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Abstract: Suppose that f (z) is a meromorphic function with hyper order σ2( f ) < 1. Let
L(z, f ) = b1(z) f (z + c1) + b2(z) f (z + c2) + · · · + bn(z) f (z + cn) be a linear difference polynomial,
where b1(z), b2(z), · · · , bn(z) are nonzero small functions relative to f (z), and c1, c2, · · · , cn are distinct
complex numbers. We investigate the uniqueness results about f (z) and L(z, f ) sharing small functions.
These results promote the existing results on differential cases and difference cases of Brück
conjecture. Some sufficient conditions to show that f (z) and L(z, f ) cannot share some small functions
are also presented.
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1. Introduction

In this paper, a meromorphic function f (z) will always mean meromorphic in the complex plane. We
assume that the reader is familiar with the fundamental results and standard notations of Nevanlinna’s
value distribution theory, such as the proximity function m(r, f ), the counting function N(r, f ), the
characteristic function T (r, f ) and the first main theorem, for details, see e.g., Hayman [14], Yang and
Yi [25]. For the meromorphic function f (z), we use S( f ) to denote the family of all meromorphic
functions α(z) that satisfy T (r, α) = S (r, f ), where S (r, f ) = o(T (r, f )), as r → ∞ outside of a possible
exceptional set of finite logarithmic measure. For convenience, we also include all constant functions
in S( f ). Functions in the set S( f ) are called small functions with respect to f (z). In addition, we
denote the set of all entire functions in S( f ) as Se( f ).

Let f (z) and g(z) be two meromorphic functions, and let a(z) be a small function with respect to
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f (z) and g(z). We say that f (z) and g(z) share a(z) CM, if f (z)−a(z) and g(z)−a(z) have the same zeros
with the same multiplicities. If f (z) − a(z) and g(z) − a(z) have the same zeros ignoring multiplicities,
it is said that f (z) and g(z) share a(z) IM.

For two meromorphic functions f (z) and g(z), the famous five-value and four-value theorems due
to Nevanlinna [21] say: If f (z) and g(z) share five distinct values in Ĉ IM, then f (z) ≡ g(z); if f (z) and
g(z) share four distinct values in Ĉ CM, then f (z) ≡ g(z) or f (z) is a Möbius transformation of g(z).
Gundersen [11], Mues [20] and Wang [24] generalized “4CM” to “2CM+2IM” independently. But the
problem of whether “1CM+3IM=4CM” or not is still open.

There are many papers about meromorphic functions sharing some values with their derivatives, see
e.g., [3, 5, 12, 18, 22, 26]. For example, Brück [3] raised the following conjecture.
Conjecture. Let f (z) be a nonconstant entire function such that σ2( f ) < ∞ and σ2( f ) is not a positive
integer. If f (z) and f ′(z) share one finite value a CM, then

f ′(z) − a
f (z) − a

= τ

for some constant τ , 0.
The conjecture has been verified in the special cases when a = 0 [3], or when f (z) is of finite

order [12], or when σ2( f ) < 1/2 [5].
Let f (z) be a meromorphic function in the complex plane. The order of growth of f (z) is denoted

by σ( f ), the hyper-order of f (z) is denoted by σ2( f ), and the exponents of convergence of the zeros
and the poles of f (z) are denoted by λ( f ) and λ(1/ f ) respectively, see e.g., [14]. If the meromorphic
function f (z) satisfies

σ( f ) = lim sup
r→∞

log T (r, f )
log r

= lim inf
r→∞

log T (r, f )
log r

= lim
r→∞

log T (r, f )
log r

,

we say that f (z) is of regular growth, see e.g. [8]. The deficiency of a(z) ∈ S( f ) is defined by

δ(a, f ) = 1 − lim sup
r→∞

N(r, 1
f−a )

T (r, f )
.

If δ(a, f ) > 0, then a(z) is called a small deficient function of f (z), see e.g., [14].

