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Abstract: Let G be a graph and f : V(G) → {0, 1, 2} be a mapping. f is said to be a Roman
dominating function of G if every vertex u for which f (u) = 0 is adjacent to at least one vertex v for
which f (v) = 2. The weight w( f ) of a Roman dominating function f is the value w( f ) =

∑
u∈V(G) f (u),

and the minimum weight of a Roman dominating function is the Roman domination number γR(G). f
is said to be a Roman {2}-dominating function of G if

∑
v∈N(u) f (v) ≥ 2 for every vertex u with f (u) = 0,

where N(u) is the set of neighbors of u in G. The weight of a Roman {2}-dominating function f is
the sum

∑
v∈V f (v) and the minimum weight of a Roman {2}-dominating function is the Roman {2}-

domination number γ{R2}(G). Chellali et al. (2016) proved that γR(G) ≥ ∆+1
∆
γ(G) for every nontrivial

connected graph G with maximum degree ∆. In this paper, we generalize this result on nontrivial
connected graph G with maximum degree ∆ and minimum degree δ. We prove that γR(G) ≥ ∆+2δ

∆+δ
γ(G),

which also implies that 3
2γ(G) ≤ γR(G) ≤ 2γ(G) for any nontrivial regular graph. Moreover, we prove

that γR(G) ≤ 2γ{R2}(G) − 1 for every graph G and there exists a graph Ik such that γ{R2}(Ik) = k and
γR(Ik) = 2k − 1 for any integer k ≥ 2.
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1. Introduction

In this paper, we shall only consider graphs without multiple edges or loops. Let G = (V(G), E(G))
be a graph, v ∈ V(G), the neighborhood of v in G is denoted by N(v). That is to say N(v) = {u|uv ∈
E(G), u ∈ V(G)}. The degree of a vertex v is denoted by d(v), i.e. d(v) = |N(v)|. A graph is trivial if it
has a single vertex. The maximum degree and the minimum degree of a graph G are denoted by ∆(G)
and δ(G), respectively. Denote by Kn the complete graph on n vertices.

A subset D of the vertex set of a graph G is a dominating set if every vertex not in D has at least
one neighbor in D. The domination number γ(G) is the minimum cardinality of a dominating set of G.
A dominating set D of G with |D| = γ(G) is called a γ-set of G.
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Roman domination of graphs is an interesting variety of domination, which was proposed by
Cockayne et al. [6]. A Roman dominating function (RDF) of a graph G is a function
f : V(G)→ {0, 1, 2} such that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for
which f (v) = 2. The weight w( f ) of a Roman dominating function f is the value w( f ) =

∑
u∈V(G) f (u).

The minimum weight of an RDF on a graph G is called the Roman domination number γR(G) of G.
An RDF f of G with w( f ) = γR(G) is called a γR-function of G. The problems on domination and
Roman domination of graphs have been investigated widely, for example, see list of
references [8–10, 13] and [3, 7, 12], respectively.

In 2016, Chellali et al. [5] introduced a variant of Roman dominating functions, called Roman {2}-
dominating functions. A Roman {2}-dominating function (R{2}DF) of G is a function f : V → {0, 1, 2}
such that

∑
u∈N(v) f (u) ≥ 2 for every vertex v ∈ V with f (v) = 0. The weight of a Roman {2}-dominating

function f is the sum
∑

v∈V f (v). The Roman {2}-domination number γ{R2}(G) is the minimum weight
of an R{2}DF of G. Note that if f is an R{2}DF of G and v is a vertex with f (v) = 0, then either there
is a vertex u ∈ N(v) with f (u) = 2, or at least two vertices x, y ∈ N(v) with f (x) = f (y) = 1. Hence, an
RDF of G is also an R{2}DF of G, which is also mentioned by Chellali et al [5]. Moreover, they showed
that the decision problem for Roman {2}-domination is NP-complete, even for bipartite graphs.

In fact, a Roman {2}-dominating function is essentially the same as a weak {2}-dominating function,
which was introduced by Brešar et al. [1] and studied in literatures [2, 11, 14, 15].

For a mapping f : V(G) → {0, 1, 2}, let (V0,V1,V2) be the ordered partition of V(G) induced by f
such that Vi = {x : f (x) = i} for i = 0, 1, 2. Note that there exists a 1-1 correspondence between the
function f and the partition (V0,V1,V2) of V(G), so we will write f = (V0,V1,V2).

Chellali et al. [4] obtained the following lower bound of Roman domination number.

Lemma 1. (Chellali et al. [4]) Let G be a nontrivial connected graph with maximum degree ∆. Then
γR(G) ≥ ∆+1

∆
γ(G).

In this paper, we generalize this result on nontrivial connected graph G with maximum degree ∆

and minimum degree δ. We prove that γR(G) ≥ ∆+2δ
∆+δ

γ(G). As a corollary, we obtain that 3
2γ(G) ≤

γR(G) ≤ 2γ(G) for any nontrivial regular graph G. Moreover, we prove that γR(G) ≤ 2γ{R2}(G) − 1 for
every graph G and there exists a graph Ik such that γ{R2}(Ik) = k and γR(Ik) = 2k − 1 for any integer
k ≥ 2.

2. A lower bound of Roman domination number

Lemma 2. ( Cockayne et al. [6]) Let f = (V0,V1,V2) be a γR-function of an isolate-free graph G with
|V1| as small as possible. Then

(i) No edge of G joins V1 and V2;
(ii) V1 is independent, namely no edge of G joins two vertices in V1;
(iii) Each vertex of V0 is adjacent to at most one vertex of V1.

Theorem 3. Let G be a nontrivial connected graph with maximum degree ∆(G) = ∆ and minimum
degree δ(G) = δ. Then

γR(G) ≥
∆ + 2δ
∆ + δ

γ(G). (2.1)
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Moreover, if the equality holds, then

γ(G) =
n(∆ + δ)

∆δ + ∆ + δ
and γR(G) =

n(∆ + 2δ)
∆δ + ∆ + δ

.

Proof. Let f = (V0,V1,V2) be a γR-function of G with V1 as small as possible. By Lemma 2, we know
that N(v) ⊆ V0 for any v ∈ V1 and N(v1) ∩ N(v2) = ∅ for any v1, v2 ∈ V1. So we have

|V1| ≤
|V0|

δ
(2.2)

Since G is nontrivial, it follows that V2 , ∅. Note that every vertex in V2 is adjacent to at most ∆

vertices in V0; we have
|V0| ≤ ∆|V2| (2.3)

By Formulae (2.2) and (2.3), we have

|V1| ≤
∆

δ
|V2| (2.4)

By the definition of an RDF, every vertex in V0 has at least one neighbor in V2. So V1 ∪ V2 is a
dominating set of G. Together with Formula (2.4), we can obtain that

γ(G) ≤ |V1| + |V2| ≤
∆

δ
|V2| + |V2| =

∆ + δ

δ
|V2|.

Note that f is a γR-function of G; we have

γR(G) = |V1| + 2|V2| = (|V1| + |V2|) + |V2| ≥ γ(G) +
δ

∆ + δ
γ(G) =

∆ + 2δ
∆ + δ

γ(G).

Moreover, if the equality in Formula (2.1) holds, then by previous argument we obtain that |V1| =
|V0 |

δ
, |V0| = ∆|V2|, and V1 ∪ V2 is a γ-set of G. Then we have

n = |V0| + |V1| + |V2| = |V0| +
|V0|

δ
+
|V0|

∆
=

∆δ + ∆ + δ

∆δ
|V0|.

Hence, we have

|V0| =
n∆δ

∆δ + ∆ + δ
, |V1| =

n∆

∆δ + ∆ + δ
, and |V2| =

nδ
∆δ + ∆ + δ

.

So
γR(G) = |V1| + 2|V2| =

n(∆ + 2δ)
∆δ + ∆ + δ

and γ(G) = |V1| + |V2| =
n(∆ + δ)

∆δ + ∆ + δ

since V1 ∪ V2 is a γ-set of G. This completes the proof. �

Now we show that the lower bound in Theorem 3 can be attained by constructing an infinite family
of graphs. For any integers k ≥ 2, δ ≥ 2 and ∆ = kδ, we construct a graph Hk from K1,∆ by adding k
news vertices such that each new vertex is adjacent to δ vertices of K1,∆ with degree 1 and no two new
vertices has common neighbors. Then add some edges between the neighbors of each new vertex u
such that δ(Hk) = δ and the induced subgraph of N(u) in Hk is not complete. The resulting graph Hk is
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a connected graph with maximum degree ∆(G) = ∆ and maximum degree δ(G) = δ. It can be checked
that γ(Hk) = k + 1 and γR(Hk) = k + 2 = ∆+2δ

∆+δ
γ(G).

For example, if k = 2, δ = 3 and ∆ = kδ = 6, then the graph H2 constructed by the above method is
shown in Figure 1, where u1 and u2 are new vertices.

1u
2u

v

Figure 1. An example to illustrate the construction of Hk.

Furthermore, by Theorem 3, we can obtain a lower bound of the Roman domination number on
regular graphs.

Corollary 4. Let G be an r-regular graph, where r ≥ 1. Then

γR(G) ≥
3
2
γ(G) (2.5)

Moreover, if the equality holds, then

γ(G) =
2n

r + 2
and γR(G) =

3n
r + 2

.

Proof. Since G is r-regular, we have ∆(G) = δ(G) = r. By Theorem 3 we can obtain that this corollary
is true. �

For any integer n ≥ 2, denote by G2n the (2n − 2)-regular graph with 2n vertices, namely G2n is
the graph obtained from K2n by deleting a perfect matching. It can be checked that γ(G2n) = 2 and
γR(G2n) = 3 = 3

2γ(G) for any n ≥ 2. Hence, the bound in Corollary 4 is attained.
Note that γR(G) ≤ 2γ(G) for any graph G; we can conclude the following result.

Corollary 5. Let G be an r-regular graph, where r ≥ 1. Then

3
2
γ(G) ≤ γR(G) ≤ 2γ(G).

3. Relationship between Roman domination and Roman {2}-domination numbers

Chellali et al. [5] obtain the following bounds for the Roman {2}-domination number of a graph G.

Lemma 6. (Chellali et al. [5]) For every graph G, γ(G) ≤ γ{R2}(G) ≤ γR(G) ≤ 2γ(G).
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Lemma 7. (Chellali et al. [5]) If G is a connected graph of order n and maximum degree ∆(G) = ∆,
then

γ{R2}(G) ≥
2n

∆ + 2
.

Theorem 8. For every graph G, γR(G) ≤ 2γ{R2}(G) − 1. Moreover, for any integer k ≥ 2, there exists a
graph Ik such that γ{R2}(Ik) = k and γR(Ik) = 2k − 1.

Proof. Let f = (V0,V1,V2) be an γ{R2}-function of G. Then γ{R2}(G) = |V1| + 2|V2| and γR(G) ≤
2|V1| + 2|V2| since V1 ∪ V2 is a dominating set of G. If |V2| ≥ 1, then γR(G) ≤ 2|V1| + 2|V2| =

2γ{R2}(G) − 2|V2| ≥ 2γ{R2}(G) − 2. If |V2| = 0, then every vertex in V0 is adjacent to at least two
vertices in V1. So for any vertex u ∈ V1, f ′ = (V0, {u},V1 \ {u}) is an RDF of G. Then we have
γR(G) ≤ 1 + 2|V1 \ {u}| = 2|V1| − 1 = 2γ{R2}(G) − 1.

For any integer k ≥ 2, let Ik be the graph obtained from Kk by replacing every edge of Kk with two
paths of length 2. Then ∆(Ik) = 2(k − 1) and δ(Ik) = 2. We first prove that γ{R2}(Ik) = k. Since V(Ik) =

|V(Kk)| + 2|E(Kk)| = k + 2 · k(k−1)
2 = k2, by Lemma 7 we can obtain γ{R2}(Ik) ≥

2|V(Ik)|
∆(Ik)+2 = 2k2

2(k−1)+2 = k. On
the other hand, let f (x) = 1 for each x ∈ V(Ik) with d(x) = 2(k − 1) and f (y) = 0 for each y ∈ V(Ik)
with d(y) = 2. It can be seen that f is an R{2}DF of Ik and w( f ) = k. Hence, γ{R2}(Ik) = k.

We now prove that γR(Ik) = 2k − 1. Let g = {V ′1,V
′
2,V

′
3} be a γR-function of Ik such that |V ′1| is

minimum. For each 4-cycle C = v1v2v3v4v1 of Ik with d(v1) = d(v3) = 2(k−1) and d(v2) = d(v4) = 2, we
have wg(C) = g(v1)+g(v2)+g(v3)+g(v4) ≥ 2. If wg(C) = 2, then by Lemma 2(iii) we have g(vi) ∈ {0, 2}
for any i ∈ {1, 2, 3, 4}. Hence, one of v1 and v3 has value 2 and g(v2) = g(v4) = 0. If wg(C) = 3, then
by Lemma 2(i) we have {g(v1), g(v3)} = {1, 2} or {g(v2), g(v4)} = {1, 2}. When {g(v2), g(v4)} = {1, 2}, let
{g′(v1), g′(v2)} = {1, 2}, g′(v2) = g′(v4) = 0 and g′(x) = g(x) for any x ∈ V(Ik) \ {v1, v2, v3, v4}. Then g′ is
also a γR-function of Ik. If wg(C) = 4, then exchange the values on C such that v1, v3 have value 2 and
v2, v4 have value 0. So we obtain that Ik has a γR-function h such that h(y) = 0 for any y ∈ V(Ik) with
degree 2. Note that any two vertices of Ik with degree 2(k − 1) belongs to a 4-cycle considered above;
we can obtain that there is exactly one vertex z of Ik with degree 2(k − 1) such that h(z) = 1. Hence,
γR(Ik) = w(h) = 2k − 1. �

Note that the graph Ik constructed in Theorem 8 satisfies that γ(Ik) = k = γ{R2}(Ik). By Theorem 8,
it suffices to prove that γ(Ik) = k. Let A = {v : v ∈ V(Ik), d(v) = 2(k − 1)} and B = V(Ik) \ A. We will
prove that Ik has a γ-set containing no vertex of B. Let D be a γ-set of Ik. If D contains a vertex u ∈ B.
Since the degree of u is 2, let u1 and u2 be two neighbors of u in Ik. Then d(u1) = d(u2) = 2(k − 1) and,
by the construction of Ik, u1 and u2 have two common neighbors u, u′ with degree 2. Hence, at least
one of u′, u1, and u2 belongs to D. Let D′ = (D \ {u, u′})∪ {u1, u2}. Then D′ is also a γ-set of Ik. Hence,
we can obtain a γ-set of Ik containing no vertex of B by performing the above operation for each vertex
v ∈ D ∩ B. So A is a γ-set of Ik and γ(Ik) = |A| = k.

By Lemma 6 and Theorem 8, we can obtain the following corollary.

Corollary 9. For every graph G, γ{R2}(G) ≤ γR(G) ≤ 2γ{R2}(G) − 1.

Theorem 10. For every graph G, γR(G) ≤ γ(G) + γ{R2}(G) − 1.

Proof. By Lemma 6 we can obtain that γR(G) ≤ 2γ(G) ≤ γ(G) + γ{R2}(G). If the equality holds, then
γR(G) = 2γ(G) and γ(G) = γ{R2}(G). So γR(G) = 2γ{R2}(G), which contradicts Theorem 8. Hence, we
have γR(G) ≤ γ(G) + γ{R2}(G) − 1. �
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4. Conclusions

In this paper, we prove that γR(G) ≥ ∆+2δ
∆+δ

γ(G) for any nontrivial connected graph G with maximum
degree ∆ and minimum degree δ, which improves a result obtained by Chellali et al. [4]. As a corollary,
we obtain that 3

2γ(G) ≤ γR(G) ≤ 2γ(G) for any nontrivial regular graph G. Moreover, we prove that
γR(G) ≤ 2γ{R2}(G) − 1 for every graph G and the bound is achieved. Although the bounds in Theorem
3 and Theorem 8 are achieved, characterizing the graphs that satisfy the equalities remain a challenge
for further work.
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