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1. Introduction

It is well known that an ordered groupoid is a groupoid (S , ·) endowed with an order relation “ ≤ ”
in which the multiplication is compatible with the ordering; and it is denoted by (S , ·,≤). In particular,
if the multiplication on S is associative, then (S , ·,≤) is called an ordered semigroup. The theory of
ordered semigroups has important applications in the fields of formal languages, artificial intelligence
and computer science. Similar to the study of semigroup (or ring) theory, filters of ordered semigroups
have a great important contribution to characterizing the algebraic structures of ordered semigroups.
A subsemigroup F of an ordered semigroup (S , ·,≤) is called a filter of S if it satisfies (1) a ∈ F and
a ≤ b ∈ S imply b ∈ F, and (2) (∀a, b ∈ S ) ab ∈ F implies a, b ∈ F (see [1]). Since then, Xie and
Wu [2] defined and studied the semilattice congruences N on ordered semigroups in terms of filters.
In particular, they proved N is not the least semilattice congruence on an ordered semigroup S , but it
is the least regular semilattice congruence on S .
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The hyper structure theory (called also multialgebra) was first introduced in 1934 by Marty (see [3]).
Later on, hyperstructures have a lot of applications in mathematics, automata, cryptography, codes,
artificial intelligence and other fields, for example, see [4, 5]. In [6], Heidari and Davvaz defined and
studied the ordered semihypergroups, and discussed several related properties. And then a lot of papers
on ordered semihypergroups have been written, for instance, see [7–14]. In [7], Tang et al. defined
the hyperfilters of ordered semihypergroups, and characterized completely prime hyperideals of an
ordered semihypergroup in terms of hyperfilters. In order to characterize prime hyperideals of ordered
semihypergroups in a similar way, in this paper the hyperfilters of ordered semihypergroups are studied
in depth, and some related properties and results are generalized. To begin with, we define and discuss
the weak hyperfilters of ordered semihypergroups. Especially, some concepts and results of ordered
semigroups are generalized to ordered semihypergroups. We establish the relation of weak hyperfilters
and prime hyperideals of an ordered semihypergroup. Moreover, we define and discuss the equivalence
relationW on an ordered semihypergroup S by weak hyperfilters. Finally, we give some applications
of weak hyperfilters. Especially, characterizations of intra-regular (duo) ordered semihypergroups are
given by properties of weak hyperfilters. As an application of the present paper, corresponding notions
and results on semihypergroup can be obtained, and this is because every semihypergroup endowed
with the equality relation “ = ” is an ordered semihypergroup.

2. Preliminaries and some notations

In this section, we first present some definitions and results which will be used throughout this
paper.

Let S be a nonempty set and P∗(S ) the set of all nonempty subsets of S . A mapping ◦ : S × S →
P∗(S ) is called a hyperoperation or hypercomposition on S . The couple (S , ◦) is called a hyperstructure.
In the above definition, if x ∈ S and A, B are nonempty subsets of S , then we denote

A ◦ B =
⋃

a∈A,b∈B
a ◦ b, A ◦ x = A ◦ {x} and x ◦ B = {x} ◦ B.

A hyperstructure (S , ◦) is a semihypergroup [4] if for all x, y, z ∈ S , (x◦ y)◦ z = x◦ (y◦ z), which means
that ⋃

u∈x◦y
u ◦ z =

⋃
v∈y◦z

x ◦ v.

Let T be a nonempty subset of a semihypergroup (S , ◦). Then T is called a subsemihypergroup if
T ◦ T ⊆ T.

Let S be a nonempty set. The triplet (S , ◦,≤) is called an ordered semihypergroup [6] if (S , ◦) is a
semihypergroup and (S ,≤) is a partially ordered set such that

x ≤ y⇒ a ◦ x � a ◦ y and x ◦ a � y ◦ a
for all x, y, a ∈ S . Here, the preorder “ � ” on P∗(S ) is defined by

(∀A, B ∈ P∗(S )) A � B means that (∀a ∈ A) (∃b ∈ B) a ≤ b.
It is not difficult to understand that every ordered semigroup can be said to be an ordered
semihypergroup. Also see [7]. In this paper, S stands for an ordered semihypergroup unless stated
otherwise.

Let S be an ordered semihypergroup and A ∈ P∗(S ). A is called a right (resp. left) hyperideal of
S if (1) A ◦ S ⊆ A (resp. S ◦ A ⊆ A) and (2) S 3 b ≤ a, a ∈ A ⇒ b ∈ A. A is called a (two-sided)
hyperideal of S if it is both a right and a left hyperideal of S (see [6]). For H ∈ P∗(S ), we denote by
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(H] the subset of S defined by
(H] := {t ∈ S | t ≤ h for some h ∈ H}.

