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1. Introduction

Since the first personal computer came out in 1980, computers gradually appeared in our daily life.
In 1995, the emergence of the Internet further promoted the computers into all fields of production
and living. By June 2020, China’s Internet users had reached 940 million, an increase of 36.25
million compared with March 2020, and the Internet penetration rate reached 67.0%, an increase of
2.5 percentage points compared with March 2020 [1]. Computer network is a sharp double-edged
sword, bringing conveniences as well as disasters. In October 2019, a total of 44.23 million new
viruses was found in the National Computer Virus Emergency Response Center and 218.04 million
computers were infected, which was 1.78% higher than that in September, and the main transmission
channels were “phishing”, “webpage pegging” and loopholes [2]. The propagation of computer virus
has become more rapid and harmful, posing serious changes. In the early October 2019, Demant,
the world’s largest hearing aid manufacturer, was invaded by blackmail virus, resulting in a direct
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economic loss of more than 95 million dollars. Fractional derivative equations are often used to study
the dynamic behavior of systems, which can help us understand the evolution law of the system [3–
6]. Consequently, it is of great practical significance to analyze the propagation of computer virus to
protect computers against viruses by use fractional derivative equations.

Some mathematical models, which characterized the spread of computer viruses over the internet,
were proposed to help us study the problem quantitatively. There are many similarities between
computer virus and biological virus, such as infectivity, destructiveness, variability and so on. Based
on these similarities, J. O. Kephart and S. R. White applied the mathematical models of epidemics
to the computer virus propagation model creatively [7]. On this foundation, many computer virus
models have been established [8–10]. Singh et al. [11] considered a fractional epidemiological SIR
model with an arbitrary order derivative having nonsingular kernel, and discussed the existence of the
solution. Considering that the recovered nodes may become susceptible again once some new viruses
appear or the known computer viruses mutate, Chen et al. [12] presented a new SIRS model. But they
all assumed the infection rate in models is bilinear. But in fact, this situation is not the case. In most
realistic situations, the bilinear infection rate is always impossible to achieve due to the increase of the
susceptible computers and infectious computers. In view of the nonlinear infection rate, both of the
inhibition effect owing to the uncertain behavior of susceptible computers and the crowding effect of
infectious computers are considered at the same time.

Considering that the network topology in the proliferation of virus may lead to nonlinear infection
rate, MadhuSudanan et al. [13] formulated a computer viruses model with nonlinear infection rate and
incubation period delay:


dS (t)

dt = (1 − p)b − βS (t−τ)I(t−τ)
1+σS (t−τ) − dS (t) + δR(t),

dI(t)
dt =

βS (t−τ)I(t−τ)
1+σS (t−τ) − (d + α + γ)I(t),

dR(t)
dt = pb + γI(t) − (d + δ)R(t),

(1.1)

where S (t), I(t), R(t) represent the number of susceptible computers, infected computers and recovered
computers at time t, respectively. The meanings of all the parameters in system (1.1) can be referred
to [13].

Quarantine strategy generally refers to the control of individuals with abnormal performance, so
as to prevent others from being infected by viruses. Quarantine strategy is an important measure for
the treatment of infectious diseases. It can not only conduct centralized management and treatment
for infected individuals, but also effectively control the source of infection and greatly reduce the
number of contacts. Later, inspired by the biological infectious disease model, many scholars applied
the quarantine strategy to the research of computer virus model, and put forward a series of models
accordingly [14, 15]. Hence, quarantine strategy should be introduced into the computer virus model.
The effect of Anti-virus can protect recovered computers from the known viruses, however, as time
goes on, Anti-virus may lose function as a result of the emergence of new viruses and the variation
of known viruses, and the update speed of anti-virus software is always slower than that of new virus.
So it needs a short time before entering susceptible state, called the temporary immune time delay.
Considering the effect of quarantine strategy and the existence of temporary immune time delay, we
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investigate a new SIQRS computer virus model with two delays:

dS (t)
dt = (1 − p)b − βS (t−τ1)I(t−τ1)

1+σS (t−τ1) − dS (t) + δR(t − τ2),
dI(t)

dt =
βS (t−τ1)I(t−τ1)

1+σS (t−τ1) − (d + α1 + γ + ε)I(t),
dQ(t)

dt = εI(t) − (η + d + α2)Q(t),
dR(t)

dt = pb + γI(t) + ηQ(t) − dR(t) − δR(t − τ2),

(1.2)

where Q(t) is the number of quarantine computers at time t; α1 is the death rate of infected computers
due to virus; α2 is the death rate of quarantine computers due to virus; ε is the quarantine rate of infected
computers; η is the recovered rate of the quarantine computers; τ1 is the incubation period delay; τ2 is
the temporary immune time delay before the recovered computers come into the susceptible status.

2. Local asymptotic stability of the virus-free equilibrium

When the system (1.2) reaches the virus-free equilibrium, there is no virus, namely I∗0 = 0. Let us
equate system (1.2) to be zero, we can obtain:

δR∗0 + (1 − p)b − βS ∗0I∗0
1+σS ∗0

− dS ∗0 = 0,

βS ∗0I∗0
1+σS ∗0

− (d + α1 + γ + ε)I∗0 = 0,

εI∗0 − (η + d + α2)Q∗0 = 0,

γI∗0 + ηQ∗0 + pb − (d + δ)R∗0 = 0,

(2.1)

Then, then system (1.2) has a virus-free equilibrium E∗0(S ∗0, I
∗
0,Q

∗
0,R

∗
0). Here,

S ∗0 =
δb + bd(1 − p)

d(d + δ)
,

I∗0 = 0,
Q∗0 = 0,

R∗0 =
pb

d + δ
.

