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Abstract: In this article, we refine some numerical radius inequalities of sectorial matrices recently
obtained by Bedrani , Kittaneh and Sababheh. Among other results, it is shown that if Ai ∈ Mn(C) with
W(Ai) ⊆ S α, i = 1, 2 · · · , n, and a1, · · · , an are positive real numbers with

∑n
j=1 a j = 1 , then

ωt

 n∑
i=1

aiAi

 ≤ cos2t(α)ω

 n∑
i=1

aiAt
i

 ,
where t ∈ [−1, 0]. An improvement of the Heinz-type inequality for the numerical radii of sectorial
matrices is also given. Moreover, we present some numerical radius inequalities of sectorial matrices
involving positive linear maps.
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1. Introduction

Let Mn(C) denote the set of n × n complex matrices. For A ∈ Mn(C), the conjugate transpose of A
is denoted by A∗, and the matrices <A = 1

2 (A + A∗) and =A = 1
2i (A − A∗) are called the real part and

imaginary part of A, respectively ( [6, p. 6] and [12, p. 7 ]), Moreover, A is called accretive if<A > 0.
For two Hermitian matrices A, B ∈ Mn(C), we write A ≥ B (or B ≤ A) if A − B is positive semidifinite.
A linear map Φ : Mn(C) → Mk(C) is called positive if it maps positive definite matrices to positive
definite matrices and is said to be unital if it maps identity matrices to identity matrices.

The numerical range of A ∈ Mn(C) is defined by

W(A) = {| 〈Ax, x〉 | : x ∈ Cn, ‖x‖ = 1} ,
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while the operator norm of A is defined by

‖A‖ = max {| 〈Ax, y〉 | : x, y ∈ Cn, ‖x‖ = ‖y‖ = 1} .

Let ||| · ||| denote any unitarily invariant norm on A ∈ Mn(C), which satisfies |||UAV ||| = |||A||| for any
unitary matrices U,V ∈ Mn(C). The numerical radius of A is defined by ω(A) = sup {|λ| : λ ∈ W(A)} .
Note that numerical radius is weakly unitarily invariant instead of unitarily invariant, that is, for A ∈
Mn(C), ω(U∗AU) = ω(A) for every unitary U ∈ Mn(C). It is well-known that

ω(A) ≤ ‖A‖ (1.1)

for A ∈ Mn(C).
For α ∈ [0, π2 ), S α denotes the sectorial region in the complex plane as follows:

S α =
{
z ∈ C : <z > 0, |=z| ≤ (<z) tanα

}
.

If W(A) ⊆ S 0, then A is positive definite, and if W(A),W(B) ⊆ S α for some α ∈ [0, π2 ), then W(A+ B) ⊆
S α, A is nonsingular and<(A) is positive definite. Moreover, W(A) ⊆ S α implies W(X∗AX) ⊆ S α for
any nonzero n × m matrix X, thus W(A−1) ⊆ S α. Recently, Tan and Chen [21] also proved that for
any positive linear map Φ, W(A) ⊆ S α implies that W(Φ(A)) ⊆ S α. Recent developments on sectorial
matrices can be found in [10, 13–18, 21, 23].

For two positive definite matrices A, B ∈ Mn(C) and 0 ≤ λ ≤ 1, the weighted geometric mean is
defined by A]λB = A

1
2 (A−

1
2 BA−

1
2 )λA

1
2 , and the weighted harmonic mean is defined by A!λB = ((1 −

λ)A−1 +λB−1)−1, while the weighted arithmetic mean is defined by A∇λB = (1−λ)A+λB. In particular,
when λ = 1

2 , we denote the geometric mean, harmonic mean and arithmetic mean by A]B, A!B and
A∇B, respectively. When λ < [0, 1], we still define A]λB as above, which is then not needed to be a
matrix mean.

