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Abstract: In this work, we test the intgrability of the stochastic Wick-type fractional Caudrey-Dodd-
Gibbon-Sawada-Kotera (CDGSK) equation on the Painlevé test and construct new Wick-type and nob-
Wick-type versions of exact traveling wave solutions of the stochastic Wick-type fractional CDGSK
equation by employing the Hermit transformation, the conformable fractional derivative and the sub-
equations method. Moreover, we obtain exact traveling wave solutions of the fractional Sawada-Kotera
(SK) equation and the fractional Caudrey-Dodd-Gibbon (CDG) equation as well. It is note that physical
illustration may be useful to predict internal structure of the considered equations. The results confirm
that sub-equations method is very effective and efficient to find exact traveling wave solutions of Wick-
type fractional nonlinear evolution equations.
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1. Introduction

The general fifth-order KdV equation is dedicated in a variety of scientific fields which is expressed
by in the form of

ut +uxxxxx +auuxxx +buxuxx + cu2ux = 0, (1.1)

where a,b and c are unknown constants. Many researchers have been studied symmetry reductions,
consevation laws by using Lie symmetry analysis and exact traveling wave solutions of Eq (1.1) [1–6].

Highly motivated by Eq (1.1), we consider the stochastic Wick-type fractional CDGSK equation in
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the form of

∂ �αU
∂ t�α

+
∂ �5αU
∂x�5α

+A(t)�U � ∂ �3αU
∂x�3α

+A(t)� ∂ �αU
∂x�α

� ∂ �2αU
∂x�2α

+C(t)�U�2 � ∂ �αU
∂x�α

= 0, (1.2)

where “�” is Wick product and A(t) and C(t) are white noise functionals defined in the Kondratiev
distribution space. In particular, by choosing suitable a,b and c with b = a and c = a2/5, Eq (1.1) can
be reduced to the SK and CDG equations as follows; when we take a = b = c = 5 and apply fractional
order in Eq (1.1), the fractional SK equation is expressed by in the form of

∂ αU
∂ tα

+
∂ 5αU
∂x5α

+5U
∂ 3αU
∂x3α

+5
∂ αU
∂xα

∂ 2αU
∂x2α

+5U2 ∂ αU
∂xα

= 0, (1.3)

and additionally, by taking a = b = 30, c = 180 in Eq (1.1) and applying fractional order, the fractional
CDG equation is given by

∂ αU
∂ tα

+
∂ 5αU
∂x5α

+30U
∂ 3αU
∂x3α

+30
∂ αU
∂xα

∂ 2αU
∂x2α

+180U2 ∂ αU
∂xα

= 0. (1.4)

Recently, periodic and rational solutions of the SK and CDG equations have been studied by using
the conformable dreivative and (G′/G)-expansion method and so on [16–18]. M. Arshad et al. have
been applied the generalized exp(−Φ(ξ ))-expansion method and the improved sub-equation method
for exact solutions of the SK equation [9]. M. Safari has been used to variational iteration method
and Adomian decomposition method to find numerical solutions of the CDG equation [7] and (G′/G)-
expansion method is used to find exact traveling wave solutions of the CDG equation [8]. In addition,
several powerful techniques are available in the literature to find exact and numerical solutions of
nonlinear partial diffrential equations (NPDEs) such as predictor-corrector method [10], Jacobi elliptic
function method [11,12], Kudrayshov method [13,14], homogeneous balance method [15], and so on.
Painlevé test is a powerful approach for investigating the integrability properties of many nonlinear
evolution equations. It is important to note about the integrability of NPDEs before finding exact
solutions of them. So we can determine appropriate conditions when there is the general solution of
NPDE or when we can find some exact solutions of NPDE or when we cannot find any exact solution of
NPDE [19]. Fractional calculus is utilized to the study of fractional integrals and fractional derivatives
for bounded measurable functions [20]. So, the fractional nonlinear evolution models are an interest
issue in mathematical physics and engineering [21–25]. It should be mentioned that deriving exact and
numerical solutions of the fractional NPDEs (FNPDEs) can describe physical phenomena better than
the generalized NPDEs arising in the various fields [26–32]. In addition, we believe that finding Wick-
type versions of exact traveling wave solutions of the stochastic Wick-type FNPDEs plays a significant
role in the description of physical phenomena of their equations.

This paper is organized as follows; in Section 2, we give the definitions of the Wick product, the
Hermite transformation and the conformable fractional derivative and steps of finding exact traveling
wave solutions of the stochastic Wick-type FNPDEs. In Section 3, we investigate the integrability
of Eq (1.2) by using the Painlevé test and we obtain new Wick-type and non-Wick-type versions of
exact traveling wave solutions of Eq (1.2). Section 4 consists of exact traveling wave solutions of the
FNPDEs such as Eq (1.3) and Eq (1.4). Finally, some conclusions give in the end of this work.
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2. Preliminaries

In this section, we introduce the Wick product, the Hermite transform that can convert the FNPDEs
into the stochastic Wick-type FNPDEs and the conformable fractional derivative to convert the orinary
nonlinear differential equations into FNPDEs [33,34]. And we also introduce the steps of finding exact
traveling wave solutions of the stochastic Wick-type FNPDEs. Let’s see the basic definitions firstly.