If no confusion is possible, we write in short (a] instead of ({a}]. We denote by R(A) (resp. L(A), I(A))
the right (resp. left, two-sided) hyperideal of S generated by A (A ∈ P∗(S )). It can be easily shown that
R(A) = (A ∪ A ◦ S ], L(A) = (A ∪ S ◦ A] and I(A) = (A ∪ S ◦ A ∪ A ◦ S ∪ S ◦ A ◦ S ]. In particular, if
A = {a}, then we write L(a),R(a), I(a) instead of L({a}),R({a}), I({a}), respectively.

Let I be a hyperideal of an ordered semihypergroup S . I is called completely prime if (∀a, b ∈ S )
(a ◦ b) ∩ I , ∅ ⇒ a ∈ I or b ∈ I (see [11]). I is called prime if (∀a, b ∈ S ) a ◦ b ⊆ I ⇒ a ∈ I or b ∈ I
(see [7]). I is called semiprime if for every a ∈ S such that a ◦ a ⊆ I, we have a ∈ I. S is called right
(resp. left) duo if every right (resp. left ) hyperideal of S is a left (resp. right) hyperideal of S . S is
called duo if it is both right duo and left duo.

Lemma 2.1 ( [8]) Let S be an ordered semihypergroup and A, B ∈ P∗(S ). Then the following
conditions hold:

(1) A ⊆ (A], ((A]] = (A].
(2) A ⊆ B⇒ (A] ⊆ (B].
(3) (A] ◦ (B] ⊆ (A ◦ B] and ((A] ◦ (B]] = (A ◦ B].
(4) If T is a hyperideal of S , then we have (T ] = T.
(5) If A, B are hyperideals of S , then (A ◦ B] is a hyperideal of S .
(6) For any a ∈ S , (S ◦ a] and (S ◦ a ◦ S ] are a left hyperideal and a hyperideal of S , respectively.
(7) If I is a hyperideal of S , then A � B ⊆ I implies A ⊆ I.
(8) A � B⇒ C ◦ A � C ◦ B and A ◦C � B ◦C, ∀C ∈ P∗(S ).

Lemma 2.2 ( [11]) Let {Ai | i ∈ I} be a family of hyperideals of S . Then
(1)
⋃
i∈I

Ai is a hyperideal of S .

(2)
⋂
i∈I

Ai is a hyperideal of S if
⋂
i∈I

Ai , ∅.

A subsemihypergroup F of S is called a hyperfilter [7] of S if
(1) (∀ a, b ∈ S ) (a ◦ b) ∩ F , ∅ ⇒ a ∈ F and b ∈ F.
(2) If a ∈ F and a ≤ b ∈ S , then b ∈ F.

Let x ∈ S and N(x) denotes the hyperfilter of S generated by x. The equivalence relation “N” on S is
defined by

N := {(x, y) ∈ S × S | N(x) = N(y)}.

Let S be an ordered semihypergroup and I ∈ P∗(S ). The relation “δI” on S is defined by
δI := {(x, y) ∈ S × S | x, y ∈ I or x, y < I}.

It can be easily shown that δI is an equivalence relation on S , also see [9]. Moreover, we have the
following lemma:

Lemma 2.3 ( [14]) Let S be an ordered semihypergroup. Then
N = ∩{δI | I ∈ CP(S )},

where CP(S ) is the set of all completely prime hyperideals of S .

For further information related to ordered semihypergroups, we refer to [5, 15].
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3. Weak hyperfilters of ordered semihypergroups

In the current section, we shall define and investigate left weak hyperfilters, right weak hyperfilters
and weak hyperfilters of an ordered semihypergroup. In particular, the relationship between the weak
hyperfilters and the prime hyperideals in ordered semihypergroups is discussed.

Definition 3.1 Let S be an ordered semihypergroup. A nonempty subset W of S is called a left (resp.
right) weak hyperfilter of S if

(1) a, b ∈ W ⇒ (a ◦ b) ∩W , ∅.
(2) (∀ a, b ∈ S ) (a ◦ b) ∩W , ∅ ⇒ b ∈ W (resp. a ∈ W).
(3) a ∈ W, a ≤ b ∈ S ⇒ b ∈ W.

If W is both a left weak hyperfilter and a right weak hyperfilter of S , then W is called a weak hyperfilter
of S .

Obviously, every hyperfilter of an ordered semihypergroup S is a weak hyperfilter of S . However,
the converse is not true, in general, as shown in the following counterexample.

