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Abstract: This paper investigates the problem for exponential stability of stochastic Hopfield neural
networks involving multiple discrete time-varying delays and multiple distributed time-varying delays.
The exponential stability of such neural systems has not been given much attention in the past literature
because this type of neural systems cannot be transformed into the vector forms and it is difficult
to derive the easily verified stability conditions expressed in terms of the linear matrix inequality.
Therefore, this paper tries to establish the easily verified sufficient conditions of the linear matrix
inequality forms to ensure the mean-square exponential stability and the almost sure exponential
stability for this type of neural systems by constructing a suitable Lyapunov-Krasovskii functional and
inequality techniques. Four examples are provided to demonstrate the effectiveness of the proposed
theoretical results and compare the established stability conditions to the previous results.
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1. Introduction

Since Hopfield neural network was proposed in 1982, many mathematicians, physicists and
computer experts have been working on the dynamic behaviors of this network and its applications in
pattern recognition, associative memory and optimization [1–4]. The stability analysis of nonlinear
nature of neural networks is of great interest when designing neural networks for practical
applications because the existence of stable equilibrium points of such neural networks can avoid
some suboptimal responses. Therefore, the stability analysis of dynamic neural system has always

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2021245


4143

been a research hotspot. It is also known that it is inevitable to encounter various types of time delay
which might cause great damage to the stability in the process of neural network implementation.
Among the various types of time delay, time-varying delay and distributed delay are the most
common. The time-varying delay must exist due to the finite switching speed of amplifiers and the
distributed delay often occur beacuse a neural network usually has a spatial nature due to the presence
of an amount of parallel pathways of a variety of axon sizes and lengths. Recently, some research
papers have analyzed the stability of various delayed neural networks and obtained useful stability
results, see, for example, [5–19], and references therein.

On the other hand, it has been well recognized that stochastic perturbations are ubiquitous and
inevitable in the real nervous systems [20]. Recently, some valuable stability results of stochastic
delayed neural networks can be found in some famous journals related to mathematics, physics and
neural network, for example, see [21–38] and references therein. It is noted that most of these
literatures have studied the networks which can be expressed in the vector forms and established
various stability criteria in the linear matrix inequality forms. Different from them, stochastic neural
networks investigated in this paper cannot be transformed into the vector forms because of the
existence of the multiple delays, which causes the difficulty of establishing the stability condition
expressed in terms of the linear matrix inequality. The existence of the stochastic perturbations, the
time-varying delays and the distributed delays in the stochastic neural networks further increase the
difficulty. Perhaps, it is the reason that the exponential stability of such neural networks has not been
given much attention in the past literature.

In this paper, we mainly consider the mean-square stability and almost sure exponential stability
for nonlinear stochastic Hopfield neural networks involving multiple discrete time-varying delays and
multiple distributed time-varying delays. The main aim of this paper is to establish the stability
conditions of the linear matrix inequality form for such stochastic Hopfield neural networks by
constructing a suitable Lyapunov-Krasovskii functional and inequality techniques. Since the systems
studied in [5, 24, 33] are some special cases of our proposed system, the stability conditions we
established are valid for these systems while their stability conditions are invalid for our proposed
system. Four examples are provided to demonstrate the effectiveness of our proposed theoretical
results and compare the established stability conditions to the previous results in [5, 24, 33]. These
examples show that the established stability conditions are easily verified by MATLAB LMI control
toolbox and better than the stability conditions in [5, 24, 33]. Therefore, for the neural networks in [5,
24, 33], our results provide novel sufficient conditions which are easy to verify. Our proposed
approach can be applied to study the exponential stability for other types of stochastic (or
deterministic) neural networks with multiple delays.