2.1. The basic definitions

Assume S
(
Rd) and

(
S
(
Rd))∗ are the Hida test function space and the Hida disturbance space on

Rd , respectively. Fixed n ∈ R, (S)n
1 consists of elements

x = ∑
α

cαHα(w)

where cα ∈ Rn, ||x||21,k ≡ ∑α c2
α(α!)2(2N)kα < ∞ for all k ∈ N with

c2
α = |cα |2 = ∑

n
k=1(c

(k)
α )2,cα = (c(1)α , · · · ,c(n)α ) ∈ Rn,α! = ∏

∞
k=1 αk! and (2N)α = ∏ j(2 j)α j , and

Hα(w) = ∏
∞
i=1 Hαi(〈x,ηi〉),w ∈

(
S
(
Rd))∗ ,α = (α1,α2, · · ·) ∈ J.

The space (S)n
−1 consisit of all formal expansions

X = ∑
α

aαHα

where aα ∈Rn, ||X ||−1,−q ≡∑α a2
α (2N)−qα < ∞, for all n,q∈N. The family of seminorms ||x||1,k,k ∈

N gives rise to a topology on (S)n
1, we can regard (S)n

−1 as the dual of (S)n
1 by the action

〈X ,x〉= ∑
α

(aα ,cα)α!,

where (aα ,cα) is the usual inner product in Rn.

Definition 2.1. Let X = ∑α aαHα and Y = ∑β bβ Hβ be two elements of (S)n
−1 with aα ,bβ ∈ Rn . The

Wick product of X and Y is the element X �Y given by

X �Y = ∑
α,β

(
aα ,bβ

)
Hα+β .

Definition 2.2. Let X = ∑α aαHα ∈ (S)n
−1 and aα ∈Rn. The Hermite transform of X, denoted by X̃(z),

is defined by

X̃(z) = ∑aαzα ∈ Cn(when convergent),

where z = (z1,z2, . . .) ∈ Cn and zα = zα1
1 zα2

2 · · · if α = (α1,α2, . . .) ∈ J, where z0
j = 1.

Note that if X ,Y ∈ (S)n
−1, then the Hermite transform of X �Y is

X̃ �Y (z) = X̃(z) · Ỹ (z)

for all z such that X̃(z) and Ỹ (z) exist, where X̃(z) · Ỹ (z) is complex bilinear product between two
elements of Cn defined by (ν1,ν2, . . . ,νn) · (w1,w2, . . . wn) = ∑

n
i=1 νiwi, where νi,wi ∈ C.
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Let X = ∑α aαHα ∈ (S)n
−1. Then the vector c0 = X̃(0) ∈ Rn is called the generalized expectation of

X and is denoted by E(X). Suppose that f : V →Cm is an analytic function, where V is a neighborhood
of E(X). Assume that the Taylor series of f around E(X) has some coefficients in Rn, then the Wick
version f �(X) = H −1 ( f ◦ X̃

)
∈ (S)n

−1.
The Wick exponent of X ∈ (S)n

−1 is defined by exp�{X} = ∑
∞
n=0 X�n/n!. With the Hermite

transformation, the Wick exponent shows the same algebra properties as the usual one. For example,
exp�{X +Y}= exp�{X}� exp�{Y}.

Now we introduce the conformable fractional derivative as below [39].

Definition 2.3. Given a function g : (0,+∞)→ R, then the conformable fractional derivative of a
function g is defined by

tDαg(t) = lim
ε→0

g(t + εt1−α)−g(t)
ε

,

where t > 0 and α ∈ (0,1].

We have some important rules of the conformable fractional derivatives for some familiar functions
as follows;

tDαtr = rtr−α ,r ∈ R,
tDα( f (t)g(t)) = f (t)tDαg(t)+g(t)tDα f (t),

tDα(( f ◦g)(t)) = t1−αg‘′(t) f ‘′(g(t)),

tDα

(
f (t)
g(t)

)
=

g(t)tDα f (t)− f (t)tDαg(t)
g2(t)

.

2.2. Steps for finding exact traveling wave solutions of the stochastic Wick-type FNPDEs

We will present steps for finding exact traveling wave solutions of the stochastic Wick-type
FNPDEs. Consider the stochastic Wick-type FNPDE with respect to x and t as

Q�(U,D�αt U,D�αx U,D�2α
tt U,D�2α

tx U,D�2α
xx U, . . .) = 0, (2.1)

where U =U(x, t) is unknown solution. Eq (2.1) is a polynomial in U and its various partial derivatives.
We take the Hermite transformation of Eq (2.1). This turns the Wick product into the ordinary products
and the equation takes the following form

Q̃(Ũ ,Dα
t Ũ ,Dα

x Ũ ,D2α
tt Ũ ,D2α

tx Ũ ,D2α
xx Ũ , . . . ,z) = 0, (2.2)

where H (U) = Ũ = Ũ(x, t,z) and z = (z1,z2, . . .) ∈ Kq(r), for some q,r, where
Kq(r) = {z = (z1,z2, . . .) ∈ CNand∑α,0 |zα |2(2N)qα < r2}. Then, under certain conditions, we can
take the inverse Hermite transformation U = H −1 (Ũ) ∈ (S)−1. and thereby obtain the solution U of
the original Wick equation (2.1). We have the following theorem [35].

Theorem 2.1. Suppose Ũ(x, t,z) is a solution (in the usual strong pointwise sense) of Eq. (2.4) for
(x, t) in some bounded open set G⊂ Rd×R, and for each z ∈Kq(R), for some q,R. Moreover, suppose
that Ũ(x, t,z) and all its partial derivatives involved in (2.4) are (uniformly) bounded for (x, t,z) ∈
G×Kq(R), continuous with respect to (x, t) ∈ G for all z ∈ Kq(R) and analytic with respect to z ∈
Kq(R), for all (x, t) ∈G. Then there exists U(x, t) ∈ (S)−1 such that Ũ(x, t,z) = (H U(x, t))(z) for all
(x, t,z) ∈G×Kq(R) and U(x, t) solves (in the strong sense in (S)−1) Eq (2.1 ) in (S)−1 .
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Next we introduce some steps to obtain the solution of Eq (2.2) in detail.

