ(1) = 1. The following statements hold:
(i) There exists a convex body M ∈ K0 such that |M◦| = |Bn

2| and

τ1,ϕ(K,M) = inf{τ1,ϕ(K, L) : L ∈ K0 and |L◦| = |Bn
2|}.

(ii) There exists a convex body M̂ ∈ K0 such that |M̂◦| = |Bn
2| and

τ̂1,ϕ(K, M̂) = inf {̂τ1,ϕ(K, L) : L ∈ K0 and |L◦| = |Bn
2|}.

In addition, both of M and M̂ are unique if ϕ is convex.

The solutions M and M̂ in Theorem 1.1 are called the Orlicz − Petty bodies f or torsional
rigidity. We use the set P1,ϕ(K) to denote the collection of convex bodies M, and the set P̂1,ϕ(K) to
denote the collection of convex bodies M̂. For simplicity, we write

Q1,ϕ(K) = τ1,ϕ(K,M) and Q̂1,ϕ(K) = τ̂1,ϕ(K, M̂).

Since the solutions M and M̂ are unique if ϕ is convex by Theorem 1.1, then the sets P1,ϕ(K) and P̂1,ϕ(K)
contain only one element and thus define two operators, we still use P1,ϕ(K) and P̂1,ϕ(K) to denote these
two operators. Thus the continuity of Q1,ϕ(K), Q̂1,ϕ(K), P̂1,ϕ(K) and P1,ϕ(K) can be obtained.

Theorem 1.2. Let ϕ : (0,∞) → (0,∞) be strictly increasing function with limt→0+ ϕ(t) = 0,
limt→∞ ϕ(t) = ∞ and ϕ(1) = 1. Let {Ki}

∞
i=1 ⊆ K0 be a sequence that converges to K ∈ K0. Then,

the following statements hold:
(i) Q1,ϕ(Ki)→ Q1,ϕ(K) and Q̂1,ϕ(Ki)→ Q̂1,ϕ(K) as i→ ∞.
(ii) If ϕ is convex, then P1,ϕ(Ki)→ P1,ϕ(K) and P̂1,ϕ(Ki)→ P̂1,ϕ(K) as i→ ∞.

2. Background and preliminaries

A subset K ⊆ Rn is called convex if λx+ (1−λ)y ∈ K for any λ ∈ [0, 1] and x, y ∈ K. A convex body
is a convex compact subset of Rn with nonempty interior. Let K and K0 be the class of convex bodies
and the class of convex bodies with the origin in their interiors, respectively. For K, L ∈ K , denoted by
K + L, the Minkowski sum, is defined as K + L = {x + y : x ∈ K, y ∈ L}. The scalar product of α ∈ R
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and K ∈ K , denote by αK, is defined as αK = {αx : x ∈ K}. For K ∈ K , |K| denotes to the volume of
K and |Bn

2| = ωn denotes the volume of the unit ball Bn
2 in Rn. For K ∈ K , the volume radius of K, is

defined as

vrad(K) =

(
|K|
ωn

) 1
n

.

For any K ∈ K0, the surface area measure S (K, ·) of K (see [1]), is defined as follows:

S (K, A) =

∫
ν−1

K (A)
dHn−1, for any measurable subset A ⊆ S n−1, (2.1)

where ν−1
K : S n−1 → ∂K (where ∂ denotes the boundary) is the inverse Gauss map and Hn−1 is the

(n − 1)-dimensional Hausdorff measure on ∂K.
Let C(S n−1) be the class of all continuous functions on S n−1. The following two Lemmas will be

useful:

Lemma 2.1. (see [19, Lemma 2.1]) If a sequence of measures {µi}
∞
i=1 on S n−1 converges weakly to

a finite measure µ on S n−1 and a sequence of functions { fi}
∞
i=1 ⊆ C(S n−1) converges uniformly to a

function f ∈ C(S n−1), then

lim
i→∞

∫
S n−1

fidµi =

∫
S n−1

f dµ.

Lemma 2.2. (see [19, Lemma 2.2]) Let {Ki}
∞
i=1 ⊆ K0 be a uniformly bounded sequence such that the

sequence {|K◦i |}
∞
i=1 is bounded. Then, there exists a subsequence {Ki j}

∞
j=1 of {Ki}

∞
i=1 and a convex body

K ∈ K0 such that Ki j → K. Moreover, if |K◦i | = ωn for all i = 1, 2, . . ., then |K◦| = ωn.

