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Abstract: An alternative measure of uncertainty related to residual lifetime function is the dynamic 

cumulative residual entropy which plays a significant role in reliability and survival analysis. This 

article deals with estimating dynamic cumulative residual Rényi entropy (DCRRE) for Lomax 

distribution using maximum likelihood and Bayesian methods of estimation. The maximum 

likelihood estimates and approximate confidence intervals of DCRRE are derived. Bayesian 

estimates and Bayesian credible intervals are derived based on gamma priors for the DCRRE under 

squared error, linear exponential (LINEX) and precautionary loss functions. The Metropolis-

Hastings algorithm is employed to generate Markov chain Monte Carlo samples from the posterior 

distributions. The Bayes estimates are compared through Monte Carlo simulations. Regarding 

simulation results, we observe that the maximum likelihood and Bayesian estimates of the DCRRE 

are decreasing function on time. Further, maximum likelihood and Bayesian estimates of the 

DCRRE perform well as the sample size increases. Bayesian estimate of the DCRRE under LINEX 

loss function is more convenient than the other estimates in the most of the situations. Real data set is 

analyzed for clarifying purposes. 
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1. Introduction 

Entropy is a fundamental uncertainty measure of a random variable. Shannon [1] provided a 

quantitative measure of uncertainty as a measure of information. A flexible extension of Shannon 

entropy was introduced by Rényi [2]. The Rényi entropy is one parameter generalization of the 

Shannon entropy and can be used as a measure of randomness. Applications of Rényi entropy can be 

found in many fields, such as biology, genetics, electrical engineering, computer science, economics, 

chemistry and physics. 

The Rényi entropy has been widely used in analysis of the quantum systems. It can be 

employed in the analysis of quantum communication protocols (Renner et al. [3]), quantum 

correlations (Lévay et al. [4]). Also it can be used to characterize the number of reads needed to 

reconstruct a DNA sequences (see, Motahari et al. [5]). Rényi entropy has numerous issues as a data 

analysis tools in many practical applications, especially in data that dealing with time-frequency 

representations. Gabarda and Cristobal [6] applied the Rényi entropy to an image fusion method and 

identified which pixels have a higher amount of information among the given input images. Rényi 

entropy can be used to calculate the risk measure of portfolio.  

Entropy concepts can be related to informational market efficiency. Martina et al. [7] studied 

the complexity of crude oil prices using entropy measures to monitor the evolution of crude oil price 

movements. They found that the methods based on entropy concepts can shed light on the structure 

of crude oil markets as well as on its link to macroeconomic conditions and socio-political extreme 

events. Resconi et al. [8] provided a new suggestive reading of quantum mechanics by starting from 

the superposition of different Boltzmann entropies. They suggested that a quantum entropy space can 

be used as the fundamental arena that describing the quantum effects. Another measure of 

uncertainty deals with residual lifetime function is dynamic cumulative residual entropy (DCRE) 

which can be attractive in many fields like reliability and survival analysis. Recently, there are 

considerable literatures assigned to the applications, generalizations and properties of Rényi’s 

measure of entropy. 

Recently, there are many literatures studied the estimation procedure for the entropy measures. 

Kayal and Kumar [9] considered Bayesian estimation of entropy for exponential distribution under 

LINEX loss function. Seo et al. [10] produced an entropy estimate using upper record values from 

the generalized half-logistic distribution. Based on generalized progressive hybrid censoring scheme, 

Bayesian estimates of entropy for Weibull distribution were discussed by Cho et al. [11]. Based on 

record values, Chacko and Asha [12] studied the estimation of the entropy for generalized 

exponential distribution. Patra et al. [13] estimated a function of scale parameter of an exponential 

population under general loss function. Maximum likelihood (ML) estimate of Shannon entropy for 

inverse Weibull distribution under multiple censored data was discussed by Hassan and Zaky [14]. 



3891 
 

AIMS Mathematics Volume 6, Issue 4, 3889–3914. 

Petropoulos et al. [15] provided improved estimators of the entropy for the scale mixture of 

exponential distributions. Estimation of entropy for inverse Lomax distribution under multiple 

censored has been studied by Bantan et al. [16]. Bayesian estimate of the entropy for Lomax 

distribution based on upper record values has been studied by Hassan and Zaky [17]. 

If X is an absolutely continuous random variable with probability density function (PDF) f (x), 

then the corresponding Rényi entropy of order   is defined as: 

1
( ) log ( ) , 0

1
RI f x dx 







 
  
 
 
 and 1.                                               (1) 

Recently, measurements of uncertainty for probability distributions became more interested. 

Sunoj and Linu [18] defined the cumulative residual Rényi entropy (CRRE) for residual lifetime  

Xt = (X −t | X > t) based on survival function instead of using PDF as follows: 

0

1
( ) log ( ) , 0 and 1,

1
R F x dx   



 
   
 
 


                                               (2)

 

where,    1( t)F t tP X F    is the survival (reliability) function. The main features of the CRRE 

are always non-negative as well as it has consistent definitions in both the continuous and discrete 

domains. Furthermore it can be easily computed from sample data and these computations 

asymptotically converge to the true values (see, Rao et al. [19]). Sunoj and Linu [18] defined the 

DCRRE as a dynamic form of uncertainty as follows: 

1 ( )
( ) log , 0 and 1.

1 ( )
R

t

F x
dx

F t




   



 
   
 
 


                                                 (3)

 

Therefore, when t = 0, the DCRRE tends to CRRE. In the literature, few studies had been done 

concerning the inferential procedures of the entropy measures incorporating DCRRE for lifetime 

distributions. Kamari [20] produced some properties of the DCRRE based on order statistics. Kundu 

et al. [21] presented the cumulative residual and past inaccuracy measures which are extensions of 

the corresponding cumulative entropies for truncated random variables. Renjini et al. [22] discussed 

the Bayesian estimates of the DCRRE for the Pareto distribution using Type II right censored data. 

Renjini et al. [23] discussed the Bayesian estimates of the DCRRE for Pareto distribution of the first 

kind under upper record values. Renjini et al. [24] obtained Bayesian estimate of the DCRRE for 

Pareto distribution based on complete data. Bayesian estimate of dynamic cumulative residual 

Shannon entropy for Pareto II distribution has been studied by Ahmadini et al. [25]. 

Lomax [26] proposed a very good alternative to the common lifetime distributions such as 

exponential, Weibull, or gamma when the experimenter presumes that the population distribution 

may be heavy-tailed. Lomax distribution can be applied in a variety of fields such as a business 

failure data model, income and wealth inequality, computer science, risk analysis and economics, 

actuarial science and reliability. Corbellini et al. [27] used it to model firm size and queuing 

problems. As an important lifetime distribution, the Lomax distribution with shape parameter  and 

scale parameter   has the following PDF 

https://www.tandfonline.com/author/Renjini%2C+K+R
https://www.tandfonline.com/author/Renjini%2C+K+R
https://www.tandfonline.com/author/Renjini%2C+K+R
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( 1)( ; , ) ( ) , , , 0.f x x x                                                            (4) 

The cumulative distribution function (CDF) corresponding to (4) is given by, 

( ; , ) 1 ( ) , , , 0.F x x x                                                          (5) 

At 1, 1   , Lomax distribution reduces to the beta prime distribution (also known as inverted beta 

distribution or beta distribution of the second kind). At 1, 1,   Lomax distribution reduces to 

a log-logistic distribution. At 1   , the Lomax distribution reduces to F-distribution, F (2, 2). 