2. Preliminaries

This paper considers the following stochastic Hopfield neural networks with the mixed multiple
delays

dxi(t) = [−cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi jg j(x j(t − τi j(t)))
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+

n∑
j=1

∫ t

t−ρi j(t)
di jh j(x j(s))ds]dt

+

n∑
j=1

σi j(x j(t), x j(t − τi j(t)))dw j(t), i = 1, · · · , n, (2.1)

where ci is the self-feedback connection weight satisfying ci > 0; ai j, bi j and di j present the connection
weight coefficients; τi j(t) and ρi j(t) are multiple delays; σi j(·, ·) are the diffusion functions; fi(·), gi(·)
and hi(·) denote the nonlinear activation functions; w(t) = (w1(t), · · · ,wn(t))T is n-dimensional
Brownian motion defined on a complete probability space (Ω,F ,P) with a natural filtration {Ft}t≥0

generated by {w(t)}, where we associate Ω with the canonical space generated by w(t), and denote by
F the associated σ-algebra generated by {w(s) : 0 ≤ s ≤ t} with the probability measure P.

Throughout this paper, the following assumptions are required for system (2.1):
(A1) : There exist constants τ > 0, ρ > 0 and µ such that for t ≥ 0,

0 ≤ τi j(t) ≤ τ, 0 ≤ ρi j(t) ≤ ρ, τ̇i j(t) ≤ µ < 1.

(A2) : The diffusion functions σi j(·, ·) satisfy σi j(0, 0) = 0 and that there exist nonnegative constants
Li j and Mi j such that for all x, y ∈ R,

|σi j(x, y)| ≤ Li j|x| + Mi j|y|.

(A3) : fi(·), gi(·) and hi(·) satisfy fi(0) = gi(0) = hi(0) = 0 and that there exist some constants
α−i , α

+
i , β

−
i , β

+
i , γ

−
i and γ+

i such that for all x, y ∈ R(x , y),

α−i ≤
fi(x) − fi(y)

x − y
≤ α+

i , β
−
i ≤

gi(x) − gi(y)
x − y

≤ β+
i , γ

−
i ≤

hi(x) − hi(y)
x − y

≤ γ+
i .

The initial condition xi(s) = ξi(s), s ∈ [−max{τ, ρ}, 0], and
ξ = {(ξ1(s), · · · , ξ1(s))T : −max{τ, ρ} ≤ s ≤ 0} is C([−max{τ, ρ}, 0];Rn)-valued function and
F0-measurable Rn-valued random variable satisfying

||ξ||2 = sup
−max{τ, ρ}≤t≤0

E‖ξ(t)‖2 < ∞,

where ‖ · ‖ denotes the Euclidean norm and C([−max{τ, ρ}, 0];Rn) denotes the space of all continuous
Rn-valued functions defined on [−max{τ, ρ}, 0].
Remark 1. It is noted that assumption (A3) is less conservative than the Lipschitz conditions satisfied
by fi(·) and gi(·) in [15, 22–24, 29, 38] since α−i , α

+
i , β

−
i and β+

i (α−i < α+
i , β

−
i < β+

i ) in (A3) can be any
real numbers.

System (2.1) is a more general mathematical expression and can be described in different
mathematical forms by changing the system parameters and functions. When
τi j(t) = ρi j(t) = τ j(t), f j = g j,w1(t) = · · · = w j(t) = w(t) and
σi j(x j(t), x j(t − τi j(t))) = Li jx j(t) + Mi jx j(t − τ j(t)), system (2.1) transforms into the following
equation studied in [33]:

dxi(t) = [−cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi j f j(x j(t − τ j(t)))
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+

n∑
j=1

∫ t

t−τ j(t)
di jh j(x j(s))ds]dt

+

n∑
j=1

[Li jx j(t) + Mi jx j(t − τ j(t))]dw(t), i = 1, · · · , n. (2.2)

When τi j(t) = τ j, di j = 0 and σi j(x j(t), x j(t − τi j(t))) = σi j(x j(t)), system (2.1) transforms into the
following equation studied in [24]

dxi(t) = [−cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi jg j(x j(t − τ j))]dt

+

n∑
j=1

σi j(x j(t))dw j(t), i = 1, · · · , n, (2.3)

When f j = g j, di j = 0 and σi j(x j(t), x j(t − τi j(t))) = 0, system (2.1) transforms into the following
deterministic system studied in [5]:

dxi(t) = −cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi j f j(x j(t − τi j(t))), i = 1, · · · , n. (2.4)