Next we will introduce some basic concepts about the torsional rigidity which can be found in
[6, 16]. Suppose C∞c (Rn) is the class of all infinitely differentiable functions on Rn with compact
supports. The torsional rigidity of a convex body K, denote by τ(K), is defined as (see [5]):

1
τ(K)

= inf
{∫

K
|∇u(x)|2dx

(
∫

K
|u(x)|dx)2

: u ∈ W1,2
0 (intK) and

∫
K
|u(x)|dx > 0

}
,

where ∇u is the gradient of u and W1,2(intK) (where intK is the interior of K) is appropriate for the
Sobolev space of the functions in L2(intK) whose first-order weak derivatives belong to L2(intK), and
W1,2

0 (intK) denotes the closure of C∞c (intK) in the Sobolev space W1,2(intK). Clearly, τ(·) is monotone
by the definition. Namely, for K, L ∈ K , one has

τ(K) ≤ τ(L) if K ⊆ L. (2.2)

Let K ∈ K , if u is the unique solution of the boundary-value problem∆u = −2 in K

u = 0 on ∂K,
(2.3)

then
τ(K) =

∫
K
|∇u(x)|2dx.
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The torsional rigidity is positively homogeneity of degree n + 2, that is, τ(aK) = an+2τ(K), for any
K ∈ K0 and a > 0. The torsional measure µτ(K, ·) is a nonnegative Borel measure on S n−1 which can
be defined as (see [6]): for any measurable subset A ⊆ S n−1,

µτ(K, A) =

∫
ν−1

K (A)
|∇u(x)|2dHn−1(x). (2.4)

For any a > 0, it is easy to check that

µτ(aK, ·) = an+1µτ(K, ·) on S n−1.

In addition, µτ(K, ·) is not concentrated on any closed hemisphere of S n−1, that is,∫
S n−1
〈v, u〉+dµτ(K, u) > 0 for any v ∈ S n−1,

where 〈v, u〉+ = max{〈v, u〉, 0}.
From the previous definition (2.1) and (2.4), we have the following relation between µτ(K, ·) and

S (K, ·) as follows:
dµτ(K, v) = |∇u(ν−1

K (v))|2dS (K, v) for any v ∈ S n−1. (2.5)

By using the previous Borel measure, the integral formula of torsional rigidity τ was provided by
Colesanti and Fimiani (see [6]) as follows: suppose K ∈ K with hK being the support function, then

τ(K) =
1

n + 2

∫
∂K

hK(ν(x))|∇u(x)|2dHn−1(x)

=
1

n + 2

∫
S n−1

hK(v)dµτ(K, v), (2.6)

where u is the solution of (2.3). For any K ∈ K0, by (2.6), denote µ∗τ(K, ·) by a probability measure on
S n−1

µ∗τ(K, ·) =
1

n + 2
·

hK(·)µτ(K, ·)
τ(K)

on S n−1. (2.7)

3. The nonhomogeneous and homogeneous Orlicz Lϕ mixed torsional rigidities

Let I be the set of continuous functions ϕ : (0,∞) → (0,∞), such that ϕ is strictly increasing
with limt→0+ ϕ(t) = 0, limt→∞ ϕ(t) = ∞ and ϕ(1) = 1. Let D be the set of continuous functions
ϕ : (0,∞) → (0,∞), such that ϕ is strictly decreasing with limt→0+ ϕ(t) = ∞, limt→∞ ϕ(t) = 0 and
ϕ(1) = 1.

The definition of the nonhomogeneous Orlicz Lϕ mixed torsional rigidity was provided in [16] as
follows.

Definition 3.1. Let ϕ ∈ I ∪ D and K, L ∈ K0. The Orlicz Lϕ mixed torsional rigidity of K and L,
denoted by τ1,ϕ(K, L), is defined as

τ1,ϕ(K, L) =
1

n + 2

∫
S n−1

ϕ

(
hL(u)
hK(u)

)
hK(u)dµτ(K, u).
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Clearly, τ1,ϕ(K,K) = τ(K) for any ϕ ∈ I∪D. In addition, for the particular example of the previous
definition, it is easy to verify that

τ1,ϕ(Bn
2, cBn

2) = ϕ(c)τ(Bn
2),

τ1,ϕ(cBn
2, B

n
2) = cn+2ϕ(c−1)τ(Bn

2)

for any c > 0. Thus τ1,ϕ(·, ·) is nonhomogeneous if ϕ is nonhomogeneous. In this section, we introduce
the homogeneous Orlicz Lϕ mixed torsional rigidity as follows.

Definition 3.2. Suppose ϕ ∈ I ∪ D and K, L ∈ K0. The homogeneous Orlicz Lϕ mixed torsional
rigidity of K and L, denoted by τ̂1,ϕ(K, L), is defined as∫

S n−1
ϕ

(
τ(K)hL(u)

τ̂1,ϕ(K, L)hK(u)

)
dµ∗τ(K, u) = 1. (3.1)

Since µ∗τ(K, ·) is a probability measure on S n−1 and ϕ(1) = 1, then τ̂1,ϕ(K,K) = τ(K) for K ∈ K0. By
(3.1), it can be easily checked that the functional τ̂1,ϕ(·, ·) is homogeneous as follows.

Corollary 3.1. Let K, L ∈ K0, and s, t > 0. If ϕ ∈ I ∪D, then

τ̂1,ϕ(sK, tL) = sn+1 · t · τ̂1,ϕ(K, L).