The basic regeneration number is the critical threshold to determine whether there is a virus in
system (1.2). According to the way in [16], it is easy to obtain the basic regeneration number of system
(1.2). Let X = (I, S ,Q,R)T , then system (1.2) can be equivalent to dX(t)

dt = F − V , where

F =


βS I

1+σS
0
0
0

 ,V =


(d + α1 + η + γ)I

−(1 − p)b +
βS I

1+σS + dS + δR
(η + d + α2)Q − εI

dR + δR − ηQ − γI − pb

 .
The infected compartment is I, giving m = 1, then the Jacobian matrixes of F and V at

E∗0(S ∗0, I
∗
0,Q

∗
0,R

∗
0) are

F′ =

(
βS ∗0

1+σS ∗0

)
,V ′ =

(
d + α1 + η + γ

)
.
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Then

R0 =
βS ∗0

(1 + σS ∗0)(d + α1 + γ + ε)
. (2.2)

If R0 < 1, then system (1.2) has a virus-free equilibrium E∗0(S ∗0, I
∗
0,Q

∗
0,R

∗
0). The Jacobian matrix of

system (1.2) at E∗0(S ∗0, I
∗
0,Q

∗
0,R

∗
0) is

J(E∗0) =


−d −

βS ∗0
1+σS ∗0

0 δ

0 βS ∗0
1+σS ∗0

− (d + α1 + γ + ε) 0 0
0 ε −(η + d + α2) 0
0 γ η −(d + δ)

 ,
The corresponding characteristic equation becomes

(λ + d)(λ −
βS ∗0

1 + σS ∗0
+ d + α1 + γ + ε)(λ + d + η + α2)(λ + d + δ) = 0. (2.3)

Then the eigenvalues of Eq.(2.3) are

λ1 = −d < 0,

λ2 =
βS ∗0

1 + σS ∗0
− (d + α1 + γ + ε) < 0,

λ3 = −(d + η + α2) < 0,
λ4 = −(d + δ) < 0,

So, when all the eigenvalues are less than zero, the virus-free equilibrium of system (1.2) is locally
stable according to Routh-Hurwitz criteria.

3. Local asymptotic stability of the virus-existence equilibrium and the occurrence of Hopf
bifurcation

If R0 =
βS ∗0

(1+σS ∗0)(d+α1+γ+ε) > 1, then system (1.2) has a unique virus-existence equilibrium
E∗(S ∗, I∗,Q∗,R∗). Here,

S ∗ =
d + α1 + γ + ε

β − σ(d + α1 + γ + ε)
,

I∗ =
(d + δ)dS ∗ − (d + δ)(1 − p)b − δpb

k1 + δγ − k2
,

Q∗ =
ε

η + d + α2
I∗,

R∗ =
pb + γI∗ + ηQ∗

d + δ
,

where

k1 =
δηε

η + d + α2
,
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k2 =
(δ + d)βS ∗

1 + σS ∗
.

The linearized part of system (1.2) is

dS (t)
dt = l11S (t) + m11S (t − τ1) + m12I(t − τ1) + n14R(t − τ2),

dI(t)
dt = m21S (t − τ1) + l22I(t) + m22I(t − τ1),

dQ(t)
dt = l32I(t) + l33Q(t),

dR(t)
dt = l42I(t) + l43Q(t) + l44R(t) + n44R(t − τ2),

(3.1)

where

l11 = −d,m11 = −
βI∗

(1 + σS ∗)2 ,m12 = −
βS ∗

1 + σS ∗
, n14 = δ,

m21 =
βI∗

(1 + σS ∗)2 ,m22 =
βS ∗

1 + σS ∗
, l22 = −(d + α1 + γ + ε),

l32 = ε, l33 = −(η + d + α2), l42 = γ, l43 = η, l44 = −d, n44 = −δ,

From the system (3.1), we can obtain that

X0(λ) + X1(λ)e−λτ1 + X2(λ)e−λτ2 + X3(λ)e−λ(τ1+τ2)

+ X4(λ)e−2λτ2 + X5(λ)e−λ(2τ1+τ2) = 0, (3.2)

where

X0(λ) = λ4 + λ3(−l11 − l22 − l33 − l44) + λ2(l11l22 + l11l33 + l11l44 + l22l33 + l22l44 + l33l44)
+λ(−l11l22l33 − l11l22l44 − l11l33l44 − l22l33l44) + l11l22l33l44,

X1(λ) = λ3(−m11 − m22) + λ2(l11m22 + l22m11 + l33m11 + l33m22 + l44m11 + l44m22)
+λ(−l33l44m22 − l11l44m22 − l11l33m22 − l33l44m11 − l22l44m11 − l22l33m11)
+l22l33l44m22 + l22l33l44m11,

X2(λ) = −n44λ
3 + λ2(l11n44 + l22n44 + l33n44) + λ(−l11l22n44 − l11l33n44 − l22l33n44)

+l11l22l33n44,

X3(λ) = λ2(m11n44 + m22n44) + λ(−l11m22n44 − l22m22n44 − l33m11n44 − l33m22n44

+l42m21n44) + (l11l33m22n44 + l22l33m11n44 + l32l43m21n14 − l33l42m21n14),
X4(λ) = λ2(m11m22 + m12m21) + λ(−l33m11m22 − l44m11m22 − l33m12m21 − l44m12m21)

+l33l44m11m22 + l33l44m12m21,

X5(λ) = λ(−m11m22n44 − m12m21n44) + l33m11m22n44 + l33m12m21n44.

Case 1. τ1 = τ2 = 0, Eq (3.2) becomes

λ4 + X3
0λ

3 + X2
0λ

2 + X1
0λ + X0

0 = 0, (3.3)

where X j
i (i = 0, 1, 2, 3, 4, 5; j = 0, 1, 2, 3, 4) represents the coefficient of λ j in Xi(λ).
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Lemma 1 [13]. According to Routh-Hurwitz criteria, when R0 > 1, the virus-existence equilibrium
E∗(S ∗, I∗,Q∗,R∗) is locally asymptotically stable.