3. Stability results and examples

In this section, novel sufficient conditions of exponential stability of zero solution of system (2.1)
are presented. Four examples are given to demonstrate the effectiveness of our theoretical results and
compare the stability conditions to the previous results in [5, 24, 33].
Theorem 1. Suppose that there exist some positive real numbers p1, · · · , pn, ui1, · · · , uin (i = 1, 2, 3)
such that

Γ =


∆ PA + U1Σ4 U2Σ6 U3Σ8

∗ −2U1 0 0
∗ ∗ −2U2 + 1

1−µB2 0
∗ ∗ ∗ −2U3 + ρ2D2

 < 0,

where ∗ means the symmetric terms, Γ < 0 means that matrix Γ is symmetric negative definite,

∆ = −2PC + PB1 + PD1 + Σ1 +
1

1 − µ
Σ2 − 2U1Σ3 − 2U2Σ5 − 2U3Σ7,

A = (ai j)n×n,C = diag{c1, · · · , cn}, P = diag{p1, · · · , pn},

U1 = diag{u11, · · · , u1n},U2 = diag{u21, · · · , u2n},U3 = diag{u31, · · · , u3n},

B1 = diag{
n∑

j=1

|b1 j|, · · · ,

n∑
j=1

|bn j|}, B2 = diag{
n∑

j=1

p j|b j1|, · · · ,

n∑
j=1

p j|b jn|},

D1 = diag{
n∑

j=1

|d1 j|, · · · ,

n∑
j=1

|dn j|},D2 = diag{
n∑

j=1

p j|d j1|, · · · ,

n∑
j=1

p j|d jn|},
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Σ1 = 2 diag{
n∑

j=1

p jL2
j1, · · · ,

n∑
j=1

p jL2
jn},Σ2 = 2 diag{

n∑
j=1

p jM2
j1, · · · ,

n∑
j=1

p jM2
jn},

Σ3 = diag{α−1α
+
1 , · · · , α

−
nα

+
n },Σ4 = diag{α−1 + α+

1 , · · · , α
−
n + α+

n },

Σ5 = diag{β−1β
+
1 , · · · , β

−
nβ

+
n },Σ6 = diag{β−1 + β+

1 , · · · , β
−
n + β+

n },

Σ7 = diag{γ−1γ
+
1 , · · · , γ

−
nγ

+
n },Σ8 = diag{γ−1 + γ+

1 , · · · , γ
−
n + γ+

n }.

Then zero solution of system (2.1) is almost surely exponentially stable and exponentially stable in
mean square.
Proof. Γ < 0 implies that there exists a sufficient small real number λ > 0 such that

Γ̄ =


∆̄ PA + U1Σ4 U2Σ6 U3Σ8

∗ −2U1 0 0
∗ ∗ −2U2 + 1

1−µeλτB2 0
∗ ∗ ∗ −2U3 + ρ2eλρD2

 < 0,

in which

∆̄ = λP − 2PC + PB1 + PD1 + Σ1 +
eλτ

1 − µ
Σ2 − 2U1Σ3 − 2U2Σ5 − 2U3Σ7.

Constructing the following Lyapunov-Krasovskii functional

V(t) = eλt
n∑

i=1

pix2
i (t) +

n∑
i=1

n∑
j=1

∫ t

t−τi j(t)
eλ(s+τ) pi

|bi j|g2
j(x j(s)) + 2M2

i jx
2
j(s)

1 − µ
ds

+

∫ 0

−ρ

∫ t

t+s

n∑
i=1

n∑
j=1

pi|di j|ρeλ(θ+ρ)h2
j(x j(θ))dθds. (3.1)

Applying Itô formula in [21] to V(t) along the trajectory of system (2.1), we obtain

dV(t) = V̄(t)dt + 2eλt
n∑

i=1

pixi(t)
n∑

j=1

σi j(x j(t), x j(t − τi j(t)))dw j(t), (3.2)

where

V̄(t) = λeλt
n∑

i=1

pix2
i (t) +

n∑
i=1

n∑
j=1

{
eλ(t+τ) pi

|bi j|g2
j(x j(t)) + 2M2

i jx
2
j(t)