For two accretive matrices A, B ∈ Mn(C), Drury [9] defined the geometric mean of A and B as
follows

A]B =

(
2
π

∫ ∞

0
(tA + t−1B)−1 dt

t

)−1

. (1.2)

This new geometric mean defined by (1.2) possesses some similar properties compared to the
geometric mean of positive matrices. For instance, A]B = B]A, (A]B)−1 = A−1]B−1. Moreover, if
A, B ∈ Mn(C) with W(A),W(B) ⊂ S α, then W(A]B) ⊂ S α.

Later, Raissouli, Moslehian and Furuichi [20] defined the following weighted geometric mean of
two accretive matrices A, B ∈ Mn(C),

A]λB =
sin λπ
π

∫ ∞

0
tλ−1(A−1 + tB−1)−1 dt

t
, (1.3)

where λ ∈ [0, 1]. If λ = 1
2 , then the formula (1.3) coincides with the formula (1.2).

Very recently, Bedrani, Kittaneh and Sababheh [2] defined a more general operator mean for two
accretive matrices A, B ∈ Mn(C),

Aσ f B =

∫ 1

0
((1 − s)A−1 + sB−1)−1 dv f (s), (1.4)
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where f : (0,∞) → (0,∞) is an operator monotone function with f (1) = 1 and v f is the probability
measure characterizing σ f . For more information about operator mean, more generally, operator
monotone functions that preserve the ordering of real parts of operators, we refer the readers to the
recent work of Gaál and Pálfia [11]. Particularly, if A, B ∈ Mn(C) with W(A),W(B) ⊂ S α, then
W(Aσ f B) ⊂ S α.

Moreover, they also characterize the operator monotone function for an accretive matrix: let A ∈
Mn(C) be accretive and f : (0,∞)→ (0,∞) be an operator monotone function with f (1) = 1,

f (A) =

∫ 1

0
((1 − s)I + sA−1)−1 dv f (s), (1.5)

where v f is the probability measure satisfying f (x) =

∫ 1

0
((1 − s) + sx−1)−1 dv f (s).

Recently, Mao et al. [19] defined the Heinz mean for two sector matrices A, B ∈ Mn(C) with
W(A),W(B) ⊆ S α as

Ht(A, B) =
A]tB + A]1−tB

2
, t ∈ [0, 1].

Ando [1] proved that if A, B ∈ Mn(C) are positive definite, then for any positive linear map Φ,

Φ(Aσ f B) ≤ Φ(A)σ f Φ(B). (1.6)

Ando’s formula (1.6) is known as a matrix Hölder inequality.
To reduce the brackets, we denote (Φ(A))t by Φt(A) throughout this paper. The famous Choi’s

inequality [5, p. 41] says: if Φ is a positive unital linear map and A > 0, then

Φt(A) ≤ Φ(At), t ∈ [−1, 0]. (1.7)

Φt(A) ≥ Φ(At), t ∈ [0, 1]. (1.8)

For the sake of convenience, we shall need the following notation.

m =
{
f (x), where f : (0,∞)→ (0,∞) is an operator monotone function with f (1) = 1

}
.

In a recent paper [3], Bedrani, Kittaneh and Sababheh studied the numerical radius inequalities of
sectorial matrices. They [3] obtained relation between ω−t(A) and ω(A−t) as follows.

Theorem 1.1. Let A ∈ Mn(C) be such that W(A) ⊆ S α. Then for t ∈ [0, 1]

cos(tα) cos2t(α)ω−t(A) ≤ ω(A−t).

They also [3] gave the Heinz-type inequality for the numerical radii of sectorial matrices below.

Theorem 1.2. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α. Then for t ∈ [0, 1]

cos4(α)ω(A]B) ≤ ω(Ht(A, B)) ≤
sec4(α)

2
ω(A + B).

In this paper, we intend to improve upon the bounds of Theorem 1.1 and 1.2. Furthermore, we shall
present some numerical radius inequalities of sectorial matrices involving positive linear maps.
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2. Main results

We begin this section with some lemmas which will be necessary for proving our main results.

Lemma 2.1. (see [2]) Let A ∈ Mn(C) with W(A) ⊆ S α. If f ∈ m, then

f (<A) ≤ <( f (A)) ≤ sec2(α) f (<A).