Example 3.2 Let S := {a, b, c, d, e} with the hyperoperation “ ◦ ” and the order “ ≤ ” below:

◦ a b c d e
a {a, b} {a, b} {c} {c} {c}
b {a, b} {a, b} {c} {c} {c}
c {a, b} {a, b} {c} {c} {c}
d {a, b} {a, b} {c} {d, e} {e}
e {a, b} {a, b} {c} {e} {e}

≤:= {(a, a), (a, c), (a, d), (a, e), (b, b), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e), (d, d), (e, e)}.
The covering relation “≺” and the figure of S are given as follows:

≺= {(a, c), (b, c), (c, d), (c, e)}.

b
b

b

b b
�
�
�

�
�
�

@
@
@

@
@
@a b

c

de

Then (S , ◦,≤) is an ordered semihypergroup. It is a routine matter to verify that W = {d} is a weak
hyperfilter of S , but not a hyperfilter of S . In fact, since d ∈ W, while d ◦ d = {d, e} * W, i.e., W is not
a subsemihypergroup of S .

Suppose {Wi | i ∈ I} is a family of weak hyperfilters of S . Is it true that the union
⋃
i∈I

Wi of Wi (i ∈ I)

is a weak hyperfilter of S ? The following example gives a negative answer to this question.

Example 3.3 Let S := {a, b, c, d} with the hyperoperation “ ◦ ” and the order “ ≤ ” below:

◦ a b c d
a {a, d} {a, d} {a, d} {a}
b {a, d} {b} {a, d} {a, d}
c {a, d} {a, d} {c} {a, d}
d {a} {a, d} {a, d} {d}
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≤:= {(a, a), (a, b), (a, c), (b, b), (c, c), (d, b), (d, c), (d, d)}.
The covering relation “≺” and the figure of S are given as follows:

≺= {(a, b), (a, c), (d, b), (d, c)}.

b
b

b b�
�
�

@
@
@

�
�
�
�
��

A
A
A
A
AA

c

b

a d

Then (S , ◦,≤) is an ordered semihypergroup (see [7]). It can be easily shown that W1 = {b}, W2 = {c}
are both weak hyperfilters of S . But W1 ∪ W2 = {b, c} is not a weak hyperfilter of S . In fact, since
b, c ∈ W1 ∪W2, but (b ◦ c) ∩ (W1 ∪W2) = ∅.

Theorem 3.4 Let W1,W2 be weak hyperfilters of an ordered semihypergroup S . Then W1 ∪ W2 is a
weak hyperfilter of S if and only if W1 ⊆ W2 or W2 ⊆ W1.

Proof ⇐. Clearly.
⇒. let W1 ∪W2 be a weak hyperfilter of S such that W1 * W2. We claim that W2 ⊆ W1. To prove

our claim, let a ∈ W1, a < W2 and b ∈ W2. Then a, b ∈ W1 ∪W2. Since W1 ∪W2 is a weak hyperfilter
of S , we have (a ◦ b) ∩ (W1 ∪W2) , ∅. This means that there exists c ∈ a ◦ b such that c ∈ W1 ∪W2,

which implies that c ∈ W1 or c ∈ W2. Assume that c ∈ W2. Since W2 is a weak hyperfilter of S , we have
a ∈ W2, which is a contradiction. It thus follows that c ∈ W1. Also, since W1 is a weak hyperfilter of S ,
it can be obtained that b ∈ W1. Hence W2 ⊆ W1. �

Theorem 3.5 Let S be an ordered semihypergroup. If {Wk | k ∈ I} is a family of weak hyperfilters of S
such that Wi ⊆ W j or W j ⊆ Wi for all i, j ∈ I, then

⋃
k∈I

Wk is a weak hyperfilter of S , where |I| ≥ 2.

Proof. The proof is similar to that of Theorem 3.7 in [7] with suitable modification. �

As we know, filters of ordered semigroups can be characterized by prime ideals (see [15]). Similarly,
the following theorem establishes the relation of weak hyperfilters and prime hyperideals of an ordered
semihypergroup S .

Theorem 3.6 Let S be an ordered semihypergroup and W a nonempty subset of S . Then W is a
weak hyperfilter of S if and only if S \W = ∅ or S \W is a prime hyperideal of S , where S \W is the
complement of W in S .