1 − µ

−(1 − τ̇i j(t))eλ(t−τi j(t)+τ) pi

|bi j|g2
j(x j(t − τi j(t))) + 2M2

i jx
2
j(t − τi j(t))

1 − µ

}
+

n∑
i=1

n∑
j=1

pi|di j|ρ
{
ρeλ(t+ρ)h2

j(x j(t)) −
∫ 0

−ρ

eλ(t+s+ρ)h2
j(x j(t + s))ds

}
+2eλt

n∑
i=1

pixi(t)
{
− cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi jg j(x j(t − τi j(t)))
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+

n∑
j=1

∫ t

t−ρi j(t)
di jh j(x j(s))ds

}
+ eλt

n∑
i=1

pi

n∑
j=1

σ2
i j(x j(t), x j(t − τi j(t))).

From (A1) and (A2), we derive

V̄(t) ≤ λeλt
n∑

i=1

pix2
i (t) +

n∑
i=1

n∑
j=1

{
eλ(t+τ) pi

|bi j|g2
j(x j(t)) + 2M2

i jx
2
j(t)

1 − µ

−eλt pi(|bi j|g2
j(x j(t − τi j(t))) + 2M2

i jx
2
j(t − τi j(t)))

}
+

n∑
i=1

n∑
j=1

pi|di j|ρ
{
ρeλ(t+ρ)h2

j(x j(t)) −
∫ t

t−ρ
eλ(s+ρ)h2

j(x j(s))ds
}

+eλt
n∑

i=1

{
− 2picix2

i (t) +

n∑
j=1

2piai jxi(t) f j(x j(t))

+

n∑
j=1

pi|bi j|(x2
i (t) + g2

j(x j(t − τi j(t))))

+

n∑
j=1

pi|di j|[x2
i (t) + (

∫ t

t−ρi j(t)
|h j(x j(s))|ds)2]

+2
n∑

j=1

piL2
i jx

2
j(t) + 2

n∑
j=1

piM2
i jx

2
j(t − τi j(t))

}
≤ λeλt

n∑
i=1

pix2
i (t) +

n∑
i=1

n∑
j=1

eλ(t+τ) pi

|bi j|g2
j(x j(t)) + 2M2

i jx
2
j(t)

1 − µ

+

n∑
i=1

n∑
j=1

pi|di j|ρ
{
ρeλ(t+ρ)h2

j(x j(t)) − eλt
∫ t

t−ρ
h2

j(x j(s))ds
}

+eλt
n∑

i=1

{
− 2picix2

i (t) +

n∑
j=1

2piai jxi(t) f j(x j(t))

+

n∑
j=1

pi|bi j|x2
i (t) +

n∑
j=1

pi|di j|x2
i (t) + 2

n∑
j=1

piL2
i jx

2
j(t)

}
+eλt

n∑
i=1

n∑
j=1

pi|di j|ρ

∫ t

t−ρ
h2

j(x j(s))ds

≤ eλt
{
xT (t)

(
λP − 2PC + PB1 + PD1 + Σ1 +

eλτΣ2

1 − µ

)
x(t)

+
eλτ

1 − µ
gT (x(t))B2g(x(t)) + 2xT (t)PA f (x(t))

+ρ2eλρhT (x(t))D2h(x(t))
}
, (3.3)

where
x(t) = (x1(t), · · · , xn(t))T , f (x(t)) = ( f1(x1(t)), · · · , fn(xn(t)))T ,
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g(x(t)) = (g1(x1(t)), · · · , gn(xn(t)))T , h(x(t)) = (h1(x1(t)), · · · , hn(xn(t)))T .