In Lemma 2.1, letting f (x) = xt, t ∈ [0, 1], we have

cos2(α)<At ≤ <tA ≤ <At. (2.1)

The following lemma gives a better bound of (2.1).

Lemma 2.2. (see [8]) Let A ∈ Mn(C) with W(A) ⊆ S α and t ∈ [0, 1]. Then

cos2t(α)<At ≤ <tA ≤ <At

The famous Löwner-Heinz inequality says that if A, B ∈ Mn(C) are such that A ≥ B ≥ 0 and
t ∈ [0, 1], then At ≥ Bt. Inspired by Lemma 2.2, a sectorial matrix version is as follows: If A, B ∈ Mn(C)
with W(A),W(B) ⊆ S α such that <A ≥ <B ≥ 0 and t ∈ [0, 1], then <At ≥ cos2t(α)<Bt. This is
because<At ≥ <tA ≥ <tB ≥ cos2t(α)<Bt.

Next we present a reverse of Lemma 2.2.

Lemma 2.3. (see [8]) Let A ∈ Mn(C) with W(A) ⊆ S α and t ∈ [−1, 0]. Then

<At ≤ <tA ≤ cos2t(α)<At.

Lately, Bedrani, Kittaneh and Sababheh [2] obtained the following inequality for general operator
mean of sectorial matrices.

Lemma 2.4. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α. Then

<Aσ f<B ≤ <(Aσ f B) ≤ sec2(α)(<Aσ f<B).

Lemma 2.5. (see [3]) Let A ∈ Mn be such that W(A) ⊂ S α. Then

cos(α)ω(A) ≤ ω(<A) ≤ ω(A).

Lemma 2.6. (see [3]) Let A ∈ Mn(C) be such that W(A) ⊆ S α. If f ∈ m, then

|||Aσ f B||| ≤ |||A|||σ f |||B|||,

for any unitarily invariant norm ||| · ||| onMn(C).

Lemma 2.7. (see [6, p.74], [24]) Let A ∈ Mn(C) be such that W(A) ⊆ S α. Then for any unitarily
invariant norm ||| · ||| onMn(C),

cos(α)|||A||| ≤ |||<A||| ≤ |||A|||.
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Lemma 2.8. (see [7]) Let A1, A2, · · · , Ak ∈ Mn(C) be positive and a1, · · · , ak be positive real numbers
with

∑k
j=1 a j = 1. Then for every unitarily invariant norm ||| · ||| onMn(C),∣∣∣∣∣∣∣∣∣∣∣∣ f  k∑

i=1

aiAi

 ∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣∣∣∣ k∑
i=1

ai f (Ai)
∣∣∣∣∣∣∣∣∣∣∣∣

for every nonnegative convex function f on [0,∞).

Now we are ready to give our first main result.

Theorem 2.9. Let Ai ∈ Mn(C) be such that W(Ai) ⊆ S α, i = 1, 2 · · · , k, and a1, · · · , ak be positive real
numbers with

∑k
j=1 a j = 1. Then for t ∈ [−1, 0],

ωt

 k∑
i=1

aiAi

 ≤ cos2t(α)ω

 k∑
i=1

aiAt
i

 .
Proof. Compute

ωt

 k∑
i=1

aiAi

 ≤ ωt

< k∑
i=1

aiAi

 (by Lemma 2.5)

=
∥∥∥∥< k∑

i=1

aiAi

∥∥∥∥t

=
∥∥∥∥ k∑

i=1

ai<Ai

∥∥∥∥t

=
∥∥∥∥(

k∑
i=1

ai<Ai)t
∥∥∥∥

≤

∥∥∥∥ k∑
i=1

ai<
tAi

∥∥∥∥ (by Lemma 2.8)

≤ cos2t(α)
∥∥∥∥ k∑

i=1

ai<At
i

∥∥∥∥ (by Lemma 2.3)

= cos2t(α)
∥∥∥∥<(

k∑
i=1

aiAt
i)
∥∥∥∥

= cos2t(α)ω(<(
k∑

i=1

aiAt
i))

≤ cos2t(α)ω(
k∑

i=1

aiAt
i), (by Lemma 2.5)

which completes the proof.