Step 1. Traveling wave variable is supposed by

ζ̃ (x, t,z) = kX +
∫ T

0
ω̃(s,z)ds, (2.3)

where X = xα

α
,T = tα

α
, k is unknown constant and ω̃(s,z) is unknown integrable function. By applying

the conformable fractional derivative and traveling wave variable (2.3), Eq. (2.2) can be reduced into
the following ordinary differential equation with respect to ζ ;

Q̃(Ũ ,kŨζ ,ωŨζ ,k
2Ũζ ζ ,ω

2Ũζ ζ ,kωŨζ ζ , . . . ,z) = 0, (2.4)

where ζ̃ = ζ , ω̃ = ω , Ũ(ζ ) = Ũ(x, t,z) and Ũζ = dŨ/dζ ,Ũζ ζ = d2Ũ/ζ 2, and so on.

Step 2. Let’s test the integrability of Eq. (2.4) by using Painlevé test. If Eq (2.4) passes Painlevé test
by appropriate conditions of the integrability of Eq (2.4), it can move on next step to find exact
solutions of Eq (2.4). If not, Eq (2.4) cannot give any exact solution.

Step 3. By homogeneous balance method, we take exact solution of Eq. (2.4) in the form of

Ũ(ζ ) =
N

∑
j=0

Ã j(t,z)
{

Ψ(ζ )

Φ(ζ )

} j

, (2.5)

where

Ψ(ζ )

Φ(ζ )
=

p̃(t,z)− q̃(t,z)
p̃(t,z)− q̃(t,z)exp{−(p̃(t,z)− q̃(t,z))ζ}

, if p̃(t,z) , q̃(t,z), (2.6)

that is satisfied the sub-equations

Ψ
′(ζ ) = p̃(t,z) Ψ(ζ ), (2.7)

Φ
′(ζ ) = p̃(t,z) Ψ(ζ )+ q̃(t,z)Φ(ζ ), (2.8)

where p̃(t,z) and q̃(t,z) are integrable functions on R and
{

Ã j(t,z)
}N

j=0 are unknown coefficients to
be computed later, with ÃN(t,z) , 0. The pole-order N of exact solution (2.5) can be determined from
the highest order linear term and the highest order nonlinear term in Eq (2.4) by homogeneous
balance method [15].

Step 4. Equating each coefficient of the same order of {Ψ(ζ )/Φ(ζ )} to zero by substituting exact
solution (2.5) into Eq (2.4) and then the required relations of cofficients and physical parameters are
found by solving the algebraic equations in terms of

{
Ã j(t,z)

}N
j=0 , p̃(t,z), q̃(t,z),k, ω̃(t,z) with the aid

of computer package programs. Replacing exact solution (2.5) by the traveling wave variable (2.3) and{
Ã j(t,z)

}N
j=0, we can construct the Wick-type exact traveling wave solutions of Eq (2.1) by using the

inverse Hermite transform in Theorem 2.1.
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3. The stochastic Wick-type fractional CDGSK equaion (1.2)

In this section, we will obtain the conditions of integrability of Eq (1.2) by employing the Painlevé
test. And then we can find the Wick-type and non-Wick-type versions of exact traveling wave solutions
of Eq (1.2) by the sub-equations method if it passes the Painlevé test.

Now, by the definitions of the Wick product and the Hermite transformation, first of all, we change
the non-Wick-type version of Eq (1.2) that is rewritten by in the form of

∂ αŨ
∂ tα

+
∂ 5αŨ
∂x5α

+ Ã(t,z)Ũ
∂ 3αŨ
∂x3α

+ Ã(t,z)
∂ αŨ
∂xα

∂ 2αŨ
∂x2α

+C̃(t,z)Ũ2 ∂ αŨ
∂xα

= 0, (3.1)

where z = (z1,z2, . . .) ∈ CN is a vector parameter. Let Ũ = Ũ(x, t,z) = u(ζ (x, t,z)) be the solution of
Eq (3.1). With the use of traveling wave variable

ζ = ζ̃ (x, t,z) = kX +
∫ T

0
ω̃(s,z)ds, (3.2)

where X = xα

α
and T = tα

α
, and by the properties of the conformable fractional derivative, Eq (3.1) is

rewritten by in the form of

ω̃(T,z)uζ + k5uζ ζ ζ ζ ζ +a(t,z)k3uuζ ζ ζ +a(t,z)k3uζ uζ ζ + c(t,z)ku2uζ = 0, (3.3)

where uζ = du/dζ ,uζ ζ = d2udζ 2, . . . and a(t,z) = Ã(t,z),c(t,z) = C̃(t,z).