2. Uniqueness of linear difference polynomials concerning deficient values

With the development of complex differences and difference equations, a number of articles focused
on uniqueness of meromorphic functions sharing values with their shifts or difference operators, see
e.g., [4, 6, 7, 15–17, 19, 23]. Here, for a nonzero constant c, the difference operators ∆n

c f are defined
(see [2]) by

∆c f (z) = f (z + c) − f (z), ∆n+1
c f (z) = ∆n

c f (z + c) − ∆n
c f (z), n = 1, 2, · · · .

Now, we recall the following result, which can be seen as the difference analogue of Brück conjecture.

Theorem 1 ( [15]). Let f (z) be a meromorphic function with σ( f ) < 2, and let c ∈ C. If f (z) and
f (z + c) share a ∈ C and∞ CM, then
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f (z + c) − a
f (z) − a

= τ

for some constant τ.

In [15], Heittokangas et al. give the example f (z) = ez2
+1 to show that σ( f ) < 2 can not be relaxed.

Theorem 1 dealt with the uniqueness of a meromorphic function sharing values with its shift. It is well
known that ∆c f (z) = f (z + c)− f (z) is regarded as the difference counterpart of f ′(z). Cui and Chen [7]
dealt with the uniqueness of a meromorphic function sharing values with its difference operator, and
proved the following result.

Theorem 2 ( [7]). Let f (z) be a nonconstant meromorphic function of finite order, and c be a nonzero
finite complex constant. Let a, b be two distinct finite complex constants and n be a positive integer. If
∆n

c f (z) and f (z) share a, b,∞ CM, then ∆n
c f (z) ≡ f (z).

Regarding Theorems 1 and 2, we pose the following questions.
Question 1. Since σ( f ) < 2 can not be relaxed in Theorem 1, can we replace it with other

conditions?
Question 2. What can be said if ∆n

c f (z) and f (z) share two values in Theorem 2?
Question 3. What happens if f (z + η) and ∆n

c f (z) in Theorems 1 and 2 are generalized to linear
difference polynomials?

In this paper, we consider the case that f (z) has a small deficient function and we generalized f (z+η)
and ∆n

c f (z) to linear difference polynomial L(z, f ) of the form

L(z, f ) = b1(z) f (z + c1) + b2(z) f (z + c2) + · · · + bn(z) f (z + cn), (2.1)

where b1(z), b2(z), · · · , bn(z) ∈ S( f )/{0}, and c1, c2, · · · , cn are distinct complex numbers. We discuss
the case f (z) and L(z, f ) share some small functions and get the following result.

Theorem 3. Let f (z) be a transcendental meromorphic function with σ2( f ) < 1, let a1(z), a2(z) ∈ S( f )
be such that a1(z) . a2(z) and σ(a j) < 1( j = 1, 2), and let L(z, f ) be a linear difference polynomial of
the form (2.1) with bi(z) ∈ S( f )/{0}, σ(bi) < 1(i = 1, · · · , n) and a1(z) . L(z, a2(z)). If δ(a2, f ) > 0,
and f (z) and L(z, f ) share a1(z) and∞ CM, then

L(z, f ) − a1(z)
f (z) − a1(z)

= τ

for some constant τ. In particular, if the deficient function a2(z) ≡ 0, then L(z, f ) ≡ f (z).

For the special cases ∆n
c f (z) and f (z+c), we obtain the following corollary, which extends Theorems

1 and 2 to some extent.

Corollary 1. Let f (z) be a transcendental meromorphic function with σ2( f ) < 1, let a, b be two distinct
finite complex constants, and let c be a nonzero finite complex constant.

(i) If δ(b, f ) > 0, and ∆n
c f (z) and f (z) share a,∞ CM, then

∆n
c f (z) − a
f (z) − a

= τ

for some constant τ. In particular, if the deficient value b = 0, then ∆n
c f (z) ≡ f (z).

(ii) If δ(b, f ) > 0, and f (z + c) and f (z) share a,∞ CM, then f (z + c) ≡ f (z).
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We give an example to show that Theorem 3 may not hold, if a1(z) ≡ a2(z).

Example 1. Let f (z) = ez2
+ ez, L(z, f ) = f (z + 2πi) and a1(z) ≡ a2(z) ≡ ez. We see that L(z, f ) and

f (z) share ez,∞ CM, δ(ez, f ) = 1 > 0. Obviously,

L(z, f ) − ez

f (z) − ez = e4πiz−4π2

is not a constant.