Next we will prove that τ1,ϕ(·, ·) and τ̂1,ϕ(·, ·) are continuous on K0 × K0.

Theorem 3.1. Suppose {Ki}
∞
i=1, {Li}

∞
i=1 ⊆ K0 are two sequences of convex bodies, K, L ∈ K0 and ϕ ∈

I ∪D . If Ki → K, Li → L as i→ ∞, then

τ1,ϕ(Ki, Li)→ τ1,ϕ(K, L),
τ̂1,ϕ(Ki, Li)→ τ̂1,ϕ(K, L),

as i→ ∞.

Proof. Since Ki, Li ∈ K0, then Ki → K and Li → L imply that h(Ki, ·) → h(K, ·) uniformly and
h(Li, ·)→ h(L, ·) uniformly on S n−1. These further imply that there exist r,R > 0 with r ≤ R such that

rBn
2 ⊆ Ki, Li ⊆ RBn

2 for i ≥ 1, (3.2)

and
hLi(u)
hKi(u)

∈

[ r
R
,

R
r

]
for u ∈ S n−1 and i ≥ 1. (3.3)

Together with the continuity of ϕ, we have

ϕ

(
hLi(u)
hKi(u)

)
h(Ki, u)→ ϕ

(
hL(u)
hK(u)

)
h(K, u) uniformly on S n−1.

The convergence Ki → K, also yields that

µτ(Ki, ·)→ µτ(K, ·) weakly on S n−1.
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Combining with Lemma 2.1, we have

1
n + 2

∫
S n−1

ϕ

(
hLi(u)
hKi(u)

)
hKi(u)dµτ(Ki, u)→

1
n + 2

∫
S n−1

ϕ

(
hL(u)
hK(u)

)
hK(u)dµτ(K, u).

Therefore τ1,ϕ(Ki, Li)→ τ1,ϕ(K, L) as i→ ∞.
Next, we first prove τ̂1,ϕ(Ki, Li) → τ̂1,ϕ(K, L) under the case ϕ ∈ D. Since ϕ(1) = 1, then τ(rBn

2) ≤
τ(Ki) ≤ τ(RBn

2) by (2.2). Together with (3.2) and (3.3), we have

ϕ

(
τ(RBn

2)R
τ̂1,ϕ(Ki, Li)r

)
≤ ϕ

(
τ(Ki)hLi(u)

τ̂1,ϕ(Ki, Li)hK(u)

)
≤ ϕ

(
τ(rBn

2)r
τ̂1,ϕ(Ki, Li)R

)
.

Thus

ϕ

(
τ(RBn

2)R
τ̂1,ϕ(Ki, Li)r

)
≤

∫
S n−1

ϕ

(
τ(Ki)hLi(u)

τ̂1,ϕ(Ki, Li)hKi(u)

)
dµ∗τ(Ki, u) = 1 ≤ ϕ

(
τ(rBn

2)r
τ̂1,ϕ(Ki, Li)R

)
.

Since ϕ ∈ D and ϕ(1) = 1, thus for i ≥ 1,

0 <
τ(rBn

2) · r
R

≤ τ̂1,ϕ(Ki, Li) ≤
τ(RBn

2) · R
r

< ∞,

i.e., τ̂1,ϕ(Ki, Li) is bounded from above and below. Let

X = lim inf
i→∞

τ̂1,ϕ(Ki, Li) > 0,

Y = lim sup
i→∞

τ̂1,ϕ(Ki, Li) < ∞.

So, there exist two subsequences {̂τ1,ϕ(Kim , Lim)}∞m=1 and {̂τ1,ϕ(Kin , Lin)}
∞
n=1 of τ̂1,ϕ(Ki, Li) such that

τ̂1,ϕ(Kin , Lin) <
n + 1

n
X with lim

n→∞
τ̂1,ϕ(Kin , Lin) = X

and

τ̂1,ϕ(Kim , Lim) >
m

m + 1
Y with lim

m→∞
τ̂1,ϕ(Kim , Lim) = Y

for m, n ≥ 1. Since ϕ ∈ D, the Lemma 2.1 yields that,

1 = lim
m→∞

∫
S n−1

ϕ

(
τ(Kim)hLim

(u)
τ̂1,ϕ(Kim , Lim)hKim

(u)

)
dµ∗τ(Kim , u)

≥ lim
m→∞

∫
S n−1

ϕ

(
(m + 1)τ(Kim)hLim

(u)
mYhKim

(u)

)
dµ∗τ(Kim , u)

=

∫
S n−1

ϕ

(
τ(K)hL(u)

YhK(u)

)
dµ∗τ(K, u). (3.4)

In the same manner, one can check that

1 ≤
∫

S n−1
ϕ

(
τ(K) · hL(u)

X · hK(u)

)
dµ∗τ(K, u). (3.5)
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Combing (3.4) and (3.5), we have

lim sup
i→∞

τ̂1,ϕ(Ki, Li) ≤ τ̂1,ϕ(K, L) ≤ lim inf
i→∞

τ̂1,ϕ(Ki, Li).