Proof. ⇒. Assume that W is a weak hyperfilter of S and S \F , ∅. We first claim that S \W is a
hyperideal of S . To show our claim, let x ∈ S \W, y ∈ S . If x ◦ y * S \W, then there exists z ∈ x ◦ y such
that z ∈ W, which means that (x ◦ y) ∩W , ∅. Since W is a weak hyperfilter of S , it can be concluded
that x ∈ W, which is a contradiction. Hence x ◦ y ⊆ S \W, and we have (S \W) ◦ S ⊆ S \W. Similarly,
S ◦ (S \W) ⊆ S \W. Let y ∈ S \W, S 3 x ≤ y. If x ∈ W, then, since W is a weak hyperfilter of S and
W 3 x ≤ y ∈ S , we have y ∈ W. It contradicts the fact that y ∈ S \W. Therefore, x ∈ S \W. Furthermore,
we claim that S \W is prime. Indeed, let x, y ∈ S be such that x ◦ y ⊆ S \W. If x ∈ W and y ∈ W, then,
since W is a weak hyperfilter of S , (x ◦ y) ∩W , ∅. Impossible. Thus x ∈ S \W or y ∈ S \W. Therefore,
S \W is a prime hyperideal of S .
⇐. Let S \W = ∅. Then W = S , and W is clearly a weak hyperfilter of S . If S \W is a prime
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hyperideal of S , then (x ◦ y) ∩ W , ∅ for any x, y ∈ W. In fact, if (x ◦ y) ∩ W = ∅, then we have
x◦y ⊆ S \W. Since S \W is prime, it can be shown that x ∈ S \W or y ∈ S \W, which is impossible. Next
let x, y ∈ S be such that (x ◦ y)∩W , ∅. Then x ∈ W and y ∈ W. Indeed, if x ∈ S \W, then, since S \W is
a hyperideal of S , we have x ◦ y ⊆ S \W. It implies that (x ◦ y)∩W = ∅, which is a contradiction. Hence
x ∈ W. In a similar way, we can show that y ∈ W. Furthermore, let x ∈ W and x ≤ y ∈ S . Then y ∈ W.
In fact, if y ∈ S \W, then, since S \W is a hyperideal of S and S 3 x ≤ y ∈ S \W, we have x ∈ S \W. This
is impossible. Thus y ∈ W. Therefore, W is a weak hyperfilter of S . �

Theorem 3.7 Let {Ti | i ∈ I} be a family of prime hyperideals of an ordered semihypergroup S . Then⋂
i∈I

Ti is a semiprime hyperideal of S if
⋂
i∈I

Ti , ∅.

Proof. Let {Ti | i ∈ I} be a family of prime hyperideals of S such that
⋂
i∈I

Ti , ∅. Then
⋂
i∈I

Ti is a

hyperideal of S by Lemma 2.2. Moreover, we claim that
⋂
i∈I

Ti is semiprime. To show our claim, let

a ∈ S be such that a ◦ a ⊆
⋂
i∈I

Ti. Then a ◦ a ⊆ Ti for every i ∈ I. Thus, by hypothesis, a ∈ Ti for any

i ∈ I. It thus concludes that a ∈
⋂
i∈I

Ti. Consequently,
⋂
i∈I

Ti is a semiprime hyperideal of S . �

By Theorem 3.7, every nonempty intersection of prime hyperideals of S is a semiprime hyperideal
of S . However, the nonempty intersection of prime hyperideals of S is not necessarily prime. It can be
illustrated by the following counterexample.

Example 3.8 Let (S , ◦,≤) be the ordered semihypergroup given in Example 3.3. We have shown that
W1 = {b} and W2 = {c} are weak hyperfilters of S . Thus, by Theorem 3.6, T1 = S \W1 = {a, c, d} and
T2 = S \W2 = {a, b, d} are both prime hyperideals of S . But T1 ∩ T2 = {a, d} is not a prime hyperideal
of S . Indeed, b ◦ c = {a, d} ⊆ T1 ∩ T2, but b < T1 ∩ T2 and c < T1 ∩ T2.

In the following theorem, we give a condition for every nonempty intersection of prime
hyperideals of S to be a prime hyperideal of S .

Theorem 3.9 Let S be an ordered semihypergroup. Then every nonempty intersection of prime
hyperideals of S is a prime hyperideal of S if and only if the set of prime hyperideals of S is a chain
under inclusion.

Proof. Let I1 and I2 be any two prime hyperideals of S . It can be obtained that I1 ⊆ I2 or I2 ⊆ I1. In
fact, if there exist x, y ∈ S such that x ∈ I1\I2 and y ∈ I2\I1, then, since I1 and I2 are both hyperideals
of S , x ◦ y ⊆ I1 ∩ I2. By hypothesis, I1 ∩ I2 is a prime hyperideal of S . Hence we have x ∈ I1 ∩ I2 or
y ∈ I1 ∩ I2, which is a contradiction. We have thus shown that I1 ⊆ I2 or I2 ⊆ I1. In other words, the set
of prime hyperideals of S is indeed a chain under inclusion.

Conversely, assume that Iα (α ∈ Λ) is a prime hyperideal of S and Λ is an index set. Let
I =
⋂
α∈Λ

Iα , ∅. Then I is a hyperideal of S by Lemma 2.2. To prove that I is prime, by Theorem 3.6

we only need to show that S \I = ∅ or S \I is a weak hyperfilter of S . Suppose that S \I , ∅. It can be
easily observed that

S \I = S \
⋂
α∈Λ

Iα =
⋃
α∈Λ

(S \Iα).