Case 2. τ1 > 0, τ2 = 0. Then, Eq (3.2) becomes

[X0(λ) + X2(λ)] + [X1(λ) + X3(λ)]e−λτ1 + [X4(λ) + X5(λ)]e−2λτ1 = 0. (3.4)

Taking λ = iω1 into Eq (3.4) and separating the real and imaginary parts, we obtain A11 cos τ1ω1 + A21 sin τ1ω1 + B11 = −A31 sin 2τ1ω1 + A41 cos 2τ1ω1,

A21 cos τ1ω1 − A11 sin τ1ω1 + B21 = −A31 cos 2τ1ω1 − A41 sin 2τ1ω1,
(3.5)

with

A11 = X0
1 − X2

1ω
2
1 + X0

3 − X2
3ω

2
1,

A21 = X1
1ω1 − X3

1ω
3
1 + X1

3ω1,

A31 = X1
4ω1 + X1

5ω1,

A41 = X2
4ω

2
1 − X0

4 − X0
5 ,

B11 = ω4
1 − X2

0ω
2
1 + X0

0 − X2
2ω

2
1 + X0

2 ,

B21 = X1
0ω

1
1 − X3

0ω
3
1 − X3

2ω
3
1 − X1

2ω1,

Because cos2 τ1ω1 + sin2 τ1ω1 = 1, sin τ1ω1 = ±
√

1 − cos2 τ1ω1.
(1) If sin τ1ω1 =

√
1 − cos2 τ1ω1, after calculation, we have

A2
11 + A2

21 + B2
11 + B2

21 − A2
31 − A2

41 + 2(A11B11 + A21B21) cos τ1ω1

+2(B11A21 − A11B21)
√

1 − cos2 τ1ω1 = 0. (3.6)

Let f1(ω1) = cos τ1ω1, and we suppose that (G1): f1(ω1) = cos τ1ω1 has at least a positive root ω11,
which makes Eq (3.6) true. Thus,

τ(i)
11 =

1
ω11
× [arccos( f1(ω11)) + 2iπ], i = 0, 1, 2, · · · . (3.7)

(2) If sin τ1ω1 = −
√

1 − cos2 τ1ω1, after calculation, we have

A2
11 + A2

21 + B2
11 + B2

21 − A2
31 − A2

41 + 2(A11B11 + A21B21) cos τ1ω1

+2(A11B21 − A21B11)
√

1 − cos2 τ1ω1 = 0. (3.8)

Let g1(ω1) = cos τ1ω1, and we suppose that (G2): g1(ω1) = cos τ1ω1 has at least a positive root ω12,
which makes Eq (3.8) true. Thus,

τ(i)
12 =

1
ω12
× [arccos(g1(ω12)) + 2iπ], i = 0, 1, 2, · · · . (3.9)

Define
τ10 = min{τ(i)

11, τ
(i)
12}, i = 0, 1, 2, · · · , (3.10)
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where τ(i)
11 and τ(i)

12 are defined by Eq (3.7) and Eq (3.9), respectively.
Multiplying eλτ1 on both sides of Eq (3.4), and then after deriving from τ to λ, we can get[ dλ

dτ1

]−1

= −
[X′0(λ) + X′2(λ)]eλτ1 + [X′1(λ) + X′3(λ)] + [X′4(λ) + X′5(λ)]e−λτ1

−λ[X0(λ) + X2(λ)]e−λτ1 + λ[X4(λ) + X5(λ)]eλτ1
−
τ1

λ
. (3.11)

According to the Hopf bifurcation theorem [17], if the surmise (G3): Re[dλ/dτ1]−1
τ1=τ10

, 0 is
true, the virus-existence equilibrium E∗(S ∗, I∗,Q∗,R∗) is locally asymptotically stable. So, we have
Theorem 1.
Theorem 1. For system (1.2), when R0 > 1 and the conditions (G1)-(G3) hold, then E∗(S ∗, I∗, Q∗,R∗) is
locally asymptotically stable when τ1 ∈ [0, τ10); there is a Hopf bifurcation at E∗(S ∗, I∗, Q∗,R∗) when
τ1 = τ10.
Case 3. τ1 = 0, τ2 > 0. Then Eq (3.2) becomes

[X0(λ) + X1(λ) + X4(λ)] + [X2(λ) + X3(λ) + X5(λ)]e−λτ2 = 0, (3.12)

Substituting λ = iω2 into Eq (3.12), we obtain C11 cos τ2ω2 + C21 sin τ2ω2 = D11,

C21 cos τ2ω2 −C11 sin τ2ω2 = D21,
(3.13)

with

C11 = −X2
2ω

2
2 + X0

2 + X0
3 + X0

5 − X2
3ω

2
2,

C21 = −X3
2ω

3
2 + X1

2ω2 + X1
3ω2 + X1

5ω2,

D11 = X2
0ω

2
2 + X2

1ω
2
2 + X2

4ω
2
2 − ω

4
2 − X0

0 − X0
1 − X0

4 ,

D21 = X3
0ω

3
2 + X3

1ω
3
2 − X1

0ω2 − X1
1ω2 − X1

4ω2,

Squaring both sides of two equations in Eq (3.13), and adding them up, we obtain

C2
11 + C2

21 = D2
11 + D2

21. (3.14)

We suppose that (G4): Eq (3.14) has at least one positive real root ω20. Then, from Eq (3.13), we
derive

τ(i)
2 =

1
ω20
×

[
arccos

C11D11 + C21D21

C2
11 + C2

21

+ 2iπ
]
, (3.15)

where i = 0, 1, 2, · · · .
Define

τ20 = min{τ(i)
2 , i = 0, 1, 2, · · · }, (3.16)

and τ(i)
2 is defined by Eq (3.15).