From (A3), we derive

0 ≤ −2
n∑

i=1

u1i[ fi(xi(t)) − α+
i xi(t)][ fi(xi(t)) − α−i xi(t)]

= −2
n∑

i=1

u1i[ f 2
i (xi(t)) − (α+

i + α−i )xi(t) fi(xi(t)) + α+
i α
−
i x2

i (t)]

= −2 f T (x(t))U1 f (x(t)) + 2 f T (x(t))U1Σ4x(t) − 2xT (t)U1Σ3x(t), (3.4)

0 ≤ −2
n∑

i=1

u2i[gi(xi(t)) − β+
i xi(t)][gi(xi(t)) − β−i xi(t)]

≤ −2gT (x(t))U2g(x(t)) + 2gT (x(t))U2Σ6x(t) − 2xT (t)U2Σ5x(t) (3.5)

and

0 ≤ −2
n∑

i=1

u3i[hi(xi(t)) − γ+
i xi(t)][hi(xi(t)) − γ−i xi(t)]

≤ −2hT (x(t))U3h(x(t)) + 2hT (x(t))U3Σ8x(t) − 2xT (t)U3Σ7x(t). (3.6)

Inequalities (3.3)–(3.6) derive

V̄(t) ≤ eλtyT (t)Γ̄y(t) < 0, (3.7)

where y(t) = (xT (t), f T (x(t)), gT (x(t)), hT (x(t)))T .

Integrating from 0 and t for (3.2) and combining with (3.7), we obtain

V(t) = V(0) +

∫ t

0
V̄(s)ds +

∫ t

0
2eλs

n∑
i=1

pixi(s)
n∑

j=1

σi j(x j(s), x j(s − τi j(s)))dw j(s)

< V(0) +

∫ t

0
2eλs

n∑
i=1

pixi(s)
n∑

j=1

σi j(x j(s), x j(s − τi j(s)))dw j(s). (3.8)

The nonnegative semi-martingale convergence theorem in [21] and (3.8) show that zero solution of
system (2.1) is almost surely exponentially stable.

Moreover, (3.1) and (3.8) deduce

eλt min
1≤i≤n
{pi}E‖x(t)‖2

≤ EV(t) < EV(0)

≤ E
{

max
1≤i≤n
{pi}‖x(0)‖2 +

n∑
i=1

n∑
j=1

∫ 0

−τ

eλ(s+τ) pi

|bi j|β
2
j + 2M2

i j

1 − µ
x2

j(s)ds
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+

∫ 0

−ρ

∫ 0

s

n∑
i=1

n∑
j=1

pi|di j|ρeλ(θ+ρ)γ2
j x

2
j(θ)dθds

}
≤

{
max
1≤i≤n
{pi} +

eλττ
1 − µ

max
1≤i≤n
{

n∑
j=1

p j(|b ji|β
2
i + 2M2

ji)}

+eλρρ3 max
1≤i≤n
{

n∑
j=1

p j|d ji|γ
2
i }

}
‖ξ‖2,

where βi = max{|β−i |, |β
+
i |}, γi = max{|γ−i |, |γ

+
i |}, which shows that zero solution of system (2.1) is

exponentially stable in mean square.
Remark 2. Generally speaking, it is difficult to establish the stability conditions of the linear matrix
inequality forms for the system which cannot be transformed into vector-matrix form. For system
(2.1), Theorem 1 gives the stability conditions of the linear matrix inequality forms. Unsurprisingly,
it is difficult to write an executable Matlab program to solve the matrices P, U1,U2 and U3 by Matlab
LMI Control Toolbox because the matrices B2,D2,Σ1 and Σ2 involve the elements p1, · · · , pn of matrix
P.

In what follows, we express a special case of Theorem 1 for p1 = · · · = pn = p, which provides a
easily verified sufficient criterion by Matlab LMI Control Toolbox.
Theorem 2. Suppose that there exist positive constants p, ui1, · · · , uin(i = 1, 2, 3) such that

Γ =


∆ pA + U1Σ4 U2Σ6 U3Σ8

∗ −2U1 0 0
∗ ∗ −2U2 + 1

1−µB2 0
∗ ∗ ∗ −2U3 + ρ2D2

 < 0,

where ∗, A,C, B1,D1,U1,U2,U3, and Σi(i = 3, 4, 5, 6, 7, 8) are defined as in Theorem 1,

∆ = −2pC + pB1 + pD1 + Σ1 +
1

1 − µ
Σ2 − 2U1Σ3 − 2U2Σ5 − 2U3Σ7,

B2 = p diag{
n∑

j=1

|b j1|, · · · ,

n∑
j=1

|b jn|},D2 = p diag{
n∑

j=1

|d j1|, · · · ,

n∑
j=1

|d jn|},

Σ1 = 2p diag{
n∑

j=1

L2
j1, · · · ,

n∑
j=1

L2
jn},Σ2 = 2p diag{

n∑
j=1

M2
j1, · · · ,

n∑
j=1

M2
jn}.