The reliability and hazard rate functions of Lomax distribution are given, respectively, by 

( ; , ) ( ) ,F x x        

and, 

1( ; , ) ( ) .h x x       

The hazard rate function of Lomax distribution takes different shapes according to values of 

shape parameter .  It is a constant at 1  , and it is continuously decreasing at 1,  which 

represents early failures.  

Studies about the Lomax distribution have been provided by many authors. For instance, Abd-

Elfattah et al. [28] obtained the Bayesian and non-Bayesian estimates of the sample size for the 

Lomax distribution in case of Type-I censored samples. Record values of Lomax distribution were 

discussed by Ahsanullah [29]. Balakrishnan and Ahsanullah [30] introduced some recurrence relations 

between the moments of record values from Lomax distribution. Hassan and Al-Ghamdi [31] 

determined the optimum test plan for simple step stress accelerated life testing. Hassan et al. [32] 

discussed the optimal times of changing stress level for k-level step stress accelerated life tests based 

on adaptive Type-II progressive hybrid censoring with product's life time following Lomax 

distribution. For more application about Lomax distribution, the reader can refer to [33–38]. 

From the above, it is evident that the Lomax distribution has been received greatest attention 

from theoretical and statisticians primarily due to its use in various fields. In the literature, there are 

no reports about the statistical inference of the DCRRE for Lomax distribution. So we need to 

estimate the DCRRE for Lomax distribution in view of Bayesian and non-Bayesian procedures based 

on complete samples. The ML estimates and approximate confidence intervals of the DCRRE are 

obtained. The Bayesian estimate is calculated using gamma priors under squared error (SE), LINEX 

and precautionary (PRE) loss functions. According to the complicated forms of the DCRRE 

Bayesian estimate, we employ the Markov Chain Monte Carlo (MCMC) simulation technique for 

numerical study.  

This article can be organized as follows. Section 2 gives the DCRRE of Lomax distribution as 

well as obtains the ML and approximate confidence intervals of DCRRE. Section 3 presents 

Bayesian estimate of the DCRRE for Lomax distribution under symmetric and asymmetric loss 

functions. The MCMC technique is given in Section 4. A real data application is illustrated in 

Section 5. The paper ends with some conclusions based on the results of the numerical studies. 

 

https://en.wikipedia.org/wiki/Log-logistic_distribution
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2. Maximum likelihood estimate of the DCRRE 

This section provides an explicit expression of the DCRRE for Lomax distribution. Then, the 

ML estimate of the DCRRE is derived based on complete random sample. 

The DCRRE of Lomax distribution is obtained by substituting (5) in (3) as follows: 

1 ( )
( ) log .

1 ( )
R

t

x
dx

t






 

 

 



 
 
  
 


                                                        (6)

 

Hence, after simplification the DCRRE takes the form 

1
( ) log , 0, 1and 1.

1 1
R

t 
    

  


    

                                              (7)
 

This is the required expression of the DCRRE for Lomax distribution. To obtain the ML estimate of 

( ),R   we must obtain the ML estimate of the model parameters   and .  

Consider a simple random sample of size n drawn from PDF (4) and CDF (5), where   and   are 

unknown. Then, given the sample 1 2( , ,..., )nx x x x , the likelihood function of Lomax distribution 

can be written as follows  

( 1)

1

( , | ) ( ) .
n

n n
i

i

L x x       



 
                                                     (8)

 

It is usually easier to maximize the natural logarithm of the likelihood function rather than the 

likelihood function itself. Therefore, the logarithm of likelihood function, say ln ,  is 

1

ln log log ( 1) log( ).
n

i

i

n n x    


      

The partial derivatives of the log-likelihood function with respect to   and  , are obtained as 

follows: 

1

ln
log log( ),

n

i

i

n
n x 

  


   




                                                      (9)

 

and 

1

1

ln
( 1) ( ) .

n

i

i

n
x


 

 






   




                                                         (10)

 

The ML estimates of   and  are determined by solving the equations ln 0,    and 

ln 0,   simultaneously. Further the resulting equations cannot be solved analytically, so, 

numerical technique must be applied to solve these equations, simultaneously, to obtain ˆ
ML and 

ˆ .ML  The existence and uniqueness of ˆ
ML and ˆ

ML
 can be checked by solving, algebraically, 

ln 0   and ln 0,   simultaneously and checking that, the second derivative is negative 

which is a maximum point.  
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Hence, by using the invariance property of ML estimate, then ML estimates of the DCRRE denoted 

by 
,

ˆ ( )R ML  becomes 

,

ˆ1
ˆ ˆ( ) log , 0, 1and 1.

ˆ1 1

ML
R ML ML

ML

t 
     

  

 
    

                             (11)

 

Furthermore, a confidence interval of the DCRRE is the probability that a real value of the entropy 

will fall between an upper and lower bounds of a probability distribution. For large sample size, the 

ML estimates, under appropriate regularity conditions, are consistent and asymptotically normally 

distributed. Therefore, the two-sided approximate confidence limits for 
,

ˆ ( )R ML   can be constructed, 

such that 

,

, ,

2 2
ˆ( ( ))

ˆ ( ) ( )
1 ,

R ML

R ML R ML
p z z 

 

   




 
     
 
                                                (12)

 

where, 2z  is 100  1   the standard normal percentile, and  is the significant level. Therefore, the 

lower (L) and upper (U) confidence limits for ,
ˆ ( )R ML  can be obtained as 

,
ˆ, ( ( ))

2

ˆ ( )
R MLR MLL z       and 

,
ˆ, ( ( ))

2

ˆ ( ) ,
R MLR MLU z      

                                  (13)

 

where 
,

ˆ( ( ))R ML   is the standard deviation. The two-sided approximate confidence limits for DCRRE 

will be constructed with confidence level 95 %. 

3. Bayesian estimate of the DCRRE  

In this section, the Bayesian estimates of ( )R  under symmetric (SE) and asymmetric (LINEX 

and PRE) loss functions are obtained by assuming the priors of parameters  and   have gamma 

distributions. As reported by Kayal and Kumar [9], the SE loss function is used when weights of 

error caused by observation and underestimation are equal. But asymmetric loss function is used 

when the overestimation may have more serious than underestimation or vice versa. To compute the 

Bayesian estimate of ( )R  , we proceed as follows. Firstly, the Bayesian estimates of   and   are 

obtained and then the DCRRE estimate will be calculated by substituting the parameter estimates in 

(7). Additionally, the width of the Bayesian credible interval (BCI) estimates is obtained.  