Taking the derivative of λ with respect to τ, we obtain[ dλ
dτ2

]−1

= −
X′0 + X′1 + X′4

λ[X0 + X1 + X4]
+

X′2 + X′3 + X′5
λ[X2 + X3 + X5]

−
τ2

λ
, (3.17)
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Thus, it is easy to obtain the expression of Re[dλ/dτ2]−1
τ2=τ20

. According to the Hopf bifurcation
theorem [17], if the hypothesis (G5): Re[dλ/dτ2]−1

τ2=τ20
, 0 is true, the virus-existence equilibrium

E∗(S ∗, I∗,Q∗,R∗) is locally asymptotically stable. In conclusion, Theorem 2 can be obtained.
Theorem 2. For system (1.2), when R0 > 1 and the conditions (G4)-(G5) hold, then E∗(S ∗, I∗, Q∗,R∗) is
locally asymptotically stable when τ2 ∈ [0, τ20); there is a Hopf bifurcation at E∗(S ∗, I∗, Q∗,R∗) when
τ2 = τ20.
Case 4. τ1 = τ2 = τ∗. Then Eq (3.2) becomes

X0(λ) + [X1(λ) + X2(λ)]e−λτ∗ + [X3(λ) + X4(λ)]e−2λτ∗ + X5(λ)e−3λτ∗ = 0, (3.18)

Multiplying eλτ∗ on both sides of Eq (3.18), then we obtain

X0(λ)eλτ∗ + [X1(λ) + X2(λ)] + [X3(λ) + X4(λ)]e−λτ∗ + X5(λ)e−2λτ∗ = 0, (3.19)

Substituting λ = iω3 into Eq (3.19), we obtain A12 cos τ∗ω3 + A22 sin τ∗ω3 = −A32 sin 2τ∗ω3 + A42 cos 2τ ∗ ω3,

A′22 cos τ∗ω3 − A12 sin τ ∗ ω3 = −A32 cos 2τ ∗ ω3 − A42 sin 2τ∗ω3,
(3.20)

with

A12 = X3
0ω

3
3 − X1

0ω3 − X1
3ω3 − X1

4ω3,

A22 = ω4
3 − X2

0ω
2
3 − X2

3ω
2
3 + X2

4ω
2
3 + X0

0 − X0
3 − X0

4 ,

A′22 = ω4
3 − X2

0ω
2
3 − X2

3ω
2
3 − X2

4ω
2
3 + X0

0 + X0
3 + X0

4 ,

A32 = X1
5ω3,

A42 = −X0
5 ,

B12 = −X2
1ω

2
3 + X0

1 − X2
2ω

2
3 + X0

2 ,

B22 = −X3
1ω

3
3 − X3

2ω
3
3 + X1

1ω3 + X1
2ω3,

Squaring both sides of two equations in Eq (3.20), and adding them up, we obtain

(A12 cos τ∗ω3 + A22 sin τ∗ω3 + B12)2 + (A′22 cos τ∗ω3 − A12 sin τ∗ω3 + B22)2

= A2
32 + A2

42.(3.21)

Because cos2 τ∗ω3 + sin2 τ∗ω3 = 1, sin τ∗ω3 = ±
√

1 − cos2 τ∗ω3.
(1) If sin τ∗ω3 =

√
1 − cos2 τ∗ω3, after calculation, we have

A2
12 + A2

22 + B2
12 + B2

22 − A2
32 − A2

42 + 2(A12A22 + A12B12 + A22B12) cos τ∗ω3

+2(A′22B22 − A′22A12 − A12B22)
√

1 − cos2 τ∗ω3 = 0. (3.22)

Let f2(ω3) = cos τ∗ω3, and we suppose that (G6): f2(ω3) = cos τ∗ω3 has at least a positive root ω31,
which makes Eq (3.22) true. Thus,

τ(i)
∗1 =

1
ω31
× [arccos( f2(ω31)) + 2iπ], i = 0, 1, 2, · · · . (3.23)
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(2) If sin τ∗ω3 = −
√

1 − cos2 τ∗ω3, after calculation, we have

A2
12 + A2

22 + B2
12 + B2

22 − A2
32 − A2

42 + 2(A12A22 + A12B12 + A22B12) cos τ∗ω3

−2(A′22B22 − A′22A12 − A12B22)
√

1 − cos2 τ∗ω3 = 0. (3.24)

Let g2(ω3) = cos τ∗ω3, and we suppose that (G7): g2(ω3) = cos τ∗ω3 has at least a positive root ω32,
which makes Eq (3.24) true. Thus,

τ(i)
∗2 =

1
ω32
× [arccos(g2(ω32)) + 2iπ], i = 0, 1, 2, · · · . (3.25)

Define
τ∗0 = min{τ(i)

∗1, τ
(i)
∗2}, i = 0, 1, 2, · · · , (3.26)

where τ(i)
∗1 and τ(i)

∗2 are defined by Eq (3.23) and Eq (3.25), respectively.
Then after deriving from τ to λ, we can get[ dλ

dτ∗

]−1

= −
X′0(λ)eλτ∗ + [X′1(λ) + X′2(λ)] + [X′3(λ) + X′4(λ)]e−λτ∗ + X′5(λ)e−2λτ∗

−λX0(λ)eλτ∗ + λ[X3(λ) + X4(λ)]e−λτ∗ + 2λX5(λ)e−2λτ∗
−
τ∗
λ
. (3.27)

Based on the Hopf bifurcation theorem [17], if the surmise (G8): Re[dλ/dτ∗]−1
τ∗=τ∗0

, 0 is true, the
virus-existence equilibrium E∗(S ∗, I∗,Q∗,R∗) is locally asymptotically stable. Therefore, Theorem 3
can be obtained.
Theorem 3. For system (1.2), when R0 > 1 and the conditions (G6)-(G8) hold, then E∗(S ∗, I∗, Q∗,R∗)
is locally asymptotically stable when τ∗ ∈ [0, τ∗0); there is a Hopf bifurcation at E∗(S ∗, I∗, Q∗,R∗) when
τ∗ = τ∗0.
Case 5. τ1 > 0, τ2 ∈ (0, τ20). For convenience, let ω4 be equal to ω1. Then, this case is similar as in
Case 2.