Since Iα is a prime hyperideal of S for any i ∈ Λ, S \Iα (α ∈ Λ) is a weak hyperfilter of S if S \Iα , ∅
by Theorem 3.6. By hypothesis, {Iα}α∈Λ is a chain under inclusion, and thus, {S \Iα}α∈Λ is also a chain
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under inclusion. Hence, by Theorem 3.5,
⋃
α∈Λ

(S \Iα) is a weak hyperfilter of S . It implies that S \I is a

weak hyperfilter of S . Thus, by Theorem 3.6, I is a prime hyperideal of S . �

4. Characterizations of intra-regular (duo) ordered semihypergroups

In this section we discuss the properties of weak hyperfilters of ordered semihypergroups in depth,
and give some characterizations of intra-regular (duo) ordered semihypergroups.

Let S be an ordered semihypergroup and a ∈ S . We denote by W(x) the weakly hyperfilter of S
generated by a, and define a relationW := {(x, y) ∈ S × S | W(x) = W(y)}. It can be easily shown that
W is an equivalence relation on S .

Example 4.1 We consider a set S := {a, b, c, d, e} with the following hyperoperation “◦” and the order
“ ≤ ”:

◦ a b c d e
a {a, b} {a, b} {a, b} {a, b} {a, b}
b {a, b} {a, b} {a, b} {a, b} {a, b}
c {a, b} {a, b} {c} {c} {e}
d {a, b} {a, b} {c} {d} {e}
e {a, b} {a, b} {c} {c} {e}

≤:= {(a, a), (a, c), (a, d), (a, e), (b, b), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e), (d, d), (e, e)}.
We give the covering relation “≺” and the figure of S as follows:

≺= {(a, c), (b, c), (c, d), (c, e)}.

b b

b b
b��

�
��

@
@
@
@@a

c

d

b

e

Then (S , ◦,≤) is an ordered semihypergroup (see [8]). It is easy to check that W(a) = W(b) = S ,W(c) =

W(e) = {c, d, e},W(d) = {d}. Thus the equivalence relationW on S is as follows:
W := {(a, a), (a, b), (b, a), (b, b), (c, c), (c, e), (d, d), (e, c), (e, e)}.

Theorem 4.2 Let S be an ordered semihypergroup. ThenW =
⋂
{δI | I ∈ P(S )}, where P(S ) is the set

of all prime hyperideals of S .

Proof. Let (x, y) ∈ W. Then we prove that (x, y) ∈ δI for any I ∈ P(S ). Indeed, if (x, y) < δI for some
I ∈ P(S ), then (x < I and y ∈ I) or (x ∈ I and y < I). Let x < I and y ∈ I. Then ∅ , S \I ⊆ S .
Since S \(S \I) (= I) is a prime hyperideal of S , by Theorem 3.6, S \I is a weak hyperfilter of S . Since
x ∈ S \I, we have W(x) ⊆ S \I, and thus W(y) ⊆ S \I, i.e., y ∈ S \I. It contradicts the fact that y ∈ I.
Similarly, if x ∈ I and y < I, we can also get a contradiction. This proves thatW ⊆

⋂
{δI | I ∈ P(S )}.

To show the inverse inclusion, let (x, y) ∈ δI for any I ∈ P(S ). Assume that (x, y) <W. Then it can be
easily shown that x < W(y) or y < W(x). Let x < W(y). Then x ∈ S \W(y). For the simplicity’s sake, we
denote S \W(y) by I′. Then I′ , ∅. Since W(y) is a weak hyperfilter of S , by Theorem 3.6, I′ is a prime
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hyperideal of S . Thus we have I′ ∈ P(S ), x ∈ I′ and y < I′ (since y ∈ W(y)), and (x, y) < δI′ , which
contradicts the hypothesis. From y < W(x), similarly, we get a contradiction. Hence (x, y) ∈ W. We
have thus shown that

⋂
{δI | I ∈ P(S )} ⊆ W. The proof is completed. �

Let S be an ordered semihypergroup. The Green’s relations of S are the equivalence relations
R,L,J andH of S defined as follows:
R := {(x, y) | R(x) = R(y)}.
L := {(x, y) | L(x) = L(y)}.
J := {(x, y) | I(x) = I(y)}.
H := R ∩ L.

We denote by (x)R (resp. (x)L, (x)J ) the R-class (resp. L-class, J-class) containing x (x ∈ S ) (see
[16]).