Example 2 below shows that “L(z, f ) ≡ f (z)” in Theorem 3 and “∆n
c f (z) ≡ f (z)” in Corollary 1 (i)

may not hold, if the deficient function of f (z) is not identically zero.

Example 2. Let f (z) = eπiz + 6 and L(z, f ) = ∆1 f (z) = f (z + 1)− f (z) = −2eπiz. We see that ∆1 f (z) and
f (z) share 4,∞ CM and δ(6, f ) = 1 > 0. Obviously,

∆1 f (z) − 4
f (z) − 4

= −2

and ∆1 f (z) . f (z).

To study the relation between two entire functions with deficient values while their derivatives share
some value is an interesting topic in the uniqueness theory. Yi and Yang get the following result on
this topic.

Theorem 4 ( [25, Theorem 9.16]). Let f and g be non-constant entire functions. If δ(0, f )+δ(0, g) > 1,
and f ′ and g′ share 1 CM, then f ≡ g or f ′g′ ≡ 1.

Similarly, we study the relation between f (z) and L(z, f ) from this point of view and get the
following result. Since L(z, f ) is the linear difference polynomial of f (z), the result is more specific.

Theorem 5. Let f (z) be a transcendental entire function withσ2( f ) < 1, let a1(z), a2(z) ∈ Se( f ) be such
that a1(z) . a2(z) and σ(a j) < 1( j = 1, 2), and let L(z, f ) be a linear difference polynomial of the form
(2.1) with bi(z) ∈ Se( f )/{0}, σ(bi) < 1(i = 1, · · · , n) and a1(z) . L(z, a2(z)). If δ(a2, f ) +δ(a2, L(z, f )) >
1, and f (z) and L(z, f ) share a1(z) CM, then L(z, f ) ≡ f (z).

By Corollary 1, using a similar proof as in proof of Theorem 5, we get the following corollary,
which extends Theorem 4 to some extent.

Corollary 2. Let f (z) be a transcendental entire function with σ2( f ) < 1, let a, b be two distinct finite
complex constants, and let c be a nonzero finite complex constant.

(i) If δ(b, f ) + δ(b,∆n
c f (z)) > 1, and f (z) and ∆n

c f (z) share a CM, then ∆n
c f (z) ≡ f (z).

(ii) If δ(b, f ) + δ(b, f (z + c)) > 1, and f (z) and f (z + c) share a CM, then f (z + c) ≡ f (z).

In order to prove our theorems, we need the following lemmas. The first of these lemmas is a
version of the difference analogue of the logarithmic derivative lemma.

Lemma 1 ( [13]). Let f (z) be a nonconstant meromorphic function and c ∈ C. If σ2( f ) < 1 and ε > 0,
then

m
(
r,

f (z + c)
f (z)

)
= o

(
T (r, f )

r1−σ2( f )−ε

)
for all r outside of a set of finite logarithmic measure.
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By [1, Lemma 1], [9, p. 66] and [13, Lemma 8.3], we immediately deduce the following lemma.

Lemma 2. Let f (z) be a non-constant meromorphic function ofσ2( f ) < 1, and let c , 0 be an arbitrary
complex number. Then

T
(
r, f (z + c)

)
= T (r, f (z)) + S (r, f ),

N
(
r, f (z + c)

)
= N(r, f (z)) + S (r, f ).

Lemma 3 ( [18]). Suppose that h is a non-constant meromorphic function satisfying

N(r, h) + N(r, 1/h) = S (r, h).

Let f = a0hp + a1hp−1 + · · · + ap, and g = b0hq + b1hq−1 + · · · + bq be polynomials in h with coefficients
a0, a1, · · · , ap, b0, b1, · · · , bq being small functions of h and a0b0ap . 0. If q ≤ p, then m(r, g/ f ) =

S (r, h).

Lemma 4 ( [27]). Let f1(z), f2(z) and f3(z) be meromorphic functions that satisfy

3∑
j=1

f j(z) ≡ 1.