[X0(λ) + X1(λ) + X4(λ)] + [X1(λ) + X3(λ)]e−λτ1 + [X4(λ) + X5(λ)]e−2λτ1 = 0. (3.28)

 A13 cos τ1∗ω4 + A23 sin τ1∗ω4 + B13 = −A33 sin 2τ1∗ω4 + A43 cos 2τ1∗ω4,

A23 cos τ1∗ω4 − A13 sin τ1∗ω4 + B23 = −A33 cos 2τ1∗ω4 − A43 sin 2τ1∗ω4,
(3.29)

with

A13 = X0
1 − X2

1ω
2
4 + X0

3 − X2
3ω

2
4,

A23 = X1
1ω4 − X3

1ω
3
4 + X1

3ω4,

A33 = X1
4ω4 + X1

5ω4,

A43 = X2
4ω

2
4 − X0

4 − X0
5 ,

B13 = ω4
4 − X2

0ω
2
4 + X0

0 − X2
2ω

2
4 + X0

2 ,

B23 = X1
0ω

1
4 − X3

0ω
3
4 − X3

2ω
3
4 − X1

2ω4,

Because cos2 τ1∗ω4 + sin2 τ1∗ω4 = 1, sin τ1∗ω4 = ±
√

1 − cos2 τ1∗ω4.
(1) If sin τ1∗ω4 =

√
1 − cos2 τ1∗ω4, after calculation, we have

A2
13 + A2

23 + B2
13 + B2

23 − A2
33 − A2

43 + 2(A13B13 + A23B23) cos τ1∗ω4
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+2(B13A23 − A13B23)
√

1 − cos2 τ1∗ω4 = 0. (3.30)

Let f3(ω4) = cos τ1∗ω4, and we suppose that (G9): f3(ω4) = cos τ1∗ω4 has at least a positive root
ω41, which makes Eq (3.30) true. Thus,

τ(i)
1∗1 =

1
ω41
× [arccos( f3(ω41)) + 2iπ], i = 0, 1, 2, · · · . (3.31)

(2) If sin τ1∗ω4 = −
√

1 − cos2 τ1∗ω4, after calculation, we have

A2
13 + A2

23 + B2
13 + B2

23 − A2
33 − A2

43 + 2(A13B13 + A23B23) cos τ1∗ω4

+2(A13B23 − A23B13)
√

1 − cos2 τ1∗ω4 = 0. (3.32)

Let g3(ω4) = cos τ1∗ω4, and we suppose that (G10): g3(ω4) = cos τ1∗ω4 has at least a positive root
ω42, which makes Eq (3.32) true. Thus,

τ(i)
1∗2 =

1
ω42
× [arccos(g3(ω42)) + 2iπ], i = 0, 1, 2, · · · . (3.33)

Define
τ1∗0 = min{τ(i)

1∗1, τ
(i)
1∗2}, i = 0, 1, 2, · · · , (3.34)

where τ(i)
1∗1 and τ(i)

1∗2 are defined by Eq (3.31) and Eq (3.33), respectively. Multiplying eλτ1∗ on both sides
of Eq (3.28), and then after deriving from τ to λ, we can get[ dλ

dτ1∗

]−1

= −
[X′0(λ) + X′2(λ)]eλτ1∗ + [X′1(λ) + X′3(λ)] + [X′4(λ) + X′5(λ)]e−λτ1∗

−λ[X0(λ) + X2(λ)]e−λτ1∗ + λ[X4(λ) + X5(λ)]eλτ1∗
−
τ1∗

λ
. (3.35)

According to the Hopf bifurcation theorem [17], if the surmise (G11): Re[dλ/dτ1∗]−1
τ1∗=τ1∗0

, 0 is
true, the virus-existence equilibrium E∗(S ∗, I∗,Q∗,R∗) is locally asymptotically stable. Thus, we have
Theorem 4.
Theorem 4. For system (1.2), when R0 > 1 and the conditions (G9)-(G11) hold, then E∗(S ∗, I∗, Q∗,R∗)
is locally asymptotically stable when τ1∗ ∈ [0, τ1∗0); there is a Hopf bifurcation at E∗(S ∗, I∗,Q∗,R∗)
when τ1∗ = τ1∗0.
Case 6. τ1 ∈ [0, τ10), τ2 > 0. Assume that λ = iω5 is the root of Eq (3.2). For convenience, let ω5 be
equal to ω2. Then, this case is similar as in Case 3. Then we can get

[X0(λ) + X1(λ) + X4(λ)] + [X2(λ) + X3(λ) + X5(λ)]e−λτ2∗ = 0, (3.36)

Substituting λ = iω5 into Eq.(3.36), we obtain C12 cos τ2∗ω5 + C22 sin τ2∗ω5 = D12,