3.1. The Painlevé test of Eq (3.3)

Let us test the integrability of Eq (3.3) on the Painlevé test [36–38]. First, to determine the pole
order of the solution expansion of Eq (3.3), the equation with the leading members corresponding to
Eq (3.3) is

k5uζ ζ ζ ζ ζ +a(t,z)k3uζ uζ ζ = 0. (3.4)

Substituting u(ζ ) = B−r(t,z)
ζ r into Eq (3.4), we get

r = 2, B−r(t,z) =−
60k2

a(t,z)
. (3.5)

So, we have the first member of the solution expansion in Laurent series as follows;

u'− 60k2

a(t,z)ζ 2 + · · · . (3.6)

Now we have to find Fuchs indices [37, 38]. For this idea we substitute

u =− 60k2

a(t,z)ζ 2 +B j(t,z)ζ j−2, (3.7)
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into Eq (3.4) and equate the equation at B j(t,z) to zero, we have the equation for Fuchs indices in the
following form of

j5−20 j4 +155 j3−460 j2 +84 j+720 = 0. (3.8)

In order to Eq (3.3) passes the Painlevé test, we have to obtain the integer values for Fuchs indices as
follows;

j1 =−1, j2 = 2, j3 = 6. (3.9)

Now, to find the conditions of the integrability of Eq (3.3), we consider Laurent series for general
solution expansion of Eq (3.3) in the form of

u(ζ )'− 60k2

a(t,z)ζ 2 +
B1(t,z)

ζ
+B2(t,z)

+B3(t,z)ζ +B4(t,z)ζ 2 +B5(t,z)ζ 3 +B6(t,z)ζ 4, (3.10)

where B2(t,z) and B6(t,z) are arbitrary functions corresponding to j2 = 2, j3 = 6, respectively.
We substitute Laurent series (3.10) into Eq (3.3) and equate coefficients at different powers of ζ

to zero, we have special relations on coefficients and parameters of Eq (3.3) corresponding to Fuchs
indices j2 = 2, j3 = 6 as follows;

B1(t,z) =±k

√
(5a2−50c)B2(t,z)

a3−30ac
, (3.11)

2280a3k5−18000ack5 = 0, (3.12)

B3(t,z) =
a(a4−60a2c+1500c2)B2(t,z)

30k(a4−40a2c+300c2)

√
(5a2−50c)B2(t,z)

a3−30ac
, (3.13)

B4(t,z) =
ka(a6−60a4c+3300a2c2−90000c3)B2

2(t,z)
120k3(2a6−135a4c+2700a2c2−13500c3)

− a(t,z)(30a4−1800a2c−27000c2)ω)

120k3(2a6−135a4c+2700a2c2−13500c3)
, (3.14)

B5(t,z) =±
a2B51(t,z)

3600k4B52(t,z)

√
(5a2−50c)B2(t,z)

a3−30ac
, (3.15)

a4ck(a6−60a4c+3300a2c2−90000c3)B2
2(t,z)B

2
6(t,z)

12k2(2a6−135a4c+2700a2c2−13500c3)
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−
a4c(30a4 +1800a2c−27000c2)ωB2

6(t,z)
12k2(2a6−135a4c+2700a2c2−13500c3)

−
a7c(−5a2 +50c)(kB61(t,z)B2

2(t,z)+B62(t,z)ω)2B6(t,z)
1296000k7(a3−30ac)B2

62(t,z)
= 0, (3.16)

where B51(t,z) = k(a10− 20a8c+ 600a6c2− 12× 104a4c3 + 432× 104a2c4− 297× 105c5)B2
2(t,z)+

(30a8 − 1650a6c + 135 × 102a4c2 + 405 × 103a2c3 − 405 × 104c4)ω,B52(t,z) =
2a10 − 165a8c + 4825a6c2 − 60750a4c3 + 3.375 × 105a2c4 − 675 × 103c5,B61(t,z) =
a10 − 20a8c + 600a6c2 − 12 × 104a4c3 + 432 × 104a2c4 − 297 × 105c5,B62(t,z) =
30a8 − 1650a6c + 135 × 102a4c2 + 405 × 103a2c3 − 405 × 104c4,B63(t,z) =
2a10 − 165a8c + 4825a6c2 − 60750a4c3 + 3.375 × 105a2c4 − 675 × 103c5, letting
a = a(t,z),c = c(t,z), ω = ω̃(T,z) and T = tα/Γ(1+α).

Equation (3.3) would passes the Painlevé test if Eqs (3.12) and (3.16) were identically equal to zero.
As the consequence of this expansion, there is the solution expansion of Eq (3.3) in Laurent series with
two arbitrary functions B2(t,z) and B6(t,z). Then we can obtain exact solutions of Eq (3.3).

Remark 3.1. From the compatibilty conditions (3.12) and (3.16) at Fuchs indices j2 = 2 and j3 = 6,
we have a relation of c(t,z) = 19

150a2(t,z),a(t,z) , 0 and

B6(t,z) =
(17996a2(t,z)kB2

2(t,z)+35525ω̃(T,z))2B2(t,z)
15563625k5(569a2(t,z)kB2

2(t,z)+980ω(T,z))
,

respectively. By the traveling wave variable (3.2) and Laurent series (3.10), the solution expansion
u(ζ ) is expressed by in the form of

u(ζ )≈−
60k2

a
ζ 2 ±

2
√

210
7

√
B2(t,z)

a k

ζ
+B2(t,z)

± 131
3528

√
210

√
B2(t,z)

a aB2(t,z)

k
ζ

− 25
2352

(
3414aB2

2(t,z)
25k2 +

1176ω

5ak3

)
ζ

2

±125
√

210
724416

√
B2(t,z)

a

(
287936a2B2

2(t,z)
3125k3 +

22736ω

125

)
ζ

3

+
(17996a2kB2

2(t,z)+35525ω̃(T,z))2B2(t,z)
15563625k5(569a2kB2

2(t,z)+980ω(T,z))
ζ

4, (3.17)

where ζ = kX +
∫ T

0 ω̃(τ,z)ds, X = xα

α
,T = tα

α
,τ = [αs]1/α ,a = a(t,z).

If we take c(t,z) = 1
5a2(t,z) and B2(t,z) = 0, the solution expansion u(ζ ) is expressed by in the form

of

u(ζ )≈−
60k2

a(t,z)

ζ 2 −
5ω(T,z)
2a(t,z)k3 ζ

2 (3.18)

where ζ = kX +
∫ T

0 ω̃(τ,z)ds, X = xα

α
,T = tα

α
,τ = [αs]1/α .
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3.2. Exact traveling wave solutions of Eq (1.2)

Now, let us find Wick-type and non-Wick-type versions of exact traveling wave solutions of Eq
(1.2). First, to determine the pole-order N of exact solution of Eq (3.3), we take the highest order linear
term uζ ζ ζ ζ ζ and the highest order nonlinear term uζ uζ ζ in Eq (3.3) and so we obtain N +5 = 2N +3
which gives N = 2 by the homogeneous balance method [15]. Now, we take exact solution of Eq (3.3)
in the form of

Ũ(ζ ) = Ã0(t,z)+ Ã1(t,z)
{

Ψ(ζ )

Φ(ζ )

}
+ Ã2(t,z)

{
Ψ(ζ )

Φ(ζ )

}2

, (3.19)

where {Ψ(ζ )/Φ(ζ )} is given in Section 2. We substitute exact solution (3.19) and {Ψ(ζ )/Φ(ζ )}
into Eq (3.3) and then we can yield the algebraic equations by equating to zero the expressions with
the same degree of {Ψ(ζ )/Φ(ζ )}. Solving the algebraic equations with respect to the unknowns
Ã2(t,z), Ã1(t,z), Ã0(t,z) and ω̃(T,z) by the help of computer package programs, we obtain three
nontrivial solution sets as follows;

ω̃(T,z) =−5k5q4(t)(M1(t,z)M2(t,z)+M3(t,z))
4C̃(t,z)M4(t,z)

,

p̃(t,z) =−q̃(t,z), Ã(t,z) = Ã(t,z),C̃(t,z) = C̃(t,z),

Ã0(t,z) =−
5k2q̃2(t,z)

(
(3Ã2(t,z)−8C̃(t,z))M1(t,z)+20Ã(t,z)

)
2C̃(t,z)

(
Ã(t,z)M1(t,z)+10C̃(t,z)

) ,

Ã1(t,z) =±
6k2q̃2(t,z)M1(t,z)

C̃(t,z)
, Ã2(t,z) =±

3k2q̃2(t,z)M1(t,z)
C̃(t,z)

,

M1(t,z) =
√

9Ã2(t,z)−40C̃(t,z)±3Ã(t,z),

M2(t,z) = 27Ã5(t,z)−144Ã3(t,z)C̃(t,z)+320Ã(t,z)C̃2(t,z),
M3(t,z) = 1600C̃3(t,z)−760Ã2(t,z)C̃2(t,z),

M4(t,z) = (3Ã3(t,z)−10Ã(t,z)C̃(t,z))M1(t,z)+20Ã2(t,z)C̃(t,z)−50C̃2(t,z), (3.20)

ω̃(T,z) = 4731.19k2q̃4(t,z), p̃(t,z) =−11.4244q̃(t,z),
Ã(t,z) = Ã(t,z),C̃(t,z) = 0.0530465Ã2(t,z),

Ã0(t,z) =−
104.44k2q̃2(t,z)

Ã(t,z)
, Ã1(t,z) = 0, Ã2(t,z) =−

2785.54k2q̃2(t,z)
Ã(t,z)

, (3.21)

ω̃(T,z) =−159.179k5q̃4(t,z), p̃(t,z) = (2±
√

3)q̃(t,z),

Ã(t,z) = Ã(t,z),C̃(t,z) =−0.175Ã2(t,z), Ã0(t,z) =
25.5092k2q̃2(t,z)

Ã(t,z)
,

Ã1(t,z) =−
127.956k2q̃2(t,z)

Ã(t,z)
, Ã2(t,z) =−

238.769k2q̃2(t,z)
Ã(t,z)

. (3.22)

In order to obtain the Wick-type versions of exact traveling wave solutions of Eq (1.2), we replace
exact solution (3.19) by nontrivial solution sets (3.20)–(3.22) and Eq (2.6), and by using the inverse
Hermite transformation U = H −1(Ũ), we have the Wick-type exact traveling wave solutions of Eq
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(1.2) in the followings. Based on (3.20), we get the first Wick-type exact traveling wave solution of
Eq. (1.2) in the following form

U1(x, t) =±
3k2q�2(t)�M1(t)

C(t)
�
[

2
1+ exp�{2q(t)�ζ1(x, t)}

]�2
±6k2q�2(t)�M1(t)

C(t)
�
[

2
1+ exp�{2q(t)�ζ1(x, t)}

]
−

5k2q�2(t)�
(
(3A�2(t)−8C(t))�M1(t)+20A(t)

)
2C(t)� (A(t)�M1(t)+10C(t))

, (3.23)

where

ζ1(x, t) =
kxα

α
−
∫ T

0

5k5q�4(τ)� (M1(τ)�M2(τ)+M3(τ))

4C(τ)�M4(τ)
ds,

τ = [αs]1/α , T = tα/α , and with a relation of p(t) =−q(t),
M1(t) =

√
9A�2(t)−40C(t) ± 3A(t),M2(t) =

27A�5(t)− 144A�3(t) �C(t)+ 320A(t) �C�2(t),M3(t) = −760A�2(t) �C�2(t)+ 1600C�3(t),M4(t) =
(3A�3(t)−10A(t)�C(t))�M1(t)+20A�2(t)�C(t)−50C�2(t).

Subsequently, from (3.21) and (3.22), we obtain the following Wick-type exact traveling wave
solutions of Eq (1.2):

U2(x, t) =−
238.769k2q�2(t)

A(t)
�
[

12.4244
11.4244+ exp�{12.4244q(t)�ζ2(x, t)}

]�2
−104.44k2q�2(t)

A(t)
, (3.24)

where

ζ2(x, t) =
kxα

α
+
∫ T

0
4731.19k2q�4(τ)ds,

τ = [αs]1/α , T = tα/α and with the relations of p(t) =−11.4244q(t) and C(t) = 0.053A�2(t), and

U3(x, t) =−
238.769k2q�2(t)

A(t)
�
[

2.7321
3.7321− exp�{−2.7321q(t)�ζ3(x, t)}

]�2
−127.956k2q�2(t)

A(t)
�
[

2.7321
3.7321− exp�{−2.7321q(t)�ζ3(x, t)}

]
+

25.5092k2q�2(t)
A(t)

, (3.25)

where

ζ3(x, t) =
kxα

α
−
∫ T

0
159.179k5q�4(τ)ds,

τ = [αs]1/α , T = tα/α and with the relations of p(t) = 3.7321q(t) and C(t) =−0.175A�2(t), and

U4(x, t) =−
238.769k2q�2(t)

A(t)
�
[

0.7321
0.2679− exp�{0.732q(t)�ζ4(x, t)}

]�2
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+
127.956k2q�2(t)

A(t)
�
[

0.7321
0.2679− exp�{0.732q(t)�ζ4(x, t)}

]
+

25.5092k2q�2(t)
A(t)

, (3.26)

where

ζ4(x, t) =
kxα

α
−
∫ T

0
159.179k5q�4(τ)ds,

τ = [αs]1/α , T = tα/α and with the relations of p(t) = 0.2679q(t) and C(t) =−0.175A�2(t).
In white noise analysis, a version of Brownian motion B(t) expresses informally B(t) =

∫ t
0 W (τ)dτ

and in a generalized sense, W (t) = dB(t)/dt, which is white noise defined in R. Let’s take A(t) =
f1(t)+W (t) and C(t) = f2(t)+W (t) where f1(t) and f2(t) be integrable functions on R. Based on
the Wick-type exact traveling wave solutions (3.23)–(3.26), the non-Wick-type exact traveling wave
solutions can be expressed by in the forms of

U12(x, t) =±
3k2q2(t)M1(t)

f2(t)+W (t)

[
2

1+ exp{2q(t)ζ12(x, t)}

]2

±6k2q2(t)M1(t)
f2(t)+W (t)

[
2

1+ exp{2q(t)ζ12(x, t)}

]
−

5k2q2(t)
(
(3( f1(t)+W (t))2−8( f2(t)+W (t)))M1(t)+20( f1(t)+W (t))

)
2( f2(t)+W (t))(( f1(t)+W (t))M1(t)+10( f2(t)+W (t)))

, (3.27)

where

ζ12(x, t) =
kxα

α
−
∫ T

0

5k5q4(τ)(M1(τ)M2(τ)+M3(τ))

4( f2(τ)+W (τ))M4(τ)
ds,

τ = [αs]1/α , T = tα/α , and with a relation of p(t) =−q(t),
M1(t) =±3( f1(t)+W (t))+

√
9( f1(t)+W (t))2−40( f2(t)+W (t)),

M2(t) = 27( f1(t)+W (t))5−144( f1(t)+W (t))3( f2(t)+W (t))+320( f1(t)+W (t))( f2(t)+W (t))2,
M3(t) =−760( f1(t)+W (t))2( f1(t)+W (t))2 +1600( f2(t)+W (t))3,

M4(t) = (3( f1(t) + W (t))3 − 10( f1(t) + W (t))( f2(t) + W (t)))M1(t) + 20( f1(t) + W (t))2( f2(t) +
W (t))−50( f2(t)+W (t))2.

U22(x, t) =−
238.769k2q2(t)

f1(t)+W (t)

[
12.4244

11.4244+ exp{12.4244q(t)ζ22(x, t)}

]2

−104.44k2q2(t)
f1(t)+W (t)

, (3.28)

where

ζ22(x, t) =
kxα

α
+
∫ T

0
4731.19k2q4(τ)ds,

τ = [αs]1/α , T = tα/α and with relations of p(t) =−11.4244q(t) and C(t) = 0.053A2(t), and

U32(x, t) =−
238.769k2q2(t)

f1(t)+W (t)

[
2.7321

3.7321− exp{−2.7321q(t)ζ32(x, t)}

]2
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−127.956k2q2(t)
f1(t)+W (t)

[
2.7321

3.7321− exp{−2.7321q(t)ζ32(x, t)}

]
+

25.5092k2q2(t)
f1(t)+W (t)

, (3.29)

where

ζ32(x, t) =
kxα

α
−
∫ T

0
159.179k5q4(τ)ds,

τ = [αs]1/α , T = tα/α and with relations of p(t) = 2.7321q(t) and C(t) =−0.175A2(t), and

U42(x, t) =−
238.769k2q2(t)

f1(t)+W (t)

[
0.7321

0.2679− exp{0.732q(t)ζ42(x, t)}

]2

+
127.956k2q2(t)

f1(t)+W (t)

[
0.7321

0.2679− exp{0.732q(t)ζ42(x, t)}

]
+

25.5092k2q2(t)
f1(t)+W (t)

, (3.30)

where

ζ42(x, t) =
kxα

α
−
∫ T

0
159.179k5q4(τ)ds,

τ = [αs]1/α , T = tα/α and with relations of p(t) = 0.2679q(t) and C(t) =−0.175A2(t).

Remark 3.2. Wick-type exact traveling wave solution (3.23) of Eq (1.2) is depending on white noise
functionals A(t),C(t) and a parameter function q(t) by a relation of p(t) = −q(t). There are some
relations between white noise functionals and parameter functions such as
{C(t) = 0.053A2(t), p(t) = −11.4244q(t)}, {C(t) = −0.175A2(t), p(t) = 2.7321q(t)} and
{C(t) = −0.175A2(t), p(t) = 0.2679q(t)}. So we know that these solutions (3.24)–(3.26) are only
depending on white noise functional A(t) and parameter function q(t). Specially, we perform the
dynamics of the non-Wick-type exact traveling wave solution (3.28) without white noise (W (t) = 0)
has different soliton-type behaviours in Figure 1 and we perform the dynamics of (3.28) with white
noise W (t) = −cosh(0.1RandomReal[t]) in Figure 2, as the fractional orders α = 0.3,0.5 and the
integral order α = 1, under k = 0.5,q(t) = 0.1cos(0.1t), f1(t) =−0.1cos(0.1t), respectively. And we
represent that the non-Wick-type exact traveling wave solution (3.29) without white noise (W (t) = 0)
has different soliton-type behaviours in Figure 3 as the fractional orders α = 0.1,0.5 and the integral
order α = 1, under k = 0.5,q(t) = 0.1cos(0.1t), f1(t) =−0.1cos(0.1t).

(a) (b) (c)
Figure 1. Profiles of the non-Wick-type exact traveling wave solution (3.28) with W (t) = 0
for the fractional orders; (a) α = 0.3, (b) α = 0.5, (c) α = 1.
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Figure 2. Profiles of the non-Wick-type exact traveling wave solution (3.28) with W (t) =
−cosh(0.1RandomReal[t]) for the fractional orders; when x = 0, (a) α = 0.3, (b) α = 0.5,
(c) α = 1 and when x = 10, (d) α = 0.3, (e) α = 0.5, (f) α = 1.

(a) (b) (c)
Figure 3. Profiles of the non-Wick-type exact traveling wave solution (3.29) with W (t) = 0
for the fractional orders; (a) α = 0.1, (b) α = 0.5, (c) α = 1.

4. Exact traveling wave solutions of FNPDEs

4.1. The fractional SK equation (1.3)

In order to solve the fractional SK equation (1.3), substituting the transformation U(t,x) = u(ζ ) and
traveling wave variable

ζ = ζ (x, t) =
kxα

α
+
∫ T

0
ω(s)ds, (4.1)

where T = tα/α into Eq (1.3), Eq (1.3) can be converted to the ordinary nonlinear differential equation

ω(T )u′+ k5u(5)+5k3uu′′′+5k3u′u′′+5ku2u′ = 0, (4.2)

where u(n) = dnu/dζ n is the nth order derivative of u with respect to ζ and n is the positive integer
number.

Equation (1.3) has two exact traveling wave solutions with the use of the part of Section 2 as follows;
the first exact traveling wave solution of Eq (1.3) is expressed by

USK1(x, t) = 21.3693k2q2(t)
[

2
1+ exp{2q(t)ζ1(x, t)}

]2
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−42.7386k2q2(t)
[

2
1+ exp{2q(t)ζ1(x, t)}

]
+10.075k2q2(t), (4.3)

where

ζ1(x, t) =
kxα

α
+
∫ T

0
85.2814k5q4(τ)ds,

τ = [αs]1/α , T = tα/α and with a relation of p(t) = −q(t), and the second exact traveling wave
solution of Eq (1.3) is given by

USK2(x, t) =−3.36932k2q2(t)
[

2
1+ exp{2q(t)ζ2(x, t)}

]2

+6.73863k2q2(t)
[

2
1+ exp{2q(t)ζ2(x, t)}

]
−3.32505k2q2(t), (4.4)

where

ζ2(x, t) =
kxα

α
+
∫ T

0
35.0311k5q4(τ)ds,

τ = [αs]1/α , T = tα/α and with a relation of p(t) =−q(t).

Example 4.1. For the integral order α = 1, substituting constant coefficients f1(t) = 5, f2(t) = 5 and
W (t) = 0 into non-wick-type exact traveling wave solution (3.27), and a new version of exact traveling
wave solution of Eq (1.2) is given by in the form of

U(x, t) = 12k2q2(t)
[

2
1+ exp{2q(t)ζ (x, t)}

]2

+24k2q2(t)
[

2
1+ exp{2q(t)ζ (x, t)}

]
− 8

3
k2q2(t), (4.5)

where ζ (x, t) = kx+
∫ t

0
55
2 k5q4(s)ds, and with a relation of p(t) = −q(t). We expect that this solution

has periodic solitons in the dynamics to be seen in Figure 6.

Remark 4.2. We discuss the dynamical behaviours of the obtained exact traveling wave solutions in
order to describe physical interpretation of the fractional SK equation . The fractional SK equation has
two nontrivial exact traveling wave solutions with a relation of time-dependent parameters as p(t) =
−q(t) as follows; exact traveling wave solution (4.3) gives the dynamics as irregular traveling waves
for the fractional orders α = 0.1,0.5 and dark-type solitons for the integral order α = 1 with suitable
parameters k = 0.002,q(t) = 20cos(0.1t)+15sin(0.2t) in Figure 4. In Figure 5, exact traveling wave
solution (4.4) describes solitary waves for the fractional orders α = 0.2,0.5 and the integral order α =
1 with k = 0.002,q(t) = 20cos(0.1t). The dynamics of exact traveling wave solution (4.5) represent
periodic solitons feature and the density plot by k = 0.002,q(t) = 20cos(0.1t) in Figure 6.
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(a) (b) (c)
Figure 4. Profiles of exact traveling wave solution (4.3) as fractional orders; (a) α = 0.1, (b)
α = 0.5, (c) α = 1, under k = 0.002,q(t) = 20cos(0.1t)+15sin(0.2t).

(a) (b) (c)
Figure 5. Profiles of exact traveling wave solution of (4.4) as fractional orders; (a) α = 0.1,
(b) α = 0.5, (c) α = 1, under k = 0.002,q(t) = 20cos(0.1t).
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Figure 6. Profiles of exact traveling wave solution (4.5); (a) Perspective view of the wave,
(b) Density plot of the wave along x and t, under k = 0.002,q(t) = 20cos(0.1t).

4.2. The fractional CDG equation (1.4)

In order to solve Eq (1.4), substituting the transformation U(t,x) = u(ζ ) and traveling wave variable
(4.1) into Eq (1.4), Eq (1.4) is expressed by in the form of

ω(T )u′+ k5u(5)+30k3uu′′′+30k3u′u′′+180ku2u′ = 0. (4.6)

Similarly, we use the method in Section 4.1 to find exact traveling wave solutions of Eq. (1.4) and
so we obtain the followings; the first exact traveling wave solution of Eq (1.4) is expressed by

UCDG1(x, t) = 3.56155k2q2(t)
[

2
1+ exp{2q(t)ζ1(x, t)}

]2
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−7.12311k2q2(t)
[

2
1+ exp{2q(t)ζ1(x, t)}

]
+1.67917k2q2(t), (4.7)

where ζ1(x, t) = kxα

α
+
∫ T

0 85.2814k5q4(τ)ds,τ = [αs]1/α , T = tα/α and with a relation of p(t) =
−q(t), and the second exact traveling wave solution of Eq (1.4) is given by

UCDG2(x, t) =−0.561553k2q2(t)
[

2
1+ exp{2q(t)ζ2(x, t)}

]2

+1.12311k2q2(t)
[

2
1+ exp{2q(t)ζ2(x, t)}

]
−0.554174k2q2(t), (4.8)

where ζ2(x, t) = kxα

α
+
∫ T

0 35.0311k5q4(τ)ds,τ = [αs]1/α , T = tα/α and with a relation of p(t) =
−q(t).

Example 4.3. For the integral order α = 1, substituting f1(t) = 30, f2(t) = 180 and W (t) = 0 into
non-Wick-type exact traveling wave solution (3.27) and then we have a new version of exact traveling
wave solution of Eq (1.2) expressed by in the form of

U(x, t) =−2k2q2(t)
[

2
1+ exp{2q(t)ζ (x, t)}

]2

+4k2q2(t)
[

2
1+ exp{2q(t)ζ (x, t)}

]
− 253

648
k2q2(t), (4.9)

where ζ (x, t) = kx−
∫ t

0
55
2 k5q4(s)ds, and with a relation of p(t) =−q(t).

Remark 4.4. There are some performances of the obtained solutions of the fractional CDG equation.
Exact traveling wave solution (4.7) gives different waves for the fractional orders α = 0.1,0.5 and
the dark-type solitons solution for the integral order α = 1, respectively, under k = 0.002,q(t) =
20cos(0.1t) in Figure 7. In Figure 8, exact traveling wave solution (4.8) performs solitary wave
for α = 0.1 a soliton-like for α = 0.5 and solitons for the integral order α = 1, respectively, under
k = 0.017,q(t) = 20cos(0.1t). Figure 9 performs (a) the dynamic of exact traveling wave solution
(4.9) with periodic solitons and (b) the density plot, under k = 0.003,q(t) = 20cos(0.1t).

(a) (b) (c)
Figure 7. Profiles of exact traveling wave solution (4.7) as fractional orders; (a) α = 0.1, (b)
α = 0.5, (c) α = 1, under k = 0.002,q(t) = 20cos(0.1t).
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(a) (b) (c)
Figure 8. Profiles of exact traveling wave solution (4.8) as fractional orders; (a) α = 0.1, (b)
α = 0.5, (c) α = 1, under k = 0.017,q(t) = 20cos(0.1t).
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Figure 9. Profiles of exact traveling wave solution (4.9); (a) Perspective view of the wave,
(b) Density plot of the wave along x and t, under k = 0.003,q(t) = 20cos(0.1t).

5. Conclusions

In this paper, we obtained new Wick-type and non-Wick-type versions of exact traveling wave
solutions of the stochastic Wick-type fractional CDGSK equation and new exact traveling wave
solutions of the fractional SK and CDG equations by employing the sub-equations method. The
considered equations provided us more new exact solutions than the solutions by other existing
methods and these solutions might be of great importance in various fields of applied science for
interpreting some physical phenomena by performing the dynamics of the obtained solutions under
suitable physical parameters. We believe that the sub-equations method is very straightforward and
powerful to find exact solutions of the nonlinear evolution equations.
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