Theorem 4.3 Let S be an ordered semihypergroup. Then the following statements hold:
(1) If A is the set of all right hyperideals, B the set of all left hyperideals and M the set of all

hyperideals of S , then
R =
⋂
{δI | I ∈ A}, L =

⋂
{δI | I ∈ B}, J =

⋂
{δI | I ∈ M}.

(2)H ⊆ R ⊆ J ⊆W ⊆ N ,H ⊆ L ⊆ J ⊆W ⊆ N .

(3) If A is a right hyperideal, B a left hyperideal and I a hyperideal of S , then
A =
⋃
{(x)R | x ∈ A}, B =

⋃
{(x)L | x ∈ B}, I =

⋃
{(x)J | x ∈ I}.

Proof. The proofs of (1) and (3) come from Theorem 1 in [16].
(2) By Theorem 1 in [16],H ⊆ R ⊆ J . Moreover, we can show that J ⊆W. Indeed, by Theorem

4.2,W =
⋂
{δI | I ∈ P(S )}, where P(S ) is the set of all prime hyperideal of S . By (1), J =

⋂
{δI | I ∈

M}, Since P(S ) ⊆ M, we have
J =

⋂
{δI | I ∈ M} ⊆

⋂
{δI | I ∈ P(S )} =W.

Furthermore, since every completely prime hyperideal of S is a prime hyperideal of S , by Lemma 2.3
and Theorem 4.2, we haveW ⊆ N . Therefore,H ⊆ R ⊆ J ⊆ W ⊆ N . Similarly, we can obtain that
H ⊆ L ⊆ J ⊆W ⊆ N . �

An ordered semihypergroup (S , ◦,≤) is called intra-regular if, for every element a of S , there exist
x, y ∈ S such that a � x ◦ a ◦ a ◦ y. Equivalently, a ∈ (S ◦ a ◦ a ◦ S ],∀a ∈ S . The following theorem
provides a characterization of intra-regular ordered semihypergroups by the weak hyperfilters.

Theorem 4.4 An ordered semihypergroup (S , ◦,≤) is intra-regular if and only if W(x) = {y ∈ S | x ∈
(S ◦ y ◦ S ]} for any x ∈ S .

Proof. Assume that S is an intra-regular ordered semihypergroup and x ∈ S . Let T := {y ∈ S | x ∈
(S ◦ y ◦ S ]}. Then we prove that T is the weak hyperfilter of S generated by x. In fact:

(1) Since S is an intra-regular ordered semihypergroup, we have x ∈ (S ◦ x ◦ x ◦ S ] ⊆ (S ◦ x ◦ S ],
and thus x ∈ T.

(2) Let y, z ∈ T. Then, by Lemma 2.1, we have

x ∈ (S ◦ x ◦ x ◦ S ] ⊆ (S ◦ (S ◦ z ◦ S ] ◦ (S ◦ y ◦ S ] ◦ S ] ⊆ (S ◦ z ◦ S ◦ y ◦ S ]
⊆ (S ◦ (S ◦ (z ◦ S ◦ y) ◦ (z ◦ S ◦ y) ◦ S ] ◦ S ] ⊆ (S ◦ z ◦ S ◦ y ◦ z ◦ S ◦ y ◦ S ]
⊆ (S ◦ y ◦ z ◦ S ].

Consequently, there exists a ∈ y ◦ z such that x ∈ (S ◦ a ◦ S ]. It implies that (y ◦ z) ∩ T , ∅.
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(3) Let y, z ∈ S be such that (y ◦ z) ∩ T , ∅. Then there exists a ∈ S such that a ∈ y ◦ z and a ∈ T,
and thus we have

x ∈ (S ◦ a ◦ S ] ⊆ (S ◦ y ◦ z ◦ S ] ⊆ (S ◦ y ◦ S ], (S ◦ z ◦ S ].
It thus follows that y ∈ T, z ∈ T.

(4) Let y ∈ T, z ∈ S and y ≤ z. Then x ∈ (S ◦ y ◦ S ] ⊆ (S ◦ z ◦ S ], which implies that z ∈ T.
(5) Assume that W is a weak hyperfilter of S containing x. Then T ⊆ W. Indeed, let y ∈ T. Then

x ∈ (S ◦ y ◦ S ], and there exist s1, s2 ∈ S such that x � s1 ◦ y ◦ s2. Thus there exists a ∈ s1 ◦ y ◦ s2

such that x ≤ a, and, since W is a weak hyperfilter of S containing x, we have a ∈ W. It implies that
(s1 ◦ y ◦ s2) ∩W , ∅. Hence there exists b ∈ s1 ◦ y such that (b ◦ s2) ∩W , ∅. Also, since W is a weak
hyperfilter of S , we have b ∈ W, which means that (s1 ◦ y) ∩W , ∅. Consequently, y ∈ W.