In Bayesian method, there are many methods that can be used in selection of prior. There are 

two types of the prior distributions, non-informative and informative prior (IP) distributions. The 

prior of parameters may be selected as independent or dependent priors. In this paper, we assume the 

prior of parameters   and , denoted by 1( )  and 2 ( )  are independent. Following Pak and 

Mahmoudi [39], we take 1( )   and 2 ( )   to be gamma distributions with parameters (a,b) and (c,d) 

as follows  
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1
1( ) ,

( )

b
b aa

e
b

    
  

1
2

2

( ) ,
( )

d
c dc

e
c

    
                                                (14)

 

where a, b, c and d are known and non-negative. So, the joint posterior for parameters, denoted by

*
1,2 ( , ),   is 

* 1 2
1,2

1 2

0 0

1 1 1 ( ) ( 1)

1

1 1 ( ) ( 1)

0 0
1

( , | ) ( ) ( )
( , | )

( , | ) ( ) ( )

( ) ,

where,

( ) .

n
n b n d a c

i

i

n
n b n d a c

i

i

L x
x

L x d d

S e x

S e x d d

   

   

     
 

       

  

    


 

        



 
       





 

 

 



 
                                    (15)

 

So, the marginal posterior PDF of parameters   and  is given respectively by: 

1 1 ( ) ( 1)

0
* 1

1

1 1 ( ) ( 1)

0 0
1

( )

( | ) ,

( )

n
n b n d a c

i

i

n
n b n d a c

i

i

e x d

x

e x d d

   

   

   

 

    


       



 
       











 
                                     (16) 

and 

1 1 ( ) ( 1)

0
* 1

2

1 1 ( ) ( 1)

0 0
1

( )

( | ) .

( )

n
n b n d a c

i

i

n
n b n d a c

i

i

e x d

x

e x d d

   

   

   

 

    


       



 
       











 
                                     (17)

 

Therefore, the Bayesian estimates of   and  under SE loss function, say ˆ
SE , and ˆ

SE can be 

obtained as posterior mean as follows: 

1 1 ( ) ( 1)

0 0
1

ˆ ( ) ,

n
n b n d a c

SE i

i

S e x d d        
 

       



  
                                      (18)

 

and, 

1 1 ( ) ( 1)

0 0
1

ˆ ( ) .

n
n b n d a c

SE i

i

S e x d d        
 

       



  
                                      (19)

 

While, the Bayesian estimates of parameters  and  under LINEX loss function, say ˆ
LINEX , and

ˆ
LINEX  are obtained as follows: 
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*
2

0

1 1 1 ( ) ( 1)

0 0
1

,

1
ˆ log[ ( | ) ], 0

1
log ( )

LINEX

n
n b n d a c

i

i

e x d

S e x d d



    

   


    







 
         




 

 
  

 
 


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                        (20)

 

and 

*
2

0

1 1 1 ( ) ( 1)

0 0
1

,

1ˆ log[ ( | ) ], 0

1
log ( )

LINEX

n
n b n d a c

i

i

e x d

S e x d d



    

   


    







 
         




 

 
  

 
 



 
                        (21)

 

where,  is a real number. Additionally, the Bayesian estimates of parameters  and   under PRE 

loss function say ˆ
PRE and ˆ

PRE  are given as follows: 

1

2 * 2
1

0

1

2
1 1 1 ( ) ( 1)

0 0
1

ˆ [ ( | ) ]

( ) ,

PRE

n
n b n d a c

i

i

x d

S e x d d   

   

    




 
        





 
  
 
 



 
                               (22)

 

and 

1

2 * 2
2

0

1

2
1 1 1 ( ) ( 1)

0 0
1

ˆ [ ( | ) ]

( ) .

PRE

n
n b n d a c

i

i

x d

S e x d d   

   

    




 
        





 
  
 
 



 
                                (23)

 

Integrals (18)–(23) do not take a closed form, so the Metropolis-Hastings (M-H) and random-

walk Metropolis algorithms are employed to generate the MCMC samples from posterior density 

functions (16) and (17), respectively. Hence, the Bayesian estimates of   and   under SE, LINEX 

and PRE loss functions are obtained as the mean of the simulated samples from their posteriors. 

Further, once the Bayes estimates of   and  are obtained. Therefore, the Bayesian estimate of the 

DCRRE, denoted by ,
ˆ ( ) ,R BE SE  under SE loss function is obtained, by using (7), as follows: 

,

ˆ
1

ˆ ( ) log .
ˆ1 1

SE

SE

R BE SE

t 
 

  

 
 
  
                                                       (24)

 

By similar way, we obtain the Bayesian estimate of ( )R  for Lomax distribution under LINEX, 

and PRE loss functions. Furthermore, the BCI is a useful summary of the posterior distribution 

which reflects its variation that is used to quantify the statistical uncertainty. An approximate highest 

posterior density interval of ( )R   is obtained by using the same algorithm of Chen and Shao [40]. 

4. Monte Carlo simulation 

This section evaluates the performance of the ML and Bayes estimates (BEs) based on 

simulation study.  
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The maximum likelihood estimates (MLEs) of the DCRRE for various sample sizes are 

computed by using Equations (9) and (10). Criteria measures include mean square error (MSE), 

average length (AL) and coverage probability (CP) are computed to investigate the performance of 

MLEs. Simulation procedures can be described as follows: 

 1000 random samples of sizes n = 30, 50, 70 and 100 are generated from Lomax distribution. 

 The values of parameters are selected as (1.5,2.5),   (0.5,1.5,4)   and (3,5).   

 The true values of the DCRRE measure are selected as ( )R    0.2798, 0.6264 and 0.9359 at  

t = 0.5, while ( )R    0.077075, 0.2798 and 0.58932 at t = 1.5.  

 The MLEs of   and   are obtained from (9) and (10), then the MLE of
 

( )R   is obtained by 

substituting ˆ
ML and ˆ

ML  in (11). The approximate confidence interval of ,
ˆ ( )R ML  using (12) 

are constructed with confidence level at 0.05.    

 Compute the average MLEs of the DCRRE, MSEs, CPs, and ALs. 

The M-H algorithm is one of the most famous subclasses of the MCMC method in Bayesian 

literature used to simulate the deviates from the posterior density and produce the good approximate 

results. The relative absolute biases (RABs), estimated risks (ERs) and the width of the BCI are 

computed to assess the behavior of the Bayesian estimates. A simulation study is done via R 3.1.2. 

Additionally, tables of simulation results are given. To compare the DCRRE Bayes estimates, the 

MCMC simulations are designed for different sample sizes under SE, LINEX and PRE loss 

functions. The values of parameters are selected as (1.5,2.5),   (0.5,1.5,4)   and (3,5). 