If f1(z) . constant, and

3∑
j=1

N2

(
r,

1
f j(z)

)
+

3∑
j=1

N
(
r, f j(z)

)
< (λ + o(1))T (r), r ∈ I,

where 0 ≤ λ < 1,T (r) = max
1≤ j≤3
{T (r, f j(z))}, and I has infinite linear measure, then either f2(z) ≡ 1 or

f3(z) ≡ 1.

Proof of Theorem 3. Since f (z) and L(z, f ) share a1(z) and∞ CM, we have

L(z, f ) − a1(z)
f (z) − a1(z)

= eh(z), (2.2)

where h(z) is an entire function. Since L(z, f ) is a linear difference polynomial of f (z) with small
meromorphic coefficients, by (2.1), (2.2) and Lemma 2, we have

T (r, eh(z)) = O(T (r, f )),

and so

S (r, eh) = S (r, f ).

Now we prove that h(z) is a constant. Suppose that, on the contrary, h(z) is not a constant. Since
σ(a j) < 1( j = 1, 2), σ(bi) < 1(i = 1, · · · , n) and eh(z) is of regular growth with σ(eh) ≥ 1, we have


T (r, a j(z)) = S (r, eh) ( j = 1, 2),
T (r, bi(z)) = S (r, eh) (i = 1, · · · , n),
T (r, L(z, a2)) = S (r, eh).

(2.3)
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Since L(z, f ) is linear, we get from (2.2) that

L(z, f − a2) − eh(z)( f (z) − a2(z)) = a1(z) − L(z, a2) − (a1(z) − a2(z))eh(z).

Since a1(z) . L(z, a2) and a1(z) . a2(z), we have a1(z) − L(z, a2) − (a1(z) − a2(z))eh(z) . 0. Dividing the
above equality by (a1(z) − L(z, a2) − (a1(z) − a2(z))eh(z))( f (z) − a2(z)), we obtain

1
a1(z) − L(z, a2) − (a1(z) − a2(z))eh(z)

(
L(z, f − a2)
f (z) − a2(z)

− eh(z)
)

=
1

f (z) − a2(z)
. (2.4)

We deduce from Lemma 3 and (2.3) that

m
(
r,

1
a1(z) − L(z, a2) − (a1(z) − a2(z))eh(z)

)
= S (r, eh),

m
(
r,

eh(z)

a1(z) − L(z, a2) − (a1(z) − a2(z))eh(z)

)
= S (r, eh).

Furthermore, by Lemma 1, we get

m
(
r,

L(z, f − a2)
f (z) − a2(z)

)
= S (r, f ).

So by (2.4) we obtain

m
(
r,

1
f (z) − a2

)
= S (r, eh) + S (r, f ) = S (r, f ),

which gives δ(a2, f ) = 0, contradicting δ(a2, f ) > 0. Hence we proved that h(z) is a constant. Set
eh(z) = τ. We have

L(z, f ) − a1(z)
f (z) − a1(z)

= τ. (2.5)

Next we consider the case a2(z) ≡ 0. Since a1(z) . a2(z), we have a1(z) . 0. By (2.5), we have

L(z, f ) − τ f (z) = (1 − τ)a1(z).

If τ , 1, then dividing the above equality by (1 − τ)a1(z) f (z), we obtain

1
(1 − τ)a1(z)

L(z, f )
f (z)

−
τ

(1 − τ)a1(z)
=

1
f (z)

.

So by Lemma 1, we get

m
(
r,

1
f (z)

)
= S (r, f ),

which gives δ(0, f ) = 0, contradicting δ(0, f ) > 0. Hence τ = 1 and L(z, f ) ≡ f (z). �
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Proof of Corollary 1. (i) If a , ∆n
cb = 0, we see from Theorem 3 that Corollary 1 (i) holds. Next we

consider the case a = 0, b , 0. Since f (z) and ∆n
c f (z) share a and∞ CM, we have

∆n
c f (z)
f (z)

= eh(z), (2.6)

where h(z) is an entire function. Lemma 1 gives

T (r, eh(z)) = m(r, eh(z)) = S (r, f ).