Therefore, T is the weak hyperfilter of S generated by x. In other words, W(x) = {y ∈ S | x ∈
(S ◦ y ◦ S ]}.

Conversely, let x ∈ S . Since x ∈ W(x), we have (x ◦ x) ∩ W(x) , ∅. It implies that there exists
y ∈ x ◦ x such that y ∈ W(x). Thus we have x ∈ (S ◦ y ◦ S ] ⊆ (S ◦ x ◦ x ◦ S ]. Hence S is intra-regular. �

Corollary 4.5 An ordered semihypergroup (S , ◦,≤) is intra-regular if and only ifW = J .

Proof. Suppose that S is an intra-regular ordered semihypergroup. Let (x, y) ∈ W. Then x ∈ W(y),
and thus, by Theorem 4.4, y ∈ (S ◦ x ◦ S ] ⊆ I(x). Similarly, it can be proved that x ∈ I(y). Hence
I(x) = I(y), i.e., (x, y) ∈ J . On the other hand, by Theorem 4.3(2), J ⊆W. Therefore,W = J .

Conversely, assume thatW = J and x ∈ S . We first claim that (x, y) ∈ W for some y ∈ x ◦ x. To
prove our claim, it is enough to prove that W(x) = W(y) for some y ∈ x ◦ x. In fact, since x ∈ W(x)
and W(x) is a weak hyperfilter of S , we have (x ◦ x) ∩W(x) , ∅, and there exists y ∈ x ◦ x such that
y ∈ W(x), i.e., W(y) ⊆ W(x). Similarly, since y ∈ W(y) and W(y) is also a weak hyperfilter of S , it can
be shown that W(x) ⊆ W(y). Therefore, (x, y) ∈ W for some y ∈ x ◦ x. Furthermore, by the above
proof, it can be also obtained that (y, z) ∈ W for some z ∈ y ◦ y. By hypothesis, (x, y) ∈ J , (y, z) ∈ J .
Thus (x, z) ∈ J , and we have x ∈ I(x) = I(z), where z ∈ x ◦ x ◦ x ◦ x. Hence, by Lemma 2.1, we have

x ∈ (z ∪ S ◦ z ∪ z ◦ S ∪ S ◦ z ◦ S ]
⊆ (x ◦ x ◦ x ◦ x ∪ S ◦ x ◦ x ◦ x ◦ x ∪ x ◦ x ◦ x ◦ x ◦ S ∪ S ◦ x ◦ x ◦ x ◦ x ◦ S ]
⊆ (S ◦ x ◦ x ◦ S ],

which means that S is intra-regular. �

Theorem 4.6 Let S be an ordered semihypergroup. Then every left hyperideal of S is semiprime and
S is left duo if and only if W(x) = {y ∈ S | x ∈ (S ◦ y]} for any x ∈ S .

Proof. ⇒ Assume that x ∈ S . Let T := {y ∈ S | x ∈ (S ◦ y]}. In order to prove that T is the weak
hyperfilter of S generated by x, we now consider the following five steps:

(1) Since x ◦ x ⊆ (S ◦ x] and (S ◦ x] is a left hyperideal of S , by hypothesis, we have x ∈ (S ◦ x],
which means that x ∈ T.

(2) Let y, z ∈ T. Then x ∈ (S ◦ y], x ∈ (S ◦ z]. Since S is left duo, by Lemma 2.1, we have

x ◦ x ⊆ (S ◦ y] ◦ (S ◦ z] ⊆ ((S ◦ y] ◦ (S ◦ z]] ⊆ ((S ◦ y] ◦ S ◦ z]
⊆ ((S ◦ y] ◦ z] = (S ◦ y ◦ z].
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Thus x ∈ (S ◦ y ◦ z], and there exists a ∈ y ◦ z such that x ∈ (S ◦ a], i.e., a ∈ T. This implies that
(y ◦ z) ∩ T , ∅.

(3) Let y, z ∈ S be such that (y ◦ z) ∩ T , ∅. Then there exists a ∈ y ◦ z and a ∈ T, and thus we have
x ∈ (S ◦ a] ⊆ (S ◦ y ◦ z] ⊆ (S ◦ z].

It implies that z ∈ T.On the other hand, since S is left duo, we have x ∈ (S ◦y◦z] ⊆ ((S ◦y]◦z] ⊆ (S ◦y].
Therefore, y ∈ T.

(4) Let y ∈ T, z ∈ S and y ≤ z. Then x ∈ (S ◦ y] ⊆ (S ◦ z], which implies that z ∈ T.
(5) Suppose that W is a weak hyperfilter of S containing x. Then we claim that T ⊆ W. To prove

our claim, let y ∈ T. Then x ∈ (S ◦ y], and there exists s1 ∈ S such that x � s1 ◦ y. Hence there exists
a ∈ s1 ◦ y such that x ≤ a, and, by hypothesis we have a ∈ W. It implies that (s1 ◦ y) ∩ W , ∅. Thus
there exists b ∈ s1 ◦ y such that b ∈ W, which means that (s1 ◦ y) ∩W , ∅. Therefore, y ∈ W.

Hence T is the weak hyperfilter of S generated by x, and W(x) = {y ∈ S | x ∈ (S ◦ y]}.
⇐. Assume that L is a left hyperideal of S . Let x ∈ S be such that x ◦ x ⊆ L. Similar to the proof of

Corollary 4.5, there exists y ∈ x ◦ x such that (x, y) ∈ W, and thus y ∈ W(x). Then we have
x ∈ (S ◦ y] ⊆ (S ◦ x ◦ x] ⊆ (S ◦ L] ⊆ (L] = L.

Therefore, L is semiprime. Furthermore, we claim that L is also a right hyperideal of S . To show our
claim, let y ∈ L, z ∈ S . Then, for any a ∈ y ◦ z, since a ∈ W(a) and W(a) is a weak hyperfilter of S , we
have y, z ∈ W(a). Hence (z ◦ y) ∩W(a) , ∅, and there exists b ∈ z ◦ y such that b ∈ W(a). This implies
that b ∈ W(b) ⊆ W(a). Thus we have

a ∈ (S ◦ b] ⊆ (S ◦ z ◦ y] ⊆ (S ◦ y] ⊆ (S ◦ L] ⊆ (L] = L.
Consequently, L ◦ S ⊆ S , and S is left duo. �

Corollary 4.7 Let S be a left duo ordered semihypergroup. Then every left hyperideal of S is
semiprime if and only ifW = L.

Proof. Assume that every left hyperideal of S is semiprime. Let (x, y) ∈ W. Then x ∈ W(y), y ∈ W(x),
and thus, by Theorem 4.6, we have

y ∈ (S ◦ x] ⊆ L(x), x ∈ (S ◦ y] ⊆ L(y).
Hence L(x) = L(y), i.e., (x, y) ∈ L. On the other hand, by Theorem 4.3(2), L ⊆ W. Therefore,
W = L.

Conversely, suppose that L is a left hyperideal of S andW = L. Let x ∈ S be such that x ◦ x ⊆ L.
Then, by the proof of Corollary 4.5, there exists y ∈ x ◦ x such that (x, y) ∈ W, and thus (x, y) ∈ L.
Hence, by Lemma 2.1, we have

x ∈ L(y) = (y ∪ S ◦ y] ⊆ (x ◦ x ∪ S ◦ x ◦ x] ⊆ (L ∪ S ◦ L] ⊆ (L] = L.
We have thus shown that L is semiprime. �

Similarly, we have the following theorem:

Theorem 4.8 Let S be a right duo ordered semihypergroup. Then the following conditions are
equivalent:

(1) Every right hyperideal of S is semiprime.
(2) W = R.

(3) W(x) = {y ∈ S | x ∈ (y ◦ S ]} for any x ∈ S .

Theorem 4.9 Let S be an ordered semihypergroup. Then every hyperideal of S is semiprime and S is
duo if and only if W(x) = {y ∈ S | x ∈ (y ◦ S ◦ y]} for any x ∈ S .
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Proof. The proof is similar to that of Theorem 4.6 with suitable modification, we omit it. �
By Corollary 4.7, Theorems 4.8 and 4.9, the following corollary can be immediately obtained:

Corollary 4.10 Let S be a duo ordered semihypergroup. Then every hyperideal of S is semiprime if
and only ifW = H .

5. Conclusions

Similar to the theory of ordered semigroups, hyperfilters and weak hyperfilters of ordered
semihypergroups play an important role in studying the structures of ordered semihypergroups. In this
paper, we introduced the concept of weak hyperfilters of ordered semihypergroups, which is a
generalization of the concept of hyperfilters of ordered semihypergroups. Several properties of weak
hyperfilters of ordered semihypergroups were studied. Especially, some concepts and results of
ordered semigroups are generalized to ordered semihypergroups. We established the relation of weak
hyperfilters and prime hyperideals of an ordered semihypergroup. Moreover, we defined and
investigated the equivalence relation W on an ordered semihypergroup S by weak hyperfilters.
Finally, we provided some applications of weak hyperfilters. Especially, characterizations of
intra-regular (duo) ordered semihypergroups were given by properties of weak hyperfilters. We hope
that this work would offer foundation for further study of the theory on ordered semihypergroups. We
will continue our research along this direction and hopefully we will investigate some new results in
future. Our results can be further applied to other algebraic hyperstructure.
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