The true values of the DCRRE measure are selected as ( )R    0.2798, 0.6264 and 0.9359 at t = 0.5, 

while ( )R    0.077075, 0.2798 and 0.58932 at t = 1.5. The hyper-parameters for gamma 

distribution are selected as a = c =1 and b = d = 4. Also, we take (v = −2, 2) for LINEX loss 

function. Take N = 5000 random samples of sizes n, where each sample size (n) = 10, 30, 50, 70 and 

100 are generated from Lomax distribution. 

The M-H algorithm is described as follows: 

Step 1: Let g(.) be the PDF of subject distribution; 

Step 2: Initialize a starting value 
0x  and determine the number of samples N; 

Step 3: for i = 2 to N set 1ix x 
; 

Step 4: Generate u from uniform (0,1) and generate y from g(.); 

Step 5: if 
( ) ( )

(x) (y)

y g x
u

g








  then set ix y  else set ix x ; 

Step 6: Set 1i i   and return to step 2 and repeat the previous steps N times. 
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4.1. Numerical results based on ML method 

Numerical observations for DCRRE estimates using ML method at 3   and 5   are 

presented in Tables 1–4 and represented in Figures 1–4. Some observations related to the behavior of 

the DCRRE estimates are outlined as follows: 

 The value of MLE, ,
ˆ ( ),R ML  decreases as the value of   increases for fixed value of  (see 

Tables 1 and 2)  

 The value of MLE, ,
ˆ ( ),R ML  decreases as   decreases for fixed value of   (see Tables 1 and 2). 

 The value of MLE, ,
ˆ ( ),R ML  at 1.5, 4   has the smallest value compared with the 

corresponding estimates of the other sets of parameters (see Tables 3 and 4). 

 The MSE of ,
ˆ ( )R ML 

 
decreases as the sample size increases.  

 For fixed value of ,  the MSE of ,
ˆ ( )R ML  decreases as the value of   decreases.  

 For fixed value of ,  the MSE of ,
ˆ ( )R ML  decreases as the value of   increases. 

 The MSE of the DCRRE estimates gets the smallest value at ( ) 0.2798,R   where

( 1.5, 1.5),    t = 0.5 and 3,   compared to the MSE of MLE of DCRRE measure for 

the corresponding other sets of parameters (see Figure 1).  

 The MSE of the DCRRE estimates takes the smallest value at ( ) 0.077075,R   where

( 1.5, 1.5),   t = 1.5 and 3,  compared to MSE of MLE of DCRRE for the 

corresponding other sets of parameters (see Figure 2).  

  

Figure 1. MSEs of DCREE estimates of 

Lomax under different sample size at t = 0.5 

and 3.   

Figure 2. MSEs of DCREE estimates of 

Lomax under different sample size at t = 1.5 

and 3.   
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 At 5,  ( 1.5, 1.5),    where the true value of ( )R    0.2946637 the MSE of ,
ˆ ( )R ML 

has the smallest value compared to the MSE of MLEs for the corresponding other sets of 

parameters at t = 0.5 (see Figure 3). 

 At t = 1.5, the MSE of ,
ˆ ( )R ML  at ( 1.5, 4.0),    has the smallest value compared to the 

MSE of MLEs for the corresponding other sets of parameters (see Figure 4). 

  

Figure 3. MSEs of DCREE estimates of 

Lomax under different sample size at t = 0.5 

and 5.   

Figure 4. MSEs of DCREE estimates of 

Lomax under different sample size at t = 1.5 

and 5.   

Generally as seen from Tables 1–4 that the CP is very close to their corresponding nominal 

levels in approximately most of the cases. Also, the CP increases as the sample size increases for all 

values of DCRRE.  

 The MLE of the DCRRE decreases as the value of   increases.  

 Regarding the AL of estimates, it can be observed that, as n increases the AL of DCRRE 

estimates decreases. 

Table 1. MSE, AL and CP of 95% CI for DCRRE estimates of Lomax distribution at t = 0.5 and 3.   

n 

( 1.5, 1.5)    ( 1.5, 0.5)    ( 2.5, 0.5)    

( )R  0.2798 0.626382( )R    0.9359( )R    

Estimate MSE AL CP% Estimate MSE AL CP% Estimate MSE AL CP% 

30 0.269 0.012 0.422 91.0 0.655 0.029 0.657 90.0 1.029 0.04 0.697 92.0 

50 0.263 0.01 0.387 94.0 0.619 0.012 0.436 92.0 0.985 0.022 0.552 94.0 

70 0.278 0.006486 0.316 94.5 0.635 0.011 0.424 92.5 0.955 0.013 0.444 96.0 

100 0.272 0.005312 0.284 95.5 0.632 0.0095 0.328 94.0 0.964 0.0098 0.372 97.0 
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Table 2. MSE, AL and CP of 95% CI for DCRRE estimates of Lomax distribution at t = 1.5 and 3  . 

n 

( 1.5, 1.5)    ( 1.5, 0.5)    ( 2.5, 0.5)    

( )R   = 0.077075 ( )R   = 0.2798 ( )R   = 0.589328 

Estimate MSE AL CP% Estimate MSE AL CP% Estimate MSE AL CP% 

30 0.113 0.028 0.643 92.5 0.334 0.046 0.81 94.0 0.754 0.124 1.217 92.0 

50 0.087 0.012 0.412 94.0 0.276 0.026 0.628 94.5 0.648 0.061 0.943 0.39 

70 0.074 0.009483 0.382 96.0 0.293 0.025 0.619 96.0 0.622 0.023 0.583 96.0 

100 0.08 0.004798 0.271 96.5 0.315 0.014 0.436 97.0 0.613 0.021 0.56 96.5 

Table 3. MSE, AL and CP of 95% CI for DCRRE estimates of Lomax distribution at t = 0.5 and 5.   

n 

( 1.5, 4)    ( 1.5, 1.5)    

( )R   = 0.0919312 ( )R   = 0.2946637 

Estimate MSE AL CP% Estimate MSE AL CP% 

30 0.08684 0.004623 0.266 92.0 0.29513 0.0034 0.230 92.0 

50 0.08846 0.002675 0.202 92.5 0.29149 0.0015 0.152 93.5 

70 0.08373 0.002024 0.173 94.0 0.28849 0.0013 0.138 94.0 

100 0.08853 0.001050 0.126 96.0 0.29245 0.0007 0.102 96.0 

Table 4. MSE, MSE, AL and CP of 95% CI for DCRRE estimates of Lomax distribution 

at t = 1.5 and 5.   

n 

( 1.5, 4)    ( 1.5, 1.5)    

( )R   = 0.04176352 ( )R   = 0.1932975 

Estimate MSE AL CP% Estimate MSE AL CP% 

30 0.04377 0.002594 0.200 91.0 0.213 0.0047 0.259 94.0 

50 0.04585 0.001368 0.144 94.0 0.207 0.0020 0.167 95.0 

70 0.03971 0.001263 0.139 97.0 0.194 0.0018 0.165 96.0 

100 0.04078 0.000712 0.105 98.0 0.190 0.0007 0.106 96.5 

4.2. Numerical results based on Bayesian method 

Tables 5–10 and Figures 5–8, list the numerical outcomes for different estimates of the DCRRE 

under different loss functions at 3.   Tables 11–14 and Figures 9–12, list and describe the 

simulation outcomes for different estimates of the DCRRE under different loss functions at 5  . 

Some observations related to the behavior of the DCRRE estimates are provided as follows:  

 As anticipated, the performance of all DCRRE estimates become improved as the sample size 

increases. 

 The estimated value of the DCRRE increases as the value of   increases for fixed .  The 

estimated value of the DCRRE decreases as the value of scale parameter   increases for fixed .  

 The estimated value of the DCRRE decreases as the value of t increases for fixed values of   and .  
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 Under SE loss function, the ERs for DCRRE estimates get the smallest values at true value 

( )R   0.6264, for most values of n (see for example Figures 5 and 6). 

 The ER of 
,

ˆ ( )R BE LINEX   at v = −2 gets the smallest values for all values of n. Also, the width of 

the BCI for 
,

ˆ ( )R BE LINEX   at v = −2 is the shortest compared to the width of the BCI in case of the 

SE and PRE loss functions for all n (see Table 5). 

 

Figure 5. ERs of the DCREE estimates of 

Lomax under different loss functions at  

n =10 and t = 0.5. 

 

Figure 6. ERs of the DCREE estimates of 

Lomax under different loss functions at  

n = 100 and t = 0.5. 

Table 5. Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution for

( , ) (1.5,1.5),    t = 0.5 and 3.   

Sample size (n) 10 30 50 70 100 

Exact value 0.2798 

SE Estimate 0.279848 0.279552 0.2806298 0.27934 0.280126 

RAB 0.000144 0.000915 0.00293722 0.001667 0.001137 

ER 3.25E-10 8.31E-11 5.35E-11 4.35E-11 2.02E-11 

width 0.001472 0.000947 0.00087111 0.000796 0.000724 

LINEX  

(v = 2) 

Estimate 0.278984 0.279733 0.2796395 0.279823 0.279787 

RAB 0.002946 0.000269 0.00060188 5.38E-05 7.39E-05 

ER 1.36E-10 7.13E-11 5.67E-11 4.54E-11 2.54E-11 

width 0.001345 0.000973 0.00094541 0.000679 0.000662 

LINEX  

(v = −2) 

Estimate 0.279733 0.279778 0.2797087 0.279568 0.280088 

RAB 0.000268 0.000106 0.00035463 8.57E-04 0.001003 

ER 1.12E-10 2.76E-11 1.97E-11 1.15E-11 1.07E-11 

width 0.000561 0.000561 0.00054634 0.000536 0.000472 

PRE Estimate 0.279394 0.280666 0.280191 0.279949 0.280287 

RAB 0.001481 0.003065 0.00136909 0.000506 0.001712 

ER 3.43E-10 1.47E-10 9.35E-11 5.00E-11 4.59E-11 

width 0.001647 0.001361 0.00080719 0.000736 0.000583 

Note: E-a: stands for 10^-a. 
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 The ER of ,
ˆ ( )R BE SE   takes the smallest values for all n except n = 100. The width of the BCI 

for ,
ˆ ( )R BE LINEX   at v = −2 is the shortest compared to the width of the BCI in case of the PRE 

and SE loss functions for all n (see Table 6). 

 The ER of ,
ˆ ( )R BE LINEX  at v = −2 takes the smallest values for all values of n. The width of the 

BCI for ,
ˆ ( )R BE LINEX   at v = −2 is the shortest compared to the width of the BCI in case of PRE 

and SE loss functions at n = 10 and 30 (see Table 7). 

  At t = 1.5, the ERs for DCRRE estimates get the smallest values at ( )R   0.2798, for all n 

under SE and PRE loss functions (see for example Figures 7 and 8).  

 

Figure 7. ERs of DCREE estimates of Lomax 

under different loss functions at n = 10 and  

t = 1.5. 

 

Figure 8. ERs of DCREE estimates of Lomax 

under different loss functions at n = 100 and  

t = 1.5. 

 The ER of ,
ˆ ( )R BE LINEX  at v = 2 takes the smallest values at n = 50, 70 and 100, while the ER of 

,
ˆ ( )R BE PRE  takes the smallest values at n = 10 and 30. The width of the BCI for ,

ˆ ( )R BE SE   is 

the shortest compared to the width of the BCI in case of LINEX and PRE loss functions for all 

values of n (see Table 8). 

 The ER of ,
ˆ ( )R BE LINEX   at v = −2 takes the smallest values at n = 50, 70 and 100, while the ER 

of ,
ˆ ( )R BE PRE   takes the smallest values at n = 10 and 30. The width of the BCI of 

,
ˆ ( )R BE LINEX   at v = −2 is the shortest compared to the width of the BCI in case of the SE and 

PRE loss functions for all values of n (see Table 9). 
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Table 6. Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution for 

( , ) (1.5,0.5),    t = 0.5 and 3.   

Sample size (n) 10 30 50 70 100 

Exact value 0.626382 

SE Estimate 0.625732 0.626659 0.626228 0.626467 0.625982 

RAB 0.001037 0.000444 0.00024498 0.000137 0.000638 

ER 8.44E-11 1.54E-11 4.71E-12 1.48E-12 1.20E-12 

width 0.001835 0.001319 0.00104168 0.000972 0.000502 

LINEX 

(v = 2) 

Estimate 0.626174 0.626484 0.6265369 0.627062 0.626144 

RAB 0.000331 0.000164 0.00024813 0.001086 3.78E-04 

ER 9.60E-11 6.10E-11 4.83E-11 2.26E-11 1.12E-11 

width 0.001325 0.001109 0.00099334 0.00081 0.000508 

LINEX 

(v = −2) 

Estimate 0.627234 0.626271 0.6259601 0.626251 0.626457 

RAB 0.001361 0.000176 0.00067277 2.09E-04 0.00012 

ER 1.45E-10 8.44E-11 3.55E-11 3.43E-11 1.14E-12 

width 0.001266 0.001016 0.00086437 0.000702 0.000117 

PRE Estimate 0.625288 0.625784 0.6261617 0.626237 0.626146 

RAB 0.001746 0.000954 0.00035083 0.00023 0.000376 

ER 2.39E-10 7.15E-11 9.66E-12 4.16E-12 3.11E-12 

width 0.001837 0.001343 0.00114911 0.000824 0.00082 

Table 7. Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution for 

( , ) (2.5,0.5),    t = 0.5 and 3.   

Sample size (n) 10 30 50 70 100 

Exact value 0.9359 

SE Estimate 0.936015 0.934584 0.9365256 0.935385 0.936073 

RAB 0.000122 0.001408 0.00066734 0.000551 0.000183 

ER 3.60E-10 3.47E-10 7.80E-11 5.33E-11 5.90E-12 

width 0.001936 0.001746 0.00107773 0.001034 0.000659 

LINEX 

(v = 2) 

Estimate 0.935164 0.936662 0.9367184 0.93566 0.936114 

RAB 0.000787 0.000813 0.00087327 0.000257 2.27E-04 

ER 2.09E-10 1.16E-10 1.34E-11 1.16E-11 9.02E-12 

width 0.001624 0.001553 0.00131565 0.000524 0.000389 

LINEX 

(v = −2) 

Estimate 0.935344 0.936219 0.936625 0.936369 0.93571 

RAB 0.000595 0.000339 0.00077348 5.00E-04 0.000204 

ER 6.21E-11 2.01E-11 1.05E-11 1.04E-11 2.31E-12 

width 0.001493 0.001299 0.00127713 0.001012 0.000529 

PRE Estimate 0.936634 0.935286 0.9360099 0.935828 0.93604 

RAB 0.000783 0.000657 0.00011624 7.85E-05 0.000149 

ER 1.07E-10 7.56E-11 2.37E-11 1.08E-11 3.87E-12 

width 0.001758 0.001388 0.00107289 0.00069 0.000441 
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Table 8. Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution for 

( , ) (1.5,1.5),    t = 1.5 and 3.   

Sample size (n) 10 30 50 70 100 

Exact value 0.077075 

SE Estimate 0.077262 0.077398 0.077325 0.077533 0.076672 

RAB 0.002417 0.004186 0.003244 0.005942 0.005238 

ER 6.94E-10 2.08E-10 1.25E-10 4.20E-11 3.26E-11 

width 0.001643 0.001076 0.000615 0.000435 0.000163 

LINEX 

(v = 2) 

Estimate 0.077368 0.07687 0.077353 0.076739 0.076884 

RAB 0.003801 0.002665 0.003607 0.004367 2.48E-03 

ER 1.72E-10 8.44E-11 3.55E-11 2.27E-11 7.30E-12 

width 0.00185 0.001784 0.001598 0.001233 0.000677 

LINEX 

(v = −2) 

Estimate 0.076874 0.076719 0.076915 0.077031 0.077594 

RAB 0.002615 0.004622 0.002079 5.75E-04 0.006729 

ER 8.12E-10 8.54E-11 5.14E-11 3.93E-11 3.38E-11 

width 0.002806 0.002218 0.001715 0.00049 0.000182 

PRE Estimate 0.077163 0.077424 0.076188 0.077563 0.077528 

RAB 0.001138 0.00452 0.011519 0.006324 0.00587 

ER 1.54E-10 8.43E-11 5.58E-11 4.75E-11 4.09E-11 

width 0.001674 0.001589 0.001174 0.001131 0.000737 

Note: E-a: stands for 10^-a. 

Table 9. Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution for 

( , ) (1.5,0.5),    t = 1.5 and 3.   

Sample size (n) 10 30 50 70 100 

Exact value 0.2798 

SE 

Estimate 0.279169 0.279561 0.279304 0.280159 0.280308 

RAB 0.002282 0.000881 0.0018 0.001255 0.001789 

ER 8.15E-11 5.22E-11 5.08E-11 2.47E-11 1.05E-11 

width 0.00136 0.001081 0.001017 0.000798 0.000601 

LINEX 

(v = 2) 

Estimate 0.280571 0.279532 0.279477 0.28019 0.27874 

RAB 0.002726 0.000985 0.001182 0.001366 3.82E-03 

ER 1.16E-10 4.52E-11 2.99E-11 2.92E-11 2.28E-11 

width 0.001565 0.001479 0.001097 0.000783 0.000508 

LINEX 

(v = −2) 

Estimate 0.279694 0.280018 0.279733 0.280045 0.279167 

RAB 0.000408 0.000752 0.000268 8.46E-04 0.00229 

ER 2.61E-10 8.85E-11 1.53E-11 1.42E-11 1.02E-11 

width 0.001084 0.000861 0.000847 0.000589 0.000319 

PRE 

Estimate 0.279514 0.279666 0.280726 0.280197 0.279577 

RAB 0.001052 0.000509 0.003281 0.001391 0.000826 

ER 7.73E-11 4.05E-11 3.69E-11 3.03E-11 1.07E-11 

width 0.004765 0.00427 0.001586 0.001122 0.001051 
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 The ER of 
,

ˆ ( )R BE LINEX   at v = −2 takes the smallest values for n = 10, 70 and 100. The width of 

the BCI for 
,

ˆ ( )R BE LINEX   at v = −2 is the shortest compared to the width of the BCI in case of the 

SE and PRE loss functions for most values of n (see Table 10). 

 At 5  , the ERs for DCRRE estimates get the smallest values at ( )R    0.0919312, for most 

values of n under most selected loss functions (see for example Figures 9 and 10). 

 

Figure 9. ERs of DCREE estimates of 

Lomax under different loss functions at  

n = 10 and t = 0.5. 

 

Figure 10. ERs of DCREE estimates of 

Lomax under different loss functions at  

n = 100 and t = 0.5. 

 The ER of ,
ˆ ( )R BE LINEX  at v = −2 gets the smallest values for all values of n. While, the width of 

the BCI for ,
ˆ ( )R BE LINEX  at v = 2 is the shortest compared to the width of the BCI in case of the 

SE and PRE loss functions for all n (see Table 11). 

 The ER of ,
ˆ ( )R BE LINEX  at v = −2 gets the smallest values for all values of n. While, the width of 

the BCI for ,
ˆ ( )R BE SE   is the shortest compared to the width of the BCI in case of the LINEX 

and PRE loss functions for all n expect at n = 10 (see Table 12). 

 Under SE loss function, the ERs for DCRRE estimates get the smallest values at ( )R  

0.04176352, for most values of n (see for example Figures 11 and 12). 

 The ER of ,
ˆ ( )R BE LINEX  at v = 2 gets the smallest values for n = 10, 70 and 100. While, the width 

of the BCI for ,
ˆ ( )R BE LINEX  at v = 2 is the shortest compared to the width of the BCI in case of 

the SE and PRE loss functions for all n (see Table 13).  

 The ER of ,
ˆ ( )R BE LINEX  at v = 2 gets the smallest values for all values of n. While, the width of 

the BCI for ,
ˆ ( )R BE LINEX  at v = −2 is the shortest compared to the width of the BCI in case of 

the SE and PRE loss functions for all n (see Table 14). 
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Table 10. Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution 

for ( , ) (2.5,0.5),    t = 1.5 and 3.   

Sample size (n) 10 30 50 70 100 

Exact value 0.589328 

SE 

Estimate 0.589175 0.589863 0.589255 0.589763 0.589058 

RAB 0.000259 0.000909 0.000123 0.000739 0.000457 

ER 4.64E-10 5.74E-11 5.06E-11 3.80E-11 1.45E-11 

width 0.002794 0.001951 0.001437 0.001061 0.000778 

LINEX 

(v = 2) 

Estimate 0.589211 0.588931 0.589119 0.589373 0.588959 

RAB 0.000197 0.000673 0.000354 7.76E-05 6.26E-04 

ER 2.71E-10 9.15E-11 8.69E-11 4.18E-11 2.72E-11 

width 0.001371 0.000745 0.000648 0.000597 0.000505 

LINEX 

(v = −2) 

Estimate 0.589027 0.58976 0.588746 0.589024 0.589068 

RAB 0.00051 0.000734 0.000986 5.15E-04 0.00044 

ER 1.80E-10 9.75E-11 6.76E-11 1.84E-11 1.35E-11 

width 0.000917 0.000791 0.000773 0.000513 0.000497 

PRE 

Estimate 0.5895 0.589154 0.58915 0.589319 0.589044 

RAB 0.000292 0.000295 0.000301 1.37E-05 0.000481 

ER 5.93E-10 6.56E-11 6.28E-11 3.31E-11 1.61E-11 

width 0.000964 0.000738 0.000682 0.000653 0.000638 

Note: E-a: stands for 10^-a. 

Table 11. Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution 

for ( , ) (1.5,1.5),    t = 1.5 and 5.   

Sample size (n) 10 30 50 70 100 

Exact value 0.2946637 

SE Estimate 0.2949246 0.2941664 0.2944852 0.2946671 0.2944438 

RAB 0.0008853 0.001688 0.0006058 1.146E-05 0.0007465 

ER 8.36E-11 6.95E-11 6.37E-11 2.28E-11 9.68E-12 

width 0.0008959 0.0007143 0.0003279 7.09E-04 6.50E-04 

LINEX 

(v = 2) 

Estimate 0.2944942 0.294638 0.2947687 0.2946398 0.2946735 

RAB 0.0005754 8.75E-05 3.56E-04 8.12E-05 3.297E-05 

ER 5.75E-11 4.33E-11 2.20E-11 1.14E-11 6.89E-12 

width 0.0005808 0.000417 0.0001934 2.38E-04 1.98E-04 

LINEX 

(v = −2) 

Estimate 0.2946357 0.2949186 0.2944051 0.2948607 0.2947952 

RAB 9.51E-05 8.65E-04 8.78E-04 0.0006685 0.0004462 

ER 1.57E-11 1.30E-11 1.24E-11 7.76E-12 3.46E-12 

width 0.0007348 0.0006429 0.0004368 3.10E-04 3.09E-04 

PRE Estimate 0.2946924 0.2944634 0.2946297 0.2949081 0.2948708 

RAB 9.71E-05 6.80E-04 1.16E-04 0.0008293 0.0007028 

ER 9.64E-11 8.02E-11 2.32E-11 1.19E-11 8.58E-12 

width 0.0007787 0.0006513 0.0004081 3.89E-04 3.34E-04 
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Table 12. Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution 

for ( , ) (1.5,1.5),    t =1.5 and 5.   

Sample size (n) 10 30 50 70 100 

Exact value 0.1932975 

SE Estimate 0.1926608 0.1932249 0.1934313 0.1934544 0.1936084 

RAB 0.003293922 0.000375191 0.000692228 0.000811845 0.001608503 

ER 8.10791E-11 7.05193E-11 5.5808E-11 4.92526E-11 1.93342E-11 

width 0.001063817 0.000370056 0.000275823 0.000269164 0.000212478 

LINEX 

(v = 2) 

Estimate 0.193455 0.1935514 0.1934634 0.192997 0.1933625 

RAB 0.000814895 0.001313584 0.000858663 0.001554319 0.000336461 

ER 4.96233E-11 3.28943E-11 2.50969E-11 1.80536E-11 8.45965E-12 

width 0.000505376 0.000465587 0.000360505 0.000317531 0.000307002 

LINEX 

(v = −2) 

Estimate 0.1931554 0.1933025 0.1931548 0.193335 0.1933076 

RAB 0.000734896 2.60011E-05 0.000738031 0.000194103 5.24576E-05 

ER 4.03584E-11 5.05E-12 4.07035E-12 2.81544E-12 2.06E-12 

width 0.000434745 0.000405183 0.000352976 0.000276217 0.000245961 

PRE Estimate 0.1932864 0.193166 0.1934755 0.1935736 0.1934214 

RAB 5.72266E-05 0.000680218 0.000920906 0.001428612 0.00064088 

ER 9.45E-11 7.45763E-11 6.33743E-11 1.52514E-11 3.06928E-12 

width 0.00093006 0.000687739 0.000452429 0.00033985 0.000224581 

 

 

Figure 11. ERs of DCREE estimates of 

Lomax under different loss functions at  

n = 10 and t = 1.5. 

 

Figure 12. ERs of DCREE estimates of 

Lomax under different loss functions at  

n = 100 and t = 1.5 
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Table 13. Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution 

for ( , ) (1.5,4),    t = 0.5 and 5.   

Sample size (n) 10 30 50 70 100 

Exact value 0.0919312 

SE Estimate 0.09201055 0.09178575 0.09181545 0.092062 0.09174895 

RAB 0.000863173 0.001582157 0.001259056 0.001422866 0.001982355 

ER 7.25936E-11 4.23112E-11 2.67945E-11 8.42203E-12 6.64231E-12 

width 0.000610588 0.000553999 0.000366307 0.000350079 0.000219156 

LINEX 

(v = 2) 

Estimate 0.09178774 0.09188011 0.09194927 0.09197472 0.09168103 

RAB 0.001560422 0.000555688 0.000196604 0.000473451 0.002721184 

ER 4.11567E-11 3.21937E-11 1.53E-11 3.78884E-12 1.25162E-12 

width 0.000334497 0.00025149 0.000246263 0.0002135 0.00018744 

LINEX 

(v = −2) 

Estimate 0.09188073 0.09169108 0.09190761 0.0918465 0.09182573 

RAB 0.000548943 0.002611855 0.000256567 0.000921266 0.00114721 

ER 5.09343E-11 1.15307E-11 1.11265E-11 4.43458E-12 2.22455E-12 

width 0.000472028 0.000455362 0.000349649 0.000302822 0.000265702 

PRE Estimate 0.09194847 0.09185285 0.09210766 0.09192755 0.09191302 

RAB 0.00018789 0.000852198 0.001919522 3.96648E-05 0.000197709 

ER 5.97E-11 2.22754E-11 1.22791E-11 8.66E-12 6.61E-12 

width 0.000566201 0.000396718 0.000261318 0.000238706 0.000236182 

Note: E-a: stands for 10^-a. 

Table 14. Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution 

for ( , ) (1.5,4),    t = 1.5 and 5.   

Sample size (n) 10 30 50 70 100 

Exact value 0.04176352 

SE Estimate 0.04195238 0.04164627 0.04186148 0.04186715 0.04195167 

RAB 0.004522163 0.002807542 0.002345453 0.00248131 0.004505184 

ER 7.13373E-11 5.74965E-11 1.91901E-11 1.14776E-11 7.08026E-12 

width 0.00083513 0.000789892 0.00056322 0.000501208 0.000308716 

LINEX 

(v = 2) 

Estimate 0.04169195 0.04192397 0.04166999 0.04178557 0.04177622 

RAB 0.001713768 0.003841756 0.002239598 0.00052784 0.000304066 

ER 6.02454E-11 5.14854E-11 1.7497E-11 9.72E-12 3.23E-12 

width 0.000683436 0.000562861 0.000537438 0.000446217 0.000310601 

LINEX 

(v = −2) 

Estimate 0.04187211 0.04184263 0.04177058 0.04196117 0.04175873 

RAB 0.002600158 0.001894263 0.000169074 0.004732582 0.000114653 

ER 6.35843E-11 5.25171E-11 3.97E-11 2.81305E-11 4.59E-12 

width 0.000639135 0.000416648 0.000230094 0.000143375 0.00012603 

PRE Estimate 0.04162304 0.04190236 0.04174227 0.04172538 0.04199364 

RAB 0.003363745 0.003324387 0.000508727 0.000913293 0.005509934 

ER 6.94703E-11 5.8552E-11 3.03E-11 2.90967E-11 9.05905E-12 

width 0.000666527 0.000514737 0.000329824 0.000264613 0.000218476 

Note: E-a: stands for 10^-a. 
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5. Application to real data 

In this section, we provide an application to real data set to prove the importance and flexibility 

of the Lomax distribution compared with some other models. Also, the real data set can be used to 

illustrate the proposed methods in Sections 2 and 3.  

The real data set was used by Jorgensen [41] which represent the active repair times (in hours) 

for airborne communication transceiver. The data are recorded as follows:  

0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50, 1.50, 1.50, 1.50, 

2.00, 2.00, 2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00, 4.50, 4.70, 5.00, 5.40, 5.40, 7.00, 7.50, 8.80, 

9.00, 10.20, 22.00, 24.50. 

Firstly, some preliminary data analysis is performed. The histogram, scaled total time on test (TTT) 

plots and the log likelihood for the real dataset are presented in Figure 13. We can observe that the 

shape of TTT plots is convex curve for dataset, which demonstrates decreasing failure rate. 

 

Figure 13. Estimated PDF, TTT plots and log likelihood of Lomax distribution for active 

repair times data for airborne communication transceiver. 

Secondly, an application to a real data set is given to demonstrate the importance and flexibility of 

the proposed distribution compared with other one, two and three parameters fitted distributions. The 
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suggested distributions are the alpha power Lindley (APLi) (Dey et al. [42]), Lindley (Li) and alpha 

power Weibull (APW) (Nassar et al. [43]) distributions. The MLE of the unknown parameters and 

the corresponding standard error (SE) of Lomax distribution and the other competitive models are 

calculated. In order to compare the different models with the Lomax model, we use measures like, 

Akaike information criterion (AIC), and Bayesian information criterion (BIC), consistent AIC 

(CAIC), Hannan-Quinn information criterion (HQIC). Also, the Kolmogorov- Smirnov (K-S) 

goodness of fit test and its P value (PV) for all models are calculated. Table 15 reports the MLEs and 

the corresponding SEs for all models. Table 16 reports numerical values of AIC, BIC, CAIC, HQIC, 

K-S and PVs for the different competitive distributions. From the results, we found that the Lomax 

distribution takes the smallest values of the considered measures and the largest value of PV among 

all other competitive models, and so it could be chosen as the best model. 

Table 15. MLEs and their SEs (in parentheses). 

Model MLE and SE 

L (   ) 4.678 (3.899) 14.758 (14.657)  

APLi (   ) 0.015 (0.114) 0.077 (0.143)  

Li ( ) 0.424 (0.0485)   

APW (     ) 0.024 (0.0386) 1.279 (0.144) 0.058 (0.03) 

Table 16. Measures of goodness-of-fit statistics of active repair times for airborne 

communication transceiver data. 

Model AIC CAIC BIC HQIC KS PV 

L 193.006 193.33 192.21 194.227 0.1451 0.3688 

APLi 259.618 259.943 258.822 260.84 0.1499 0.3298 

Li 199.583 199.688 199.185 200.193 0.2157 0.0484 

APW 260.106 260.773 258.912 261.938 0.1488 0.338 

Thirdly, regarding this data, the ML and Bayes estimates of the DCRRE under SE, LINEX and PRE 

loss functions are obtained and listed in Table 17. 

As anticipated, we conclude from Table 17 that the DCRRE estimates are decreasing function 

on time (t), that is the estimated values of the DCRRE decrease as the time t increases.  

Table 17. DCRRE estimates under ML and Bayesian methods for different loss 

functions at t = 0.5 and 1.5. 

t ML SE LINEX (v = 2) LINEX (v = −2) PRE 

0.5 0.14384104 0.1437858 0.1439026 0.1438579 0.1437906 

1.5 0.08003058 0.09838636 0.09832135 0.09835058 0.09842378 
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6. Conclusions 

In this paper, the maximum likelihood and Bayesian methods of estimation for dynamic 

cumulative residual Rényi entropy of Lomax distribution are considered. The maximum likelihood 

estimates and approximate confidence intervals of the DCRRE are obtained. The performance of the 

DCRRE estimates for Lomax distribution is investigated via simulation in terms of their mean square 

error, average length and coverage probability. The Bayesian estimate of the DCRRE for Lomax 

model is obtained by considering the gamma priors under symmetric and asymmetric loss functions. 

The MCMC procedure is employed to compute the Bayes estimates and the Bayesian credible 

intervals. The performance of the DCRRE estimates for Lomax distribution is inspected through 

their relative absolute bias, estimated risk and the width of the credible intervals. Application to real 

data is provided. 

Regarding the simulation results, we conclude that the mean square error of maximum 

likelihood and Bayesian estimates of the DCRRE decreases as the sample size increases. Also, the 

average length of the DCRRE estimates decreases and coverage probability increases as the sample 

size increases. The ER and the width of credible intervals of the DCRRE Bayes estimates decrease. 

For small true values of DCRRE, the width of DCRRE of BCIs under LINEX loss function is 

smaller than the corresponding based on SE and PRE loss functions for all selected sample size at  

t = 0.5 and 1.5. For large true values of DCRRE, the BCI width of the DCRRE under LINEX loss 

function is smaller than the corresponding based on SE and PRE loss functions for large sample size 

at t = 0.5 and 1.5. 

Generally, the DCRRE estimates for both ML and Bayesian methods approach the true value as 

the sample size increases. As the time (t) increases, both ML and Bayesian estimates of the DCRRE 

decrease. Bayesian estimates under LINEX loss function at v = −2 are more suitable than other 

estimates under SE and PRC loss functions in most of the situations. 
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