This, together with the fact that “ lim inf ≤ lim sup ”, yields that τ̂1,ϕ(Ki, Li)→ τ̂1,ϕ(K, L) as i→ ∞. As
for ϕ ∈ I, it can be obtained in the same way. �

Theorem 3.2. Suppose ϕ ∈ I, {Ki}
∞
i=1 ⊆ K0 and Ki → K ∈ K0 as i → ∞. If {Mi}

∞
i=1 ⊆ K0 such that

{τ1,ϕ(Ki,Mi)}∞i=1 or {̂τ1,ϕ(Ki,Mi)}∞i=1 is bounded, then {Mi}
∞
i=1 is uniformly bounded.

Proof. Since Ki → K, then hKi(·) → hK(·) uniformly on S n−1, and µτ(Ki, ·) → µτ(K, ·) weakly on S n−1,
we have τ(Ki) → τ(K) as i → ∞. Since µτ(K, ·) is not contained in a closed hemisphere of S n−1, so∫

S n−1〈u, v〉+dµτ(K, u) > 0, for v ∈ S n−1. This implies that there exist n0 ∈ N and a constant c0 > 0 such
that ∫

Ω

〈u, v〉+dµτ(K, u) ≥ c0,

where Ω = {u ∈ S n−1 : 〈u, v〉+ ≥ 1
n0
}.

In addition, there exist two numbers r0,R0 > 0 with r0 ≤ R0 such that

r0 ≤ hKi(u), hK(u) ≤ R0

for i ≥ 1 and u ∈ S n−1.
Since Mi ∈ K0, let Ri = max{ρMi(u) : u ∈ S n−1} for i ≥ 1. Suppose that vi ∈ S n−1 with Ri = ρ(Mi, vi)

for some i ≥ 1. Then [0,Rivi] ⊂ Mi, thus Ri〈u, vi〉+ ≤ hMi(u) for u ∈ S n−1. Assume {Mi}
∞
i=1 is not

uniformly bounded, i.e., supi≥1 Ri = ∞. As {τ1,ϕ(Ki,Mi)}∞i=1 is bounded, then there exists a positive
constant c such that

c ≥ τ1,ϕ(Ki,Mi)

for i ≥ 1.
Let vi → v ∈ S n−1 as i → ∞ by the compactness of S n−1. Since ϕ ∈ I is increasing, Definition 3.1

and Lemma 2.1, we have that for any constant T > 0,

c ≥ lim inf
i→∞

1
n + 2

∫
S n−1

ϕ

(
hMi(u)
hKi(u)

)
hKi(u)dµτ(Ki, u)

≥ lim inf
i→∞

1
n + 2

∫
S n−1

ϕ

(
Ri〈u, vi〉+

R0

)
hKi(u)dµτ(Ki, u)

≥ lim inf
i→∞

1
n + 2

∫
S n−1

ϕ

(
T · 〈u, vi〉+

R0

)
hKi(u)dµτ(Ki, u)

≥
1

n + 2

∫
S n−1

lim inf
i→∞

ϕ

(
T · 〈u, vi〉+

R0

)
hK(u)dµτ(K, u)

=
1

n + 2

∫
S n−1

ϕ

(
T · 〈u, v〉+

R0

)
hK(u)dµτ(K, u)

≥
r0

n + 2

∫
S n−1

ϕ

(
T · 〈u, v〉+

R0

)
dµτ(K, u)
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≥
r0

n + 2
ϕ

(
T

R0n0

) ∫
Ω

〈u, v〉+dµτ(K, u)

≥
c0r0

n + 2
ϕ

(
T

R0n0

)
.

Letting T → ∞, then c ≥ ∞. This is a contradiction, which shows that {Mi}
∞
i=1 is uniformly bounded.

Along the same line, one can check that {Mi}
∞
i=1 is uniformly bounded when {̂τ1,ϕ(Ki,Mi)}∞i=1 is

bounded. �

4. The Orlicz-Petty bodies for torsional rigidity

In this section, we will prove the existence, uniqueness and continuity of the Orlicz-Petty bodies for
torsional rigidity. To do so, we study the following optimization problems for nonhomogeneous and
homogeneous Orlicz Lϕ mixed torsional rigidities:

sup / inf{τ1,ϕ(K, L) : L ∈ K0, |L◦| = ωn}; (4.1)

sup / inf {̂τ1,ϕ(K, L) : L ∈ K0, |L◦| = ωn}. (4.2)

The next theorem gives the existence of the solutions to the problems in (4.1) and (4.2).

Theorem 4.1. Suppose that K ∈ K0 and ϕ ∈ I. The following statements hold:
(i) There exists a convex body M ∈ K0 with |M◦| = ωn and

τ1,ϕ(K,M) = inf{τ1,ϕ(K, L) : L ∈ K0, |L◦| = ωn}.