C22 cos τ2∗ω5 −C12 sin τ2∗ω5 = D22,
(3.37)

with

C12 = −X2
2ω

2
5 + X0

2 + X0
3 + X0

5 − X2
3ω

2
5,
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C22 = −X3
2ω

3
5 + X1

2ω5 + X1
3ω5 + X1

5ω5,

D12 = X2
0ω

2
5 + X2

1ω
2
5 + X2

4ω
2
5 − ω

4
5 − X0

0 − X0
1 − X0

4 ,

D22 = X3
0ω

3
5 + X3

1ω
3
5 − X1

0ω5 − X1
1ω5 − X1

4ω5,

Squaring both sides of two equations in Eq.(3.37), and adding them up, we obtain

C2
12 + C2

22 = D2
12 + D2

22. (3.38)

We suppose that (G12): Eq (3.38) has at least one positive real root ω50. Then, from Eq (3.36), we
derive

τ(i)
2∗ =

1
ω50
×

[
arccos

C13D13 + C13D13

C2
13 + C2

23

+ 2iπ
]
, (3.39)

where i = 0, 1, 2, · · · .
Define

τ2∗0 = min{τ(i)
2∗, 1 = 0, 1, 2, · · · }, (3.40)

and τ(i)
2∗ is defined by Eq (3.39).

Taking the derivative of λ with respect to τ, we obtain[ dλ
dτ2∗

]−1

= −
X′0 + X′1 + X′4

λ[X0 + X1 + X4]
+

X′2 + X′3 + X′5
λ[X2 + X3 + X5]

−
τ2∗

λ
, (3.41)

Thus, it is easy to obtain the expression of Re[dλ/dτ2∗]−1
τ2∗=τ2∗0

. Based on the Hopf bifurcation
theorem [17], when the hypothesis (G13): Re[dλ/dτ2∗]−1

τ2∗=τ2∗0
, 0 is true. In conclusion, Theorem 5 can

be gotten.
Theorem 5. For system (1.2), when R0 > 1 and the conditions (G12)-(G13) hold, then E∗(S ∗, I∗, Q∗,R∗)
is locally asymptotically stable when τ2∗ ∈ [0, τ2∗0); there is a Hopf bifurcation at E∗(S ∗, I∗,Q∗,R∗)
when τ2∗ = τ2∗0.

4. Direction and stability of Hopf bifurcation

Center manifold theory is one of the important theories for studying Hopf bifurcation. Considering
this idea, in this section, we use the method in [18,19] to study direction and stability of Hopf
bifurcation of system (1.2). We assume that τ∗2 < τ∗1, where τ∗2 ∈ (0, τ20). Let τ1 = τ∗1 + $($ ∈ R),
χ1 = S (τ1t), χ2 = I(τ1t), χ3 = Q(τ1t), χ4 = R(τ1t). System (1.2) becomes

χ̇(t) = L$(χt) + F($, χt), (4.1)

where χ(t) = (χ1, χ2, χ3, χ4)T ∈ C = C([−1, 0],R4) and L$: C → R4 and F: R×C → R4 are defined as

L$ϕ = (τ∗1 +$)
(
L′ϕ(0) + M′ϕ

(
−
τ∗2
τ∗1

)
+ N′ϕ(−1)

)
, (4.2)

and
F($, ϕ) = (τ∗1 +$)[F1, F2, 0, 0]T , (4.3)
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with

L′ =


l11 0 0 0
0 l22 0 0
0 l32 l33 0
0 l42 l43 l44

 ,M′ =


0 m12 0 0

m21 m22 0 0
0 0 0 0
0 0 0 0

 ,N′ =


0 0 0 n14

0 0 0 0
0 0 0 0
0 0 0 n44

 ,
and

F1 = h11ϕ1(0)ϕ2(0) + h12ϕ
2
1(0) + h13ϕ

2
1(0)ϕ2(0) + h14ϕ

3
1(0) + · · · ,

F2 = h21ϕ1(0)ϕ2(0) + h22ϕ
2
1(0) + h23ϕ

2
1(0)ϕ2(0) + h24ϕ

3
1(0) + · · · ,

h11 = −
β

(1 + σS ∗)2 , h12 = −
2σβI∗

(1 + σS ∗)3 , h13 =
2σβ

(1 + σS ∗)3 , h14 =
6σ2βI∗

(1 + σS ∗)4 ,

h21 =
β

(1 + σS ∗)2 , h22 =
2σβI∗

(1 + σS ∗)3 , h23 = −
2σβI∗

(1 + σS ∗)3 , h24 = −
6σ2βI∗

(1 + σS ∗)4 .

According to Riesz representation theorem, there exists η(ϑ,$) and ϑ ∈ [−1, 0) such that

L$ϕ =

∫ 0

−1
dη(ϑ,$)ϕ(ϑ). (4.4)

In fact, we choose

η(ϑ,$) =



(τ∗1 +$)(L′ + M′ + N′), ϑ = 0,

(τ∗1 +$)(M′ + N′), ϑ ∈ [− τ
∗
2
τ∗1
, 0),

(τ∗1 +$)(N′), ϑ ∈ (−1,− τ
∗
2
τ∗1

),

0, ϑ = −1.

(4.5)

with φ(ϑ) is the Dirac delta function.
For ϕ ∈ C([−1, 0],R4), define

A($)ϕ =


dϕ(ϑ)

dϑ , −1 ≤ ϑ < 0,∫ 0

−1
dη(ϑ,$)ϕ(ϑ), ϑ = 0,

and

R($)ϕ =

 0, −1 ≤ ϑ < 0,

F($, ϕ), ϑ = 0.