Then zero solution of system (2.1) is almost surely exponentially stable and exponentially stable in
mean square.

For the systems (2.2)–(2.4), Theorem 2 gives the following results.
Corollary 1. Suppose that there exist positive constants p, ui1, · · · , uin(i = 1, 2, 3) such that

Γ =


∆ pA + U1Σ4 U2Σ4 U3Σ8

∗ −2U1 0 0
∗ ∗ −2U2 + 1

1−µB2 0
∗ ∗ ∗ −2U3 + τ2D2

 < 0,
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where ∆ = −2pC + pB1 + pD1 + Σ1 + 1
1−µΣ2 − 2U1Σ3 − 2U2Σ3 − 2U3Σ7, other symbols are the same as

Theorem 2. Then, zero solution of system (2.2) is almost surely exponentially stable and exponentially
stable in mean square.
Corollary 2. Suppose that there exist positive constants p, ui1, · · · , uin(i = 1, 2, 3) such that

Γ =


∆ pA + U1Σ4 U2Σ6

∗ −2U1 0
∗ ∗ −2U2 + B2

 < 0,

where ∆ = −2pC + pB1 + Σ1 − 2U1Σ3 − 2U2Σ5, other symbols are the same as Theorem 2. Then, zero
solution of system (2.3) is almost surely exponentially stable and exponentially stable in mean square.
Corollary 3. Suppose that there exist positive constants p, ui1, · · · , uin(i = 1, 2, 3) such that

Γ =


∆ pA + U1Σ4 U2Σ4

∗ −2U1 0
∗ ∗ −2U2 + 1

1−µB2

 < 0,

where ∆ = −2pC + pB1 − 2U1Σ3 − 2U2Σ3, other symbols are the same as Theorem 2. Then, zero
solution of system (2.4) is globally exponentially stable.
Remark 3. Since the networks studied in [5, 24, 33] are some special cases of system (2.1), their
stability conditions are invalid for system (2.1). On the contrary, our stability conditions are valid
for the systems in [5, 24, 33]. In particular, the deterministic system (2.4) in [5] is a special case of
stochastic system (2.1), which leads to that it is easy to transform Theorem 2 into Corollary 3. That
is, Theorem 2 for system (2.1) includes Corollary 3 for corresponding system (2.4), which shows the
stability result of stochastic system is more general than that of corresponding deterministic system.
Remark 4. Although Theorem 5 in [33] gives the sufficient conditions of the linear matrix inequality
forms, the stability conditions of Corollary 1 are more easy to verify. Example 2 demonstrates that the
validity of Corollary 1 and the stability conditions of Corollary 1 are better than those of Theorem 5
in [33].
Remark 5. Theorem 3.1 in [24] gives the sufficient conditions of the algebraic forms by using
Lyapunov function eλt|x(t)|2. This Lyapunov function cannot be applied to study the system with
time-varying delays. Example 3 demonstrates that the validity of Corollary 2 and the invalidity of
Theorem 3.1 in [24], which shows that the stability conditions of Corollary 2 are better.
Remark 6. In [5], Theorem 2.4 provides the stability condition of the spectral radius form which
requires that the absolute values of all eigenvalues of matrix are less than 1. Example 4 demonstrates
that the validity of Corollary 3 and the invalidity of Theorem 2.4 in [5], which shows that the stability
conditions of Corollary 3 are better.
Example 1. Consider system (2.1) with the following parameters and functions:

A = (ai j)4×4 =


1 −1 −1 1
−1 1 −1 −1
1 1 −1 1
−1 −1 −1 −1

 , B = (bi j)4×4 =


−1 1 −1 1
−1 −1 1 −1
1 −1 −1 −1
−1 −1 −1 1

 ,
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D = (di j)4×4 =


−1 −1 1 −1
−1 1 −1 −1
1 −1 1 1
1 −1 −1 −1

 ,C =


6 0 0 0
0 6 0 0
0 0 5 0
0 0 0 6

 ,
fi(x) = 0.5tanh(x), gi(x) = 0.4tanh(x), hi(x) = 0.3tanh(x), Li j = Mi j = 0.1, τi j(t) = 0.2sint, ρi j(t) =

0.5cost, i = j; τi j(t) = 0.2cost, ρi j(t) = 0.5sint, i , j, i, j = 1, 2, 3, 4.
Then we calculate that Σ3 = Σ5 = Σ7 = 0, B1 = D1 = 4I, B2 = D2 = 4pI,Σ1 = Σ2 = 0.08pI,Σ4 =

0.5I,Σ6 = 0.4I,Σ8 = 0.3I, µ = 0.2, ρ = 0.5, where I denotes identity matrix.
By using Matlab LMI Control Toolbox, we calculate P = 0.1668I,U1 = diag{0.5170,

0.5170, 0.5777, 0.5777},U2 = 0.8794I and U3 = 0.6455I satisfy the condition of Theorem 2, which
demonstrates the effectiveness of our theoretical result.
Example 2. Consider system (2.2) with the following parameters and functions:

D = (di j)4×4 =


−1 −1 1 −1
−1 1 −1 −1
1 −1 1 1
1 −1 −1 −1

 ,C =


6 0 0 0
0 6 0 0
0 0 5 0
0 0 0 6

 ,
fi(x) = gi(x) = 0.5tanh(x), hi(x) = 0.3tanh(x), Li j = Mi j = 0.1, τ j(t) = 0.2sint, i, j = 1, 2, 3, 4, the
matrices A and B are the same as in Example 1.

Then we calculate that Σ3 = Σ5 = Σ7 = 0, B1 = D1 = 4I, B2 = D2 = 4pI,Σ1 = Σ2 = 0.08pI,Σ4 =

Σ6 = 0.5I,Σ8 = 0.3I, µ = τ = 0.2. By using Matlab LMI Control Toolbox, we know Corollary 1 holds
when P = 0.5791I,U1 = diag{2.6460, 2.4054, 1.5394, 3.2237}, U2 = diag{2.8763, 2.8877, 2.8635,
2.8751} and U3 = diag{1.6561, 1.6904, 1.3281, 1.8608}.

On the other hand, Theorem 5 in [33] shows that zero solution of system (2.2) is almost surely
exponentially stable and exponentially stable in mean square provided that there exist some matrices
P > 0,Ui = diag{ui1, · · · , uin} ≥ 0(i = 1, 2, 3) and positive constants γ1, γ2, λ such that λ−1τγ−1

2 ∈ (0, 1)
and

Σ =


∆1 0 PA + U1L2 PB U3M2

∗ ∆2 0 U2L2 0
∗ ∗ ∆3 0 0
∗ ∗ ∗ ∆4 0
∗ ∗ ∗ ∗ ∆5


< 0,

where σ1 = (Li j)n×n, σ2 = (Mi j)n×n, L1 = Σ3, L2 = Σ4,M1 = Σ7,M2 = Σ8,

∆1 = (γ1 + 2λ)P − 2PC + 2σT
1 Pσ1 + U1(λI − 2L1) + U3(λI − 2M1),

∆2 = 2σT
2 Pσ2 + U2(λI − 2L1),∆3 = (2λ − 2)U1,

∆4 = (2λ − 2)U2,∆5 = (2λ − 2)U3 + γ2DT PD.