(ii) There exists a convex body M̂ ∈ K0 with |M̂◦| = ωn and

τ̂1,ϕ(K, M̂) = inf {̂τ1,ϕ(K, L) : L ∈ K0, |L◦| = ωn}.

Moreover, both of M and M̂ are unique if ϕ ∈ I is convex.

Proof. For simplicity, we write

Q1,ϕ(K) = inf{τ1,ϕ(K, L) : L ∈ K0, |L◦| = ωn}; (4.3)

Q̂1,ϕ(K) = inf {̂τ1,ϕ(K, L) : L ∈ K0, |L◦| = ωn}. (4.4)

(i) By (4.3) and Definition 3.1, we have

Q1,ϕ(K) ≤ τ1,ϕ(K, Bn
2) < ∞.

Assume that {Mi}
∞
i=1 ⊆ K0 is an optimal sequence of (4.3), namely, τ1,ϕ(K,Mi) → Q1,ϕ(K) as i → ∞

and |M◦
i | = ωn for i ≥ 1. Then {Mi}

∞
i=1 is uniformly bounded by Theorem 3.2. This together with

Lemma 2.2, we have a subsequence {Mik}
∞
k=1 of {Mi}

∞
i=1 and M ∈ K0 such that Mik → M as k → ∞ and

|M◦| = ωn. By Theorem 3.1, we have

Q1,ϕ(K) = lim
i→∞

τ1,ϕ(K,Mi) = lim
k→∞

τ1,ϕ(K,Mik) = τ1,ϕ(K,M).
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Hence M is a solution to (4.1).
(ii) By (4.4) and Definition 3.2, we have

Q̂1,ϕ(K) ≤ τ̂1,ϕ(K, Bn
2) < ∞.

Let {M̂i}
∞
i=1 ⊆ K0 such that τ̂1,ϕ(K, M̂i) → Q̂1,ϕ(K) as i → ∞ and |M̂◦

i | = ωn for i ≥ 1. Then {M̂i}
∞
i=1 is

uniformly bounded by Theorem 3.2. This together with Lemma 2.2, we have a subsequence {M̂ik}
∞
k=1

of {M̂i}
∞
i=1 and M̂ ∈ K0 such that M̂ik → M̂ as k → ∞ and |M̂◦| = ωn. Thus, Theorem 3.1 yields

Q̂1,ϕ(K) = lim
i→∞

τ̂1,ϕ(K, M̂i) = lim
k→∞

τ̂1,ϕ(K, M̂ik) = τ̂1,ϕ(K, M̂).

The proofs of the uniqueness of M and M̂ are similar, so we only provide the proof for M. Assume
that M1,M2 ∈ K0 and M1,M2 satisfy

|M◦
1 | = |M

◦
2 | = ωn, τ1,ϕ(K,M1) = Q1,ϕ(K) = τ1,ϕ(K,M2).

Let N = (M1 + M2)/2, by the Brunn-Minkowski inequality, vrad(N◦) ≤ 1 with equality if and only if
M1 = M2. By the monotonicity and convexity of ϕ, one has

Q1,ϕ(K) ≤ τ1,ϕ(K, vrad(N◦) · N)

=
1

n + 2

∫
S n−1

ϕ

(
vrad(N◦) · hN(u)

hK(u)

)
hK(u)dµτ(K, u)

≤
1

n + 2

∫
S n−1

ϕ

(
hN(u)
hK(u)

)
hK(u)dµτ(K, u)

≤
1

n + 2

∫
S n−1

[
1
2
ϕ

(
hM1(u)
hK(u)

)
hK(u) +

1
2
ϕ

(
hM2(u)
hK(u)

)
hK(u)

]
dµτ(K, u)

=
τ1,ϕ(K,M1) + τ1,ϕ(K,M2)

2
= Q1,ϕ(K).

This shows that vrad(N◦) = 1, or equivalently M1 = M2. �

We call the solutions M and M̂ Orlicz − Petty bodies f or torsional rigidity. Following the idea
of Petty, we call the minimums Q1,ϕ(K) = τ1,ϕ(K,M) and Q̂1,ϕ(K) = τ̂1,ϕ(K, M̂) the corresponding
geominimal sur f ace area f or torsional rigidity. We use P1,ϕ(·) and P̂1,ϕ(·) to denote the sets of M and
M̂, respectively.

Definition 4.1. Suppose that K ∈ K0 and ϕ ∈ I. Define the set

P1,ϕ(K) = {M ∈ K0 : |M◦| = ωn and τ1,ϕ(K,M) = Q1,ϕ(K)}.