Then system (1.2) is equivalent to

χ̇(t) = A($)χt + R($)χt. (4.6)

For ψ ∈ C1([0, 1], (R4)∗), define

A∗(ψ) =

 −
dψ(s)

ds , 0 < s ≤ 1,∫ 0

−1
dηT (s, 0)ψ(−s), s = 0,
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and the bilinear inner form for A(0) and A∗

〈ψ(s), ϕ(ϑ)〉 = ψ̄(0)ϕ(0) −
∫ 0

ϑ=−1

∫ ϑ

ζ=0
ψ̄(ζ − ϑ)dη(ϑ)ϕ(ζ)dζ, (4.7)

where η(ϑ) = η(ϑ, 0).
Let u(ϑ) = (1, u2, u3, u4)T eiτ∗1ω

∗
1ϑ and u∗(s) = D(1, u∗2, u

∗
3, u

∗
4)T eiτ∗1ω

∗
1 s. Based on definitions of A(0) and

A∗(0), one can obtain

u2 =
m21e−iτ∗1ω

∗
1

iω∗1 − l22 − m22e−iτ∗1ω
∗
1
,

u3 =
l32u2

iω∗1 − l33
,

u4 =
l42u2 + l43u3

iω∗1 − l44 − n44e−iτ∗2ω
∗
1
,

u∗2 = −
iω∗1 + l11

m21eiτ∗1ω
∗
1
,

u∗3 = −
l43u∗2

iτ∗1ω
∗
1 + l33

,

u∗4 = −
n14eiτ∗2ω

∗
1

l44 + n14eiτ∗2ω
∗
1 + iω∗1

.

Then, we have

D̄ = [1 + u2ū∗2 + u3ū∗3 + u4ū∗4 + τ∗1e−iτ∗1ω
∗
1u2(m12 + m22ū∗2)

+τ∗1e−iτ∗1ω
∗
1m21ū∗2 + τ∗2e−iτ∗2ω

∗
1u4(n14 + n44ū∗4)]−1.

Next, g20, g11, g02 and g21 can be obtained with aid of the method in [20]:

g20 = 2τ∗1D̄[h11u2 + h12 + ū∗2(h21u2 + h22)],
g11 = τ∗1D̄[h11(u2 + ū2) + 2h12 + ū∗2h21(u2 + ū2) + 2h22ū∗2)],
g20 = 2τ∗1D̄[h11ū2 + h12 + ū∗2h21ū2 + h22ū∗2)],

g21 = 2τ∗1D̄
[
h11

(
u2W (1)

11 (0) +
1
2

W (1)
20 (0)ū2 + W (2)

11 (0) +
1
2

W (2)
20 (0)

)
+h12(W (2)

11 (0) + W (1)
20 (0)) + h13(2u2 + ū2) + 3h14

+ū∗2h21

(
W (1)

11 (0)u2 +
1
2

W (1)
20 (0)ū2 + W (2)

11 (0) +
1
2

W (2)
20 (0)

)
+h22ū∗2(W (2)

11 (0) + W (1)
20 (0)) + h22(2u2 + ū2) + 3h24

]
,

with

W20(ϑ) =
ig20u(0)
τ∗1ω

∗
1

eiτ∗1ω
∗
1ϑ +

iḡ02ū(0)
3τ∗1ω

∗
1

e−iτ∗1ω
∗
1ϑ + P1e2iτ∗1ω

∗
1ϑ,

AIMS Mathematics Volume 6, Issue 4, 4083–4104.



4096

W11(θ) = −
ig11u(0)
τ∗1ω

∗
1

eiτ∗1ω
∗
1ϑ +

iḡ11ū(0)
τ∗1ω

∗
1

e−iτ∗1ω
∗
1ϑ + P2.

P1 and P2 can be computed by

P1 = 2


l∗11 −m12e−iτ∗1ω

∗
1 0 −n14e−iτ∗2ω

∗
1

−m21e−iτ∗1ω
∗
1 l∗22 0 0

0 −l32 l∗33 0
0 −l42 −l43 l∗44


−1

×


P(1)

1
P(2)

1
0
0

 ,

P2 = −


l11 + m11 m12 0 n14

m21 l22 + m22 0 0
0 l32 l33 0
0 l42 l43 l44 + n44


−1

×


P(1)

2
P(2)

2
0
0

 .
where

l∗11 = 2iω∗1 − l11 − m11e−iτ∗1ω
∗
1 ,

l∗22 = 2iω∗1 − l22 − m22e−iτ∗1ω
∗
1 ,

l∗33 = 2iω∗1 − l33,

l∗44 = 2iω∗1 − l44 − n44e−iτ∗2ω
∗
1 ,

and

P(1)
1 = h11u2 + h12,

P(2)
1 = h21u2 + h22,

P(1)
2 = h11(u2 + ū2) + 2h12,

P(2)
2 = h21(u2 + ū2) + 2h22.

Then, we can obtain

C1(0) = i
2τ∗1ω

∗
1

(
g11g20 − 2|g11|

2 −
|g02 |

2

3

)
+

g21
2

µ2 = −
Re{C1(0)}
Re{λ′(τ∗1)} ,

β2 = 2Re{C1(0)},

T2 = −
Im{C1(0)}+µ2Im{λ′(τ∗1)}

τ∗1ω
∗
1

,

(4.8)

Thus, we have Theorem 6 about the Hopf bifurcation at τ∗1.
Theorem 6. For system (1.2), the following results hold. If µ2 > 0 (µ2 < 0), then the Hopf bifurcation
is supercritical (subcritical); If β2 < 0 (β2 > 0), then the bifurcating periodic solutions are stable
(unstable); If T2 > 0 (T2 < 0), then the period of the bifurcating periodic solutions increase (decrease).
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5. Numerical simulations

In order to identify the correctness of above results, some parameters are used to numerical
simulations. The values of all parameters are shown in Table 1.

Table 1. Estimation for values of the parameters.