It is clear that the above stability condition is more difficult to verify than that of Corollary 1. Moreover,
when we choose λ = γ1 = γ2 = 0.5, we can not find the suitable matrices P,U1,U2 and U3 satisfying
the condition of Theorem 5 in [33] by using Matlab LMI Control Toolbox. Therefore, Theorem 5
in [33] is invalid for the system (2.2) in Example 2.
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Example 3. Consider system (2.3) with C = diag{3.5, 5, 5, 5}, fi(x) = 0.5tanh(x),gi(x)
= 0.4tanh(x), Li j = 0.1, τ j = 0.2, i, j = 1, 2, 3, 4, the matrices A and B are the same as in Example 1.

Then we calculate that Σi = 0(i = 2, 3, 5, 7, 8), B1 = 4I, B2 = 4pI,Σ1 = 0.08pI,Σ4 = 0.5I,Σ6 =

0.4I, τ = 0.2, µ = 0. By using Matlab LMI Control Toolbox, we know that Corollary 2 holds when
P = 0.1817I,U1 = diag{0.6431, 0.6431, 0.7092, 0.7092} and U2 = 0.9723I.

On the other hand, Theorem 3.1 in [24] shows that the following inequalities

−2ci +

n∑
j=1

|ai j|α j +

n∑
j=1

|bi j|β j +

n∑
j=1

|a ji|αi +

n∑
j=1

|b ji|βi +

n∑
j=1

L2
ji < 0(i = 1, · · · , n)

are the sufficient conditions of almost sure exponential stability and mean square exponential stability
of system (2.3), where αi and βi correspond to max{|α−i |, |α

+
i |} and max{|β−i |, |β

+
i |} in this paper,

respectively.
Then, we calculate that for i = 1, 2, 3, 4, αi = 0.5, βi = 0.4 and

−2ci +

4∑
j=1

|ai j|α j +

4∑
j=1

|bi j|β j +

4∑
j=1

|a ji|αi +

4∑
j=1

|b ji|βi +

4∑
j=1

L2
ji =

0.24, i = 1;
−2.76, i = 2, 3, 4.

Therefore, Theorem 3.1 in [24] is invalid for the system (2.3) in Example 3.
Example 4. Consider system (2.4) with C = 4I, fi(x) = 0.5tanh(x), τi j(t) = 0.2sint, i = j; τi j(t) =

0.2cost, i , j, i, j = 1, 2, 3, 4, the matrices A and B are the same as in Example 1.
Then we calculate that Σi = 0(i = 1, 2, 3, 5, 7, 8), B1 = 4I, B2 = 4pI,Σ1 = 0.08pI,Σ4 = 0.5I,Σ6 =

0.4I, τ = µ = 0.2. By using Matlab LMI Control Toolbox, we know the matrices P = 0.1679I,U1 =

diag{0.5707, 0.5707, 0.6318, 0.6318} and U2 = 0.9065I satisfy the condition of Corollary 3.
On the other hand, Theorem 2.4 in [5] shows that if ρ(K) < 1, then zero solution of system (2.4)

is globally exponentially stable, where ρ(K) denotes spectral radius of matrix K = (ki j)n×n, ki j =

c−1
i (|ai j| + |bi j|)α j, α j corresponds to max{|α−j |, |α

+
j |} in this paper.

Then, we calculate that for i = 1, 2, 3, 4, αi = 0.5 and ρ(K) = 1, where

K = (ki j)4×4 =


0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

 .
Therefore, the condition of Theorem 2.4 in [5] is not satisfied for the system (2.4) in Example 4.

4. Conclusions

This paper has investigated the problem for exponential stability of stochastic Hopfield neural
networks involving multiple discrete time-varying delays and multiple distributed time-varying
delays. The exponential stability of such neural systems has not been given much attention because it
is difficult to derive the easily verified stability conditions of the linear matrix inequality forms for this
type of neural systems that cannot be transformed into the vector forms. This paper has established
the easily verified sufficient conditions of the linear matrix inequality forms to ensure the mean-square
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exponential stability and the almost sure exponential stability by constructing a suitable
Lyapunov-Krasovskii functional and inequality techniques. Four examples demonstrate the
effectiveness of the proposed theoretical results and show that the established stability conditions are
better than the conditions of the previous stability results.
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