Suppose that h(z) is not a constant. Since ∆n
c f (z) = ∆n

c( f (z) − b) and b , 0, we get from (2.6) that

1
beh(z)

∆n
c( f (z) − b)
f (z) − b

−
1
b

=
1

f (z) − b
.

By Lemma 1, we have

m
(
r,

1
f (z) − b

)
= S (r, f ),

and so δ(b, f ) = 0, contradicting δ(b, f ) > 0. Hence h(z) is a constant and Corollary 1 (i) holds.
(ii) By Theorem 3, we have

f (z + c) − a = τ( f (z) − a), (2.7)

where τ is a constant. If τ , 1, then we get from (2.7) that

1
(τ − 1)(a − b)

f (z + c) − b
f (z) − b

−
τ

(τ − 1)(a − b)
= −

1
f (z) − b

.

We also have

m
(
r,

1
f (z) − b

)
= S (r, f ),

and so δ(b, f ) = 0, contradicting δ(b, f ) > 0. Hence τ = 1 and f (z + c) ≡ f (z). �

Proof of Theorem 5. Since δ(a2, f ) + δ(a2, L(z, f )) > 1, we have δ(a2, f ) > 0. So by Theorem 3, we
have

L(z, f ) − a1(z)
f (z) − a1(z)

= τ, (2.8)

where τ is a constant. By (2.8), we have

T (r, L(z, f )) = T (r, f ) + S (r, f ). (2.9)

If a2(z) ≡ 0, then Theorem 3 gives L(z, f ) ≡ f (z). So we consider the case a2(z) . 0. Suppose that
τ , 1. Setting δ(a2) = δ(a2, f ) + δ(a2, L(z, f )), for any given ε with

0 < ε < min
{
δ(a2, f )

2
,
δ(a2, L(z, f ))

2
,
δ(a2) − 1

2

}
,
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there is a constant r0 such that for all r > r0, we have

(δ(a2, f ) − ε)T (r, f ) ≤ m
(
r,

1
f (z) − a2(z)

)
,

(δ(a2, L(z, f )) − ε)T (r, L(z, f )) ≤ m
(
r,

1
L(z, f ) − a2(z)

)
.

So by (2.9) and Nevanlinna’s first fundamental theorem, we get

N
(
r,

1
f (z) − a2(z)

)
≤ (1 − δ(a2, f ) + ε)T (r, f ) + S (r, f ), (2.10)

N
(
r,

1
L(z, f ) − a2(z)

)
≤ (1 − δ(a2, L(z, f )) + ε)T (r, L(z, f )) + S (r, f )

= (1 − δ(a2, L(z, f )) + ε)T (r, f ) + S (r, f ). (2.11)

Since τ , 1 and a2(z) . 0, we obtain from (2.8) that

L(z, f ) − a2(z)
(τ − 1)a2(z)

−
τ( f (z) − a2(z))

(τ − 1)a2(z)
+

a1(z)
a2(z)

= 1. (2.12)

We write (2.12) as

F1(z) + F2(z) + F3(z) ≡ 1,

where

F1(z) =
L(z, f ) − a2(z)
(τ − 1)a2(z)

, F2(z) = −
τ( f (z) − a2(z))

(τ − 1)a2(z)
, F3(z) =

a1(z)
a2(z)

.

Set T (r) = max
1≤ j≤3
{T (r, F j(z)}. Then

T (r) = T (r, f ) + S (r, f ).

Since f (z) is entire, by (2.10) and (2.11) we get

3∑
j=1

N
(
r,

1
F j(z)

)
+

3∑
j=1

N(r, F j(z)) ≤ (2 − δ(a2) + 2ε)T (r, f ) + S (r, f ).

Since F1(z) is not a constant and 2 − δ(a2) + 2ε < 1, we deduce from Lemma 4 that F2(z) ≡ 1 or
F3(z) ≡ 1, which is impossible. So we proved that τ = 1 and L(z, f ) ≡ f (z). �

3. The case that an entire function cannot share values with its difference polynomials

Whether two meromorphic functions can share some values under certain conditions is an important
topic in the uniqueness theory. The following result shows that f (z) and ∆n f (z) can not have any finite
CM sharing value if σ( f ) < 1.
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Theorem 6 ( [28]). Let f (z) be a transcendental entire function such that σ( f ) < 1. Then f (z) and
∆n f (z) cannot share a finite value a CM.