Parameter Value Source
b 1 [13]
p 0.9 [13]
β 0.65 [13]
σ 0.4 [13]
d 0.1 assumed
δ 0.7 [13]
ε 0.14 assumed
γ 0.3 [13]
η 0.1 assumed
α1 0.1 assumed
α2 0.18 assumed

Then, system (1.2) takes the form

dS (t)
dt = 0.1 − 0.65S (t−τ1)I(t−τ1)

1+0.4S (t−τ1) − 0.1S (t) + 0.7R(t − τ2),
dI(t)

dt =
0.65S (t−τ1)I(t−τ1)

1+0.4S (t−τ1) − 0.64I(t),
dQ(t)

dt = 0.14I(t) − 0.48Q(t),
dR(t)

dt = 0.9 + 0.1Q(t) + 0.3I(t) − 0.7R(t − τ2) − 0.1R(t),

(5.1)

from which we can obtain R0 = 1.98 > 1 and E∗(1.6244, 2.0598, 0.7739, 2.0011).
To verify Theorem 1, we use Matlab software and obtain ω10 = 0.0786 and τ10 = 9.3985. Figure 1

shows that system (5.1) is locally asymptotically stable when τ1 ∈ [0, τ10), τ2 = 0 and a Hopf
bifurcation arises when τ1 = τ10. After that, from Figure 2, system (5.1) becomes unstable when
τ1 > τ10.

In the same way, we apply Matlab software to verify Theorem 2. Then, we obtain ω20 = 0.3307 and
τ20 = 2.2352. From Figure 3, system (5.1) is locally asymptotically stable when τ1 = 0, τ2 ∈ [0, τ20),
and a Hopf bifurcation arises when τ2 = τ20. Otherwise, system (5.1) becomes unstable when τ2 > τ20

in Figure 4.
A short calculation revealed that ω30 = 0.3833 and τ∗0 = 1.9282. Afterwards, Figure 5 shows

that system (5.1) is locally asymptotically stable when τ1 = τ2 ∈ [0, τ∗0), and it can be seen a Hopf
bifurcation when τ1 = τ2 = τ∗0. Figure 6 shows that system (5.1) becomes unstable when τ1 = τ2 > τ∗0.

It is easy to obtain ω40 = 0.0710 and τ1∗0 = 10.4056. When τ1 ∈ [0, τ1∗0), τ2 ∈ [0, τ20), system (1.2)
is locally asymptotically stable, and system (5.1) undergoes a Hopf bifurcation when τ1 = τ1∗0. Once
τ1 > τ1∗0, system (5.1) becomes unstable. The corresponding simulations are shown in Figure 7 and
Figure 8.
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Figure 1. Evolutions of S, I, Q, R for τ1 = 7.2010 < τ10 of system (5.1) versus time t.

Figure 2. Evolutions of S, I, Q, R for τ1 = 11.9806 > τ10 of system (5.1) versus time t.

AIMS Mathematics Volume 6, Issue 4, 4083–4104.



4099

Figure 3. Evolutions of S, I, Q, R for τ2 = 2.0803 < τ20 of system (5.1) versus time t.

Figure 4. Evolutions of S, I, Q, R for τ2 = 2.4012 > τ20 of system (5.1) versus time t.
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Figure 5. Evolutions of S, I, Q, R for τ1 = τ2 = 1.8457 < τ∗0 of system (5.1) versus time t.

Figure 6. Evolutions of S, I, Q, R for τ1 = τ2 = 1.9796 > τ∗0 of system (5.1) versus time t.
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Figure 7. Evolutions of S, I, Q, R for τ1 = 8.8464 < τ1∗0, τ2 = 1.5764 ∈ [0, τ20) of system
(5.1) versus time t.

Figure 8. Evolutions of S, I, Q, R for τ1 = 12.7054 > τ1∗0, τ2 = 1.5764 ∈ [0, τ20) of system
(5.1) versus time t.

Through simple calculation, ω50 = 0.3971 and τ2∗0 = 1.8612 can be got. As Figure 9 shows, system
(5.1) is locally asymptotically stable when τ1 ∈ [0, τ10), τ2 ∈ [0, τ2∗0) and a Hopf bifurcation arises
when τ2 = τ2∗0. And we can see that system (5.1) becomes unstable when τ2 > τ2∗0 in Figure 10.

AIMS Mathematics Volume 6, Issue 4, 4083–4104.



4102

Figure 9. Evolutions of S, I, Q, R for τ1 = 8.7421 ∈ [0, τ10), τ2 = 1.3413 < τ2∗0 of system
(5.1) versus time t.

Figure 10. Evolutions of S, I, Q, R for τ1 = 8.7421 ∈ [0, τ10), τ2 = 1.9735 > τ2∗0 of system
(5.1) versus time t.
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6. Conclusions

In this paper, we propose a novel Susceptible-Infected-Quarantined-Recovered (SIQRS) computer
virus propagation model with quarantine strategy based on the model formulated in [13]. We consider
not only incubation period delay, but also temporary immunization time delay when we observe the
dynamics of the SIQRS model. The local stability of the virus-free equilibrium and the virus-existent
equilibrium also has been discussed. Furthermore, we analyze the local stability and Hopf bifurcation
under another five cases with different delays. If τ is less than the key value, system (1.2) is local
stable; otherwise, there is a Hopf bifurcation. Then, we determine the direction of Hopf bifurcation and
the stability of bifurcating periodic solutions by using the normal form and center manifold theorem.
Ultimately, some numerical simulations are used to prove the validity of the theoretical results.

Compared with the model in [13], our novel model consider quarantine strategy , which is used to
the prevention and cure of computer virus, so our model is closer to the actual situation. Furthermore,
incubation period is one of the significant characteristics of computer virus, and it is very important
to take the latency delay into account. Nowadays, antivirus software, which enable computers to
gain temporary immunity, plays a very important role in the defense of computer virus. Temporary
immunity delay is a common phenomena in real life. In our SIQRS model, the above cases are taken
into account at the same time, and our model has more reference value over the existing ones. Global
asymptotic stability is as important as local asymptotic stability, and it will be studied in the future.
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