Analogously, define the set

P̂1,ϕ(K) = {M̂ ∈ K0 : |M̂◦| = ωn and τ̂1,ϕ(K, M̂) = Q̂1,ϕ(K)}.
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Obviously, the sets P1,ϕ(K) and P̂1,ϕ(K) are nonempty which follow from Theorem 4.1 if ϕ ∈ I.
Since P1,ϕ(K) and P̂1,ϕ(K) contain one element if ϕ ∈ I is convex, P1,ϕ : K0 → K0 and P̂1,ϕ : K0 → K0

define two operators on K0. The next theorem shows the continuity of Q1,ϕ(·), Q̂1,ϕ(·), P1,ϕ(·) and
P̂1,ϕ(·).

Theorem 4.2. Let ϕ ∈ I and {Ki}
∞
i=1 ⊆ K0 and K ∈ K0 be such that Ki → K as i → ∞. The following

statements hold:
(i) Q1,ϕ(Ki)→ Q1,ϕ(K) and Q̂1,ϕ(Ki)→ Q̂1,ϕ(K) as i→ ∞.
(ii) If ϕ ∈ I is convex, then P1,ϕ(Ki)→ P1,ϕ(K) and P̂1,ϕ(Ki)→ P̂1,ϕ(K) as i→ ∞.

Proof. (i) First of all, we will show that Q1,ϕ(Ki) → Q1,ϕ(K) as i → ∞. If M ∈ P1,ϕ(K) and Mi ∈

P1,ϕ(Ki) for i ≥ 1, then Theorem 3.1 and (4.3) yields that

Q1,ϕ(K) = τ1,ϕ(K,M) = lim
i→∞

τ1,ϕ(Ki,M) = lim sup
i→∞

τ1,ϕ(Ki,M) ≥ lim sup
i→∞

Q1,ϕ(Ki). (4.5)

Thus, {Q1,ϕ(Ki)}∞i=1 is bounded. Since Q1,ϕ(Ki) = τ1,ϕ(Ki,Mi) for i ≥ 1, then {Mi}
∞
i=1 is uniformly

bounded by Theorem 3.2. Let {Mik}
∞
k=1 ⊆ {Mi}

∞
i=1 be a bounded subsequence such that

lim
k→∞

Q1,ϕ(Kik) = lim inf
i→∞

Q1,ϕ(Ki).

Since {Mik}
∞
k=1 is uniformly bounded, and by Lemma 2.2, there exist a subsequence {Mik j

}∞j=1 ⊆ {Mik}
∞
k=1

and M0 ∈ K0 such that Mik j
→ M0 as j→ ∞ and |M◦

0 | = ωn. Hence, Theorem 3.1 leads to

lim inf
i→∞

Q1,ϕ(Ki) = lim
j→∞

Q1,ϕ(Kik j
) = lim

j→∞
τ1,ϕ(Kik j

,Mik j
)

= τ1,ϕ(K,M0) ≥ Q1,ϕ(K). (4.6)

Combining (4.5) with (4.6), we have

Q1,ϕ(K) = lim
i→∞

Q1,ϕ(Ki). (4.7)

Next, we prove that Q̂1,ϕ(Ki)→ Q̂1,ϕ(K) as i→ ∞. Let M̂ ∈ P̂1,ϕ(K) and M̂i ∈ P̂1,ϕ(Ki) for i ≥ 1. By
Theorem 3.1 and (4.4), we have

Q̂1,ϕ(K) = τ̂1,ϕ(K, M̂)

= lim
i→∞

τ̂1,ϕ(Ki, M̂)

= lim sup
i→∞

τ̂1,ϕ(Ki, M̂)

≥ lim sup
i→∞

Q̂1,ϕ(Ki). (4.8)

This leads to {Q̂1,ϕ(Ki)}∞i=1 is bounded. It follows from Theorem 3.2 and Q̂1,ϕ(Ki) = τ̂1,ϕ(Ki, M̂i) for
i ≥ 1 that {M̂i}

∞
i=1 is uniformly bounded. Let {Kil}

∞
l=1 ⊆ {Ki}

∞
i=1 be a subsequence such that

lim
l→∞

Q̂1,ϕ(Kil) = lim inf
i→∞

Q̂1,ϕ(Ki).
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Since {M̂il}
∞
l=1 is uniformly bounded, and by Lemma 2.2, there exists a subsequence {M̂il j

}∞j=1 of {M̂il}
∞
l=1

and M̂0 ∈ K0 such that M̂il j
→ M̂0 as j→ ∞ and |M̂0

◦

| = ωn. Thus

lim
i→∞

inf Q̂1,ϕ(Ki) = lim
j→∞

Q̂1,ϕ(Kil j
)

= lim
j→∞

τ̂1,ϕ(Kil j
, M̂il j

)

= τ̂1,ϕ(K, M̂0)

≥ Q̂1,ϕ(K). (4.9)

From (4.8) and (4.9), one concludes that

Q̂1,ϕ(K) = lim
i→∞

Q̂1,ϕ(Ki). (4.10)

(ii) Assume that ϕ ∈ I is convex. By Theorem 4.1, P1,ϕ(K), P1,ϕ(Ki), P̂1,ϕ(K) and P̂1,ϕ(Ki) contain one
element which will be denoted by M, Mi, M̂ and M̂i for i ≥ 1, respectively. Let {Mik}