Next we obtain some sufficient conditions to show that f (z) and L(z, f ) cannot share some small
functions CM.

Theorem 7. Let f (z) be a transcendental entire function with σ2( f ) < 1, let L(z, f ) be a linear
difference polynomial of the form (2.1) with bi(z) ∈ Se( f )/{0}(i = 1, 2, · · · , n), and let a(z) ∈ Se( f ) be
such that a(z) . L(z, a) and L(z, f ) . L(z, a). If δ(a, f ) = 1, then f (z) and L(z, f ) cannot share either
a(z) or L(z, a) CM.

The following example satisfies Theorem 7.

Example 3. Let f (z) = ez +1, L(z, f ) = f (z+1)− f (z) and a(z) = 1. We see that L(z, a) = 0, δ(a, f ) = 1,
a(z) . L(z, a) and L(z, f ) . L(z, a). Obviously, f (z) and L(z, f ) cannot share either a(z) or L(z, a) CM.

Examples 4 and 5 below show, respectively, the conditions “a(z) . L(z, a)” and “L(z, f ) . L(z, a)”
in Theorem 7 cannot be omitted.

Example 4. Let f (z) = ez + 1, L(z, f ) = 2 f (z + 2πi) − f (z + πi) = 3ez + 1 and a(z) = 1. We see that
a(z) ≡ L(z, a), and f (z) and L(z, f ) share a(z) CM.

Example 5. Let f (z) = ez + 1, L(z, f ) = f (z + 2πi) + f (z + πi) = 2 and a(z) = 1. We see that
L(z, f ) ≡ L(z, a), and f (z) and L(z, f ) share a(z) CM.

Since the condition “a(z) . L(z, a)” in Theorem 7 cannot be omitted, we naturally ask: Can it be
replaced by other conditions? We discuss this problem and get the following result.

Theorem 8. Let f (z) be a finite order transcendental entire function, let a(z) . 0 be an entire function
with σ(a) < σ( f ), λ( f − a) < σ( f ) if σ( f ) < 2 and λ( f − a) < σ( f ) − 1 if σ( f ) ≥ 2, and let L(z, f ) be
a linear difference polynomial of the form (2.1) with nonzero constant coefficients b1, b2, · · · , bn such
that b1 + b2 + · · · + bn , 1. If n ≥ 2 and L(z, f ) . L(z, a), then f (z) and L(z, f ) cannot share either a(z)
or L(z, a) CM.

By Theorem 8, we easily get the following corollary.

Corollary 3. Let f (z) be a finite order transcendental entire function, let a(z) . 0 be an entire function
with σ(a) < σ( f ), λ( f − a) < σ( f ) if σ( f ) < 2 and λ( f − a) < σ( f )− 1 if σ( f ) ≥ 2. If ∆n

c f (z) . ∆n
ca(z),

then f (z) and ∆n
c f (z) cannot share either a(z) or ∆n

ca(z) CM.

Examples 6 and 7 below show respectively that “n ≥ 2” and “b1 + b2 + · · · + bn , 1” in Theorem 8
cannot be omitted.

Example 6. Let f (z) = ez2
+ ez, L(z, f ) = e−1 f (z + 1) and a(z) = ez. We see that L(z, f ) . L(z, a) and

n = 1. Obviously, L(z, f ) and f (z) share a(z) and L(z, a) CM.

Example 7. Let f (z) = ez + 1, L(z, f ) = 2 f (z + πi) − f (z) and a(z) = 1. We see that L(z, f ) . L(z, a)
and b1 + b2 + · · · + bn = 1. Obviously, L(z, f ) and f (z) share a(z) and L(z, a) CM.