Corollary 2.10. Let A ∈ Mn(C) be such that W(A) ⊆ S α. Then for t ∈ [−1, 0],

ωt(A) ≤ cos2t(α)ω(At).
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Proof. The result directly derived from Theorem 2.9 by substituting k = 1.
We remark that Corollary 2.10 is a refinement of Theorem 1.1.

Corollary 2.11. Let A ∈ Mn(C) be such that W(A) ⊆ S α. Then

ω−1(A) ≤ sec2(α)ω(A−1).

Proof. The result is directly derived from Corollary 2.10 by substituting t = −1.
Thanks to Corollary 2.11, considerable refinements of Theorem 3.6 and 3.12 in [4] are given below.

Corollary 2.12. Let A ∈ Mn(C) be such that W(A) ⊆ S α and B > 0. Then for t ∈ (1, 2),

cos5(α)ω−1(B−2)ω1−t(A)ωt−2(B) ≤ ω(A]tB).

Proof. The result directly derived from Theorem 3.6 in [4] and Corollary 2.11.

Corollary 2.13. Let B ∈ Mn(C) be such that W(B) ⊆ S α and A > 0. Then for t ∈ (−1, 0),

cos5(α)ω−1(A−2)ω−(t+1)(A)ωt(B) ≤ ω(A]tB).

Proof. The result directly derived from Theorem 3.12 in [4] and Corollary 2.11.
Next we give a complement of Theorem 2.9.

Theorem 2.14. Let Ai ∈ Mn(C) be such that W(Ai) ⊆ S α, i = 1, 2 · · · , k, and a1, · · · , ak be positive real
numbers with

∑k
j=1 a j = 1. Then for t ∈ [−1, 0],

ω


 k∑

i=1

aiAi

t ≤ sec(tα) cos2t(α)ω

 k∑
i=1

aiAt
i

 .
Proof. We have

ω


 k∑

i=1

aiAi

t ≤ ∥∥∥∥(
k∑

i=1

aiAi)t
∥∥∥∥ (by (1.1))

≤ sec(tα)
∥∥∥∥<(

k∑
i=1

aiAi)t
∥∥∥∥ (by Lemma 2.7)

≤ sec(tα)
∥∥∥∥(

k∑
i=1

ai<Ai)t
∥∥∥∥ (by Lemma 2.7)

≤ sec(tα)
∥∥∥∥ k∑

i=1

ai<
tAi

∥∥∥∥ (by convexity)

≤ sec(tα) cos2t(α)
∥∥∥∥ k∑

i=1

ai<At
i

∥∥∥∥ (by Lemma 2.3)

= sec(tα) cos2t(α)
∥∥∥∥<(

k∑
i=1

aiAt
i)
∥∥∥∥
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= sec(tα) cos2t(α)ω

<(
k∑

i=1

aiAt
i)


≤ sec(tα) cos2t(α)ω

 k∑
i=1

aiAt
i

 , (by Lemma 2.5)

completing the proof.

Lemma 2.15. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α and t ∈ [−1, 0]. If f ∈ m, then for any
positive unital linear map Φ,

<(Φt(A)σ f Φ
t(B)) ≤ cos2t(α)<(Φ(Atσ f Bt)).

Proof. We have the following chain of inequalities

<(Φt(A)σ f Φ
t(B)) = <

(∫ 1

0
((1 − s)Φ−t(A) + sΦ−t(B))−1 dv f (s)

)
=

∫ 1

0
<((1 − s)Φ−t(A) + sΦ−t(B))−1 dv f (s)

≤

∫ 1

0
((1 − s)<Φ−t(A) + s<Φ−t(B))−1 dv f (s) (by Lemma 2.3)

≤

∫ 1

0
((1 − s)(<Φ(A))−t + s(<Φ(B))−t)−1 dv f (s) (by Lemma 2.2)

≤

∫ 1

0
((1 − s)Φ<−t(A) + sΦ<−t(B))−1 dv f (s) (by (1.8))

=

∫ 1

0
(Φ((1 − s)<−t(A) + t<−t(B)))−1 dv f (s)

≤

∫ 1

0
Φ(((1 − s)<−t(A) + t<−t(B))−1) dv f (s) (by (1.7))

≤ cos2t(α)Φ
(∫ 1

0
((1 − s)<−1(At) + t<−1(Bt))−1 dv f (s)

)
(by Lemma 2.3)

= cos2t(α)Φ(<Atσ f<Bt)
≤ cos2t(α)Φ(<(Atσ f Bt))
= cos2t(α)<(Φ(Atσ f Bt)),

which completes the proof.

Theorem 2.16. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α and t ∈ [−1, 0]. If f ∈ m, then for
any positive unital linear map Φ,

ω(Φt(A)σ f Φ
t(B)) ≤ sec(tα) cos2t(α)ω(Φ(Atσ f Bt)).

Proof. Compute

ω(Φt(A)σ f Φ
t(B)) ≤ ‖Φt(A)σ f Φ

t(B)‖ (by (1.1))
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≤ sec(tα)‖<(Φt(A)σ f Φ
t(B))‖ (by Lemma 2.7)

≤ sec(tα) cos2t(α)‖<(Φ(Atσ f Bt))‖ (by Lemma 2.15)
= sec(tα) cos2t(α)ω(<(Φ(Atσ f Bt)))
≤ sec(tα) cos2t(α)ω(Φ(Atσ f Bt)). (by Lemma 2.5)

This completes the proof.
The following result presents a reverse of Theorem 2.16.

Theorem 2.17. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α and t ∈ [0, 1]. If f ∈ m, then for any
positive unital linear map Φ,

cos2t(α) cos3(tα)ω(Φ(Atσ f Bt)) ≤ ω(Φt(A)σ f Φ
t(B)),

cos2t(α) cos3(tα)ω(Φ(Atσ f Bt)) ≤ ω(Φt(A))σ fω(Φt(B)).

Proof. We estimate

cos2t(α) cos3(tα)ω(Φ(Atσ f Bt)) ≤ cos2t(α) cos2(tα)ω(<Φ(Atσ f Bt)) (by Lemma 2.5)
= cos2t(α) cos2(tα)‖<Φ(Atσ f Bt)‖
= cos2t(α) cos2(tα)‖Φ<(Atσ f Bt)‖
≤ cos2t(α)‖Φ(<Atσ f<Bt)‖ (by Lemma 2.4)
≤ cos2t(α)‖Φ(<At)σ f Φ(<Bt)‖ (by (1.6))
≤ ‖Φ(<tA)σ f Φ(<tB)‖ (by Lemma 2.2)
≤ ‖Φt(<A)σ f Φ

t(<B)‖ (by (1.8))
= ‖<t(Φ(A))σ f<

t(Φ(B))‖
≤ ‖<(Φt(A))σ f<(Φt(B))‖ (by Lemma 2.2)
≤ ‖<(Φt(A)σ f Φ

t(B))‖ (by Lemma 2.4)
= ω(<(Φt(A)σ f Φ

t(B)))
≤ ω(Φt(A)σ f Φ

t(B)), (by Lemma 2.5)

which proves the first inequality. To prove the second inequality, compute

cos2t(α) cos3(tα)ω(Φ(Atσ f Bt)) ≤ ‖<(Φt(A))σ f<(Φt(B))‖
≤ ‖<(Φt(A))‖σ f ‖<(Φt(B))‖
= ω(<(Φt(A)))σ fω(<(Φt(B)))
≤ ω(Φt(A))σ fω(Φt(B)),

where the first inequality is obtained by the preceding proof, the second one is by Lemma 2.6 and the
last one is due to Lemma 2.5. This completes the proof.

Let t = 1 in Theorem 2.17, one can obtain

cos5(α)ω(Φ(Aσ f B)) ≤ ω(Φ(A)σ f Φ(B)), (2.2)

cos5(α)ω(Φ(Aσ f B)) ≤ ω(Φ(A))σ fω(Φ(B)). (2.3)

Next we are attempting to refine inequalities (2.2) and (2.3).
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Theorem 2.18. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α. If f ∈ m, then for any positive unital
linear map Φ,

ω(Φ(Aσ f B)) ≤ sec3(α)ω(Φ(A)σ f Φ(B)), (2.4)

ω(Φ(Aσ f B)) ≤ sec3(α)ω(Φ(A))σ fω(Φ(B)). (2.5)

Proof. To prove inequality (2.4), compute

ω(Φ(Aσ f B)) ≤ ‖Φ(Aσ f B)‖ (by (1.1))
≤ sec(α)‖<Φ(Aσ f B)‖ (by Lemma 2.7)
= sec(α)‖Φ<(Aσ f B)‖
≤ sec3(α)‖Φ(<(A)σ f<(B))‖ (by Lemma 2.4)
≤ sec3(α)‖Φ(<(A))σ f Φ(<(B))‖ (by (1.6))
= sec3(α)‖<(Φ(A))σ f<(Φ(B))‖
≤ sec3(α)‖<(Φ(A)σ f Φ(B))‖ (by Lemma 2.4)
= sec3(α)ω(<(Φ(A)σ f Φ(B)))
≤ sec3(α)ω(Φ(A)σ f Φ(B)). (by Lemma 2.5)

Next we prove inequality (2.5).

ω(Φ(Aσ f B)) ≤ sec3(α)‖<(Φ(A))σ f<(Φ(B))‖
≤ sec3(α)‖<(Φ(A))‖σ f ‖<(Φ(B))‖
= sec3(α)ω(<(Φ(A)))σ fω(<(Φ(B)))
≤ sec3(α)ω(Φ(A))σ fω(Φ(B)),

where the first inequality is obtained by the preceding proof, the second one is by Lemma 2.6 and the
last one is due to Lemma 2.5. This completes the proof.

We remark that (2.4) coincides with Theorem 3.7 in [3] when setting Φ(X) = X for every X ∈ Mn(C).

Theorem 2.19. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α. Then for t ∈ (0, 1),

cos3(α)ω(A]B) ≤ ω(Ht(A, B)) ≤
sec3(α)

2
ω(A + B).

Proof. To prove the first inequality, We have

ω(A]B) ≤ ‖A]B‖ (by (1.1))
≤ sec(α)‖<(A]B)‖ (by Lemma 2.7)
≤ sec3(α)‖<(Ht(A, B))‖ (by Theorem 2.9 in [19])
= sec3(α)ω(<(Ht(A, B)))
≤ sec3(α)ω(Ht(A, B)). (by Lemma 2.5)
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Next we show the second inequality

ω(Ht(A, B)) ≤ ‖Ht(A, B)‖ (by (1.1))
≤ sec(α)‖<(Ht(A, B))‖ (by Lemma 2.7)

≤
sec3(α)

2
‖<(A + B)‖ (by Theorem 2.9 in [19])

=
sec3(α)

2
ω(<(A + B))

≤
sec3(α)

2
ω(A + B), (by Lemma 2.5)

which completes the proof.
We remark that Theorem 2.19 is an improvement of Theorem 1.2.
Consider a partitioned matirx A ∈ Mn(C) in the form

A =

[
A11 A12

A21 A22

]
,

where A11 and A22 are square matrices. If A11 is invertible, we denote the Schur complement of A11 in
A by S (A) = A22 − A21A−1

11 A12. Whenever we mention S (B), we assume B ∈ Mn(C) has the partition
mentioned above and the relevant inverse exists.

In [25], the author gave the mean inequalities for the Schur complement of sectorial matrices. Next
we try to derive the numerical radius inequalities of the Schur complement of sectorial matrices.

Theorem 2.20. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α and t ∈ (0, 1). Then

ω(S (A)∇tS (B)) ≤ sec3(α)ω(S (A∇tB)), (2.6)

ω(S (A)]tS (B)) ≤ sec5(α)ω(S (A∇tB)), (2.7)

ω(S (A)!tS (B)) ≤ sec5(α)ω(S (A∇tB)). (2.8)

Proof. First we prove inequality (2.6)

ω(S (A)∇tS (B)) ≤ ‖S (A)∇tS (B)‖ (by (1.1))
≤ sec(α)‖<(S (A)∇tS (B))‖ (by Lemma 2.7)
≤ sec3(α)‖<(S (A∇tB))‖ (by Theorem 1.2 in [25])
= sec3(α)ω(<(S (A∇tB)))
≤ sec3(α)ω(S (A∇tB)). (by Lemma 2.5)

To show inequality (2.7), we have

ω(S (A)]tS (B)) ≤ ‖S (A)]tS (B)‖ (by (1.1))
≤ sec(α)‖<(S (A)]tS (B))‖ (by Lemma 2.7)
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≤ sec5(α)‖<(S (A]tB))‖ (by Theorem 1.2 in [25])
= sec5(α)ω(<(S (A]tB)))
≤ sec5(α)ω(S (A]tB)). (by Lemma 2.5)

Now we prove inequality (2.8)

ω(S (A)!tS (B)) ≤ ‖S (A)!tS (B)‖ (by (1.1))
≤ sec(α)‖<(S (A)!tS (B))‖ (by Lemma 2.7)
≤ sec5(α)‖<(S (A!tB))‖ (by Theorem 1.2 in [25])
= sec5(α)ω(<(S (A!tB)))
≤ sec5(α)ω(S (A!tB)), (by Lemma 2.5)

completing the proof.
The celebrated Bellman type operator inequality states that if A, B ∈ Mn(C) are positive semidefinite

and f : (0,∞)→ (0,∞) is operator convex, then for any positive unital linear map Φ,

f (Φ(A∇tB)) ≥ Φ( f (A)∇t f (B)). (2.9)

We shall generalize the settings of the Bellman type operator inequality to sectorial matrices as follows.

Lemma 2.21. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α and t ∈ [0, 1]. If f ∈ m, then for any
positive unital linear map Φ,

< f (Φ(A∇tB)) ≥ cos2(α)<Φ( f (A)∇t f (B)).

Proof. We estimate

< f (Φ(A∇tB)) ≥ f (<Φ(A∇tB)) (by Lemma 2.1)
= f (Φ<(A∇tB))
≥ Φ( f (<A)∇t f (<B)) (by (2.9))
≥ cos2(α)Φ(< f (A)∇t< f (B)) (by Lemma 2.1)
= cos2(α)Φ(<( f (A)∇t f (B)))
= cos2(α)<Φ( f (A)∇t f (B)),

completing the proof.
We remark that in Lemma 2.21 putting t = 0, we get Theorem 6.3 in [2].

Theorem 2.22. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α and t ∈ [0, 1]. If f ∈ m, then for any
positive unital linear map Φ,

ω( f (Φ(A∇tB))) ≥ cos3(α)ω(Φ( f (A)∇t f (B))).

Proof. We estimate

ω( f (Φ(A∇tB))) ≥ ω(< f (Φ(A∇tB))) (by Lemma 2.5)

AIMS Mathematics Volume 6, Issue 4, 3927–3939.



3938

= ‖< f (Φ(A∇tB))‖
≥ cos2(α)‖<Φ( f (A)∇t f (B))‖ (by Lemma 2.21)
= cos2(α)ω(<Φ( f (A)∇t f (B))) (by (6.8) in [2])
≥ cos3(α)ω(Φ( f (A)∇t f (B))). (by Lemma 2.5)

This completes the proof.
The following corollary is a complement of Proposition 3.3 in [3].

Corollary 2.23. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α and t ∈ [0, 1]. If f ∈ m, then

ω( f (A∇tB)) ≥ cos3(α)ω( f (A)∇t f (B)).

Proof. Let Φ(X) = X for every X ∈ Mn(C) in Theorem 2.22, we get the desired result.
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