∞
k=1 ⊆ {Mi}

∞
i=1 and

{M̂il}
∞
l=1 ⊆ {M̂i}

∞
i=1. By (4.7) and (4.10)

Q1,ϕ(K) = lim
k→∞

Q1,ϕ(Kik) = lim
k→∞

τ1,ϕ(Kik ,Mik); (4.11)

Q̂1,ϕ(K) = lim
l→∞

Q̂1,ϕ(Kil) = lim
k→∞

τ̂1,ϕ(Kil , M̂il). (4.12)

It follows that {τ1,ϕ(Kik ,Mik)}
∞
k=1 and {̂τ1,ϕ(Kil , M̂il)}

∞
l=1 are uniformly bounded. Thus, by Theorem 3.2,

{Mik}
∞
k=1 and {M̂il}

∞
l=1 are bounded. By Lemma 2.2, there exist subsequences {Mik j1

}∞j1=1 ⊆ {Mik}
∞
k=1 and

{M̂il j2
}∞j2=1 ⊆ {M̂il}

∞
l=1, respectively, and S , I ∈ K0 such that Mik j1

→ S , M̂il j2
→ I, and |S ◦| = |I◦| = ωn.

By Theorem 3.1, (4.11) and (4.12), we have

Q1,ϕ(K) = lim
j1→∞

Q1,ϕ(Kik j1
) = lim

j1→∞
τ1,ϕ(Kik j1

,Mik j1
) = τ1,ϕ(K, S );

Q̂1,ϕ(K) = lim
j2→∞

Q̂1,ϕ(Kil j2
) = lim

j2→∞
τ̂1,ϕ(Kil j2

, M̂il j2
) = τ̂1,ϕ(K, I).

It follows that M = S and M̂ = I. That is, Mi → M and M̂i → M̂ as i→ ∞. �

The following proposition shows that the Orlicz-Petty bodies for torsional rigidity of polytopes are
still polytopes.

Proposition 4.1. If ϕ ∈ I and K ∈ K0 is a polytope, then the elements in P1,ϕ(K) and P̂1,ϕ(K) are
polytopes with faces parallel to those of K.

Proof. Since K is a polytope, then S (K, ·) must be concentrated on a finite subset {u1, u2, . . . , um} ⊆

S n−1. By (2.5), the torsional measure µτ(K, ·) is also concentrated on {u1, u2, . . . , um}. If M ∈ P1,ϕ(K),
then let P1 be a polytope with {u1, u2, . . . , um} as the unit normal vectors of its faces such that P1 =⋂

1≤i≤m{x ∈ Rn : 〈x, ui〉 ≤ hM(ui)}. Therefore, we have hP1(ui) = hM(ui) (1 ≤ i ≤ m). Then

τ1,ϕ(K, P1) =
1

n + 2

∫
S n−1

ϕ

(
hP1(u)
hK(u)

)
hK(u)dµτ(K, u)
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=
1

n + 2

m∑
i=1

ϕ

(
hP1(ui)
hK(ui)

)
hK(ui) · µτ(K, {ui})

=
1

n + 2

m∑
i=1

ϕ

(
hM(ui)
hK(ui)

)
hK(ui) · µτ(K, {ui})

=
1

n + 2

∫
S n−1

ϕ

(
hM(u)
hK(u)

)
hK(u)dµτ(K, u)

= τ1,ϕ(K,M).

By (4.3), we have

τ1,ϕ(K, P1) = τ1,ϕ(K,M) = Q1,ϕ(K) ≤ τ1,ϕ(K, vrad(P◦1)P1).

Since ϕ is strictly increasing, then vrad(P◦1) ≥ 1. The inclusion P◦1 ⊆ M◦ shows that vrad(P◦1) ≤
vrad(M◦) = 1. Hence,

∣∣∣P◦1∣∣∣ = |M◦|. Then M = P1, that is, each M ∈ P1,ϕ(K) is a polytope with faces
parallel to those of K.

Using the same method, one can prove that each M̂ ∈ P̂1,ϕ(K) is a polytope with faces parallel to
those of K. �

Finally, we list some counterexamples to show that the problems (4.1) and (4.2) may not be solvable
in general case.

Proposition 4.2. Let K ∈ K0 be a polytope with surface area measure S (K, ·) being concentrated on a
finite subset {u1, u2, . . . , um} ⊆ S n−1.
(i) If ϕ ∈ D and the jth coordinates of u1, u2, . . . , um are nonzero, then

inf{τ1,ϕ(K, L) : L ∈ K0 and |L◦| = ωn} = 0;
sup{̂τ1,ϕ(K, L) : L ∈ K0 and |L◦| = ωn} = ∞.

(ii) If ϕ ∈ I, then

sup{τ1,ϕ(K, L) : L ∈ K0 and |L◦| = ωn}

= sup{̂τ1,ϕ(K, L) : L ∈ K0 and |L◦| = ωn} = ∞.

Proof. (i) Let b j = min1≤i≤m{
∣∣∣(ui) j

∣∣∣} be the jth coordinate of ui (1 ≤ i ≤ m and 1 ≤ j ≤ n), by
assumption, b j > 0. Then there exists a constant b > 0 such that b j ≥ b for all 1 ≤ j ≤ n. Since K is
a polytope with u1, u2, . . . , um as the unit normal vectors of its faces, we know that K is bounded, then
there exists a constant c > 0 such that hK(ui) ≤ c for 1 ≤ i ≤ m. For any d > 0, we write

Td = diag(d, . . . , d, 1, d, . . . , d) and Ld = d
1−n

n TdBn
2,

where 1 is in the jth column of the matrix Td. Then, L◦d = d
n−1

n (T t
d)−1Bn

2 and |L◦d| = ωn. It is easily check
that,

|Tdui| =

√
d2(ui)2

1 + · · · + (ui)2
j + · · · + d2(ui)2

n ≥ |(ui) j| ≥ b

AIMS Mathematics Volume 6, Issue 5, 4597–4613.



4610

for 1 ≤ i ≤ m. Thus,

hLd (ui) = max
v1∈Ld
〈v1, ui〉 = max

v2∈Bn
2

〈Tdv2d
1−n

n , ui〉

= d
1−n

n max
v2∈Bn

2

〈v2,Tdui〉 = d
1−n

n |Tdui| ≥
b

d
n−1

n

.

Due to ϕ ∈ D is decreasing, so

1
n + 2

∫
S n−1

ϕ

(
hLd (u)
hK(u)

)
hK(u)dµτ(K, u) =

1
n + 2

m∑
i=1

ϕ

(
hLd (ui)
hK(ui)

)
hK(ui)µτ(K, {ui})

≤
1

n + 2

m∑
i=1

ϕ

(
1
c

b

d
n−1

n

)
cµτ(K, {ui})

=
c

n + 2
ϕ

(
b

cd
n−1

n

)
µτ(K, S n−1).

Since ϕ
(
b/cd

n−1
n

)
→ 0 as d → 0 by the monotonicity of ϕ, then

inf{τ1,ϕ(K, L) : L ∈ K0 and |L◦| = ωn} ≤
c

n + 2
ϕ

(
b

cd
n−1

n

)
µτ(K, S n−1)→ 0 as d → 0.

Similarly, we can check that sup{̂τ1,ϕ(K, L) : L ∈ K0 and |L◦| = ωn} = ∞ if ϕ ∈ D.
(ii) Firstly, suppose that µτ(K, {u1}) > 0. Since K ∈ K0, then there exists a positive number c1 such that
hK(ui) ≥ c1 > 0 as 1 ≤ i ≤ m. Since K is a polytope with u1, u2, . . . , um as the unit normal vectors of
its faces, then K is bounded, namely, there exists a constant c0 > 0 such that hK(ui) ≤ c0 for 1 ≤ i ≤ m.
By the Schmidt orthogonalization, it can be found an orthogonal matrix T ∈ O(n) with u1 as its first
column vector. For any d > 0, let

Td = Tdiag(d−1, d, 1, 1, . . . , 1)T t and Ld = TdBn
2.

It follows that, |L◦d| = ωn and

hLd (u1) = max
v1∈Ld
〈v1, u1〉 = max

v2∈Bn
2

〈Tdv2, u1〉 = max
v2∈Bn

2

〈v2,Tdu1〉

= max
v2∈Bn

2

〈v2, d−1u1〉 =
1
d
.

Then

1
n + 2

∫
S n−1

ϕ

(
hLd (u)
hK(u)

)
hK(u)dµτ(K, u) =

1
n + 2

m∑
i=1

ϕ

(
hLd (ui)
hK(ui)

)
hK(ui)µτ(K, {ui})

≥
1

n + 2
ϕ

(
hLd (u1)
hK(u1)

)
hK(u1)µτ(K, {u1})

≥
1

n + 2
ϕ

(
1
c0

1
d

)
hK(u1)µτ(K, {u1})
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≥
c1

n + 2
ϕ

(
1
c0

1
d

)
µτ(K, {u1}).

Sinse ϕ is increasing, then

sup{τ1,ϕ(K, L) : L ∈ K0 and |L◦| = ωn} = ∞ as d → 0.

Similarly, one can check that sup{̂τ1,ϕ(K, L) : L ∈ K0 and |L◦| = ωn} = ∞ under the condition that
ϕ ∈ I. �

5. Conclusions

In this paper, we introduce the definition of the homogeneous Orlicz mixed torsional rigidities and
obtain some properties of the nonhomogeneous and homogeneous Orlicz mixed torsional rigidities.
Then we consider the optimization problems about the corresponding mixed torsional rigidity. As the
main results, we prove the existence and the continuity of the solutions to these problems.
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