In order to prove the theorems, we need the following lemmas.
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Lemma 5 ( [2]). Let g(z) be a function transcendental and meromorphic in the plane of order less than
1. Let h > 0. Then there exists an ε-set E such that

g(z + c)
g(z)

→ 1 as z→ ∞ in C \ E,

uniformly in c for |c| ≤ h.

Lemma 6 ( [10, pp.69–70] or [25, p.82]). Suppose that f1(z), f2(z), · · · , fn(z) are meromorphic
functions and that g1(z), g2(z), · · · , gn(z) are entire functions satisfying the following conditions.

(1)
n∑

j=1
f j(z)eg j(z) ≡ 0;

(2) g j(z) − gk(z) are not constants for 1 ≤ j < k ≤ n;
(3) for 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, f j) = o{T (r, egh−gk)} (r → ∞, r < E),

where E ⊂ (1,∞) is of finite linear measure or finite logarithmic measure.
Then f j(z) ≡ 0 ( j = 1, 2, · · · , n).

Proof of Theorem 7. Letting f (z) − a(z) = g(z), since δ(a, f ) = 1 and f (z) is entire, we obtain

N
(
r,

1
g(z)

)
+ N(r, g(z)) = S (r, g). (3.1)

First we prove that f (z) and L(z, f ) cannot share a(z) CM. Suppose that, on the contrary, f (z) and
L(z, f ) share a(z) CM, we have

L(z, f ) − a(z) = ( f (z) − a(z))eh(z),

where h(z) is an entire function, and so

L(z, g) + L(z, a) − a(z) = g(z)eh(z). (3.2)

We see from (2.1) that

L(z, g) = b1(z)g(z + c1) + b2(z)g(z + c2) + · · · + bn(z)g(z + cn) = A(z)g(z),

where

A(z) = b1(z)
g(z + c1)

g(z)
+ b2(z)

g(z + c2)
g(z)

+ · · · + bn(z)
g(z + cn)

g(z)
.

Since L(z, f ) . L(z, a), we have L(z, g) . 0 and so A(z) . 0. Since bi(z) ∈ Se( f )/{0}(i = 1, 2, · · · , n),
we deduce from (3.1), Lemma 1 and Lemma 2 that

T (r, A(z))
= N(r, A(z)) + m(r, A(z))
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≤

n∑
i=1

N
(
r,

g(z + ci)
g(z)

)
+

n∑
i=1

m
(
r,

g(z + ci)
g(z)

)
+

n∑
i=1

T (r, bi(z)) + S (r, g)

≤

n∑
i=1

(
N(r, g(z + ci)) + N

(
r,

1
g(z)

))
+ S (r, g)

= S (r, g). (3.3)

(3.2) can be written as

A(z)g(z) + L(z, a) − a(z) = g(z)eh(z). (3.4)

Since L(z, a) − a(z) . 0, by (3.1), (3.3) and Nevanlinna’s second fundamental theorem, we have

T (r, g(z)) + S (r, g)
= T (r, A(z)g(z))

≤ N(r, A(z)g(z)) + N
(
r,

1
A(z)g(z)

)
+ N

(
r,

1
A(z)g(z) + L(z, a) − a(z)

)
+ S (r, g)

= N
(
r,

1
A(z)g(z) + L(z, a) − a(z)

)
+ S (r, g). (3.5)

By (3.1), (3.5) and comparing the counting functions of zeros of both sides of (3.4), we get a
contradiction. So f (z) and L(z, f ) cannot share a(z) CM.

Second we prove that f (z) and L(z, f ) cannot share L(z, a) CM. Suppose that, on the contrary, f (z)
and L(z, f ) share L(z, a) CM, we have

L(z, f ) − L(z, a) = ( f (z) − L(z, a))eh(z),

where h(z) is an entire function. So

L(z, g) = (g(z) + a(z) − L(z, a))eh(z). (3.6)

Similarly, we can prove that

N
(
r,

1
L(z, g)

)
= S (r, g),

N
(
r,

1
g(z) + a(z) − L(z, a)

)
= T (r, g) + S (r, g).

Comparing the counting functions of zeros of both sides of (3.6), we also get a contradiction. So f (z)
and L(z, f ) cannot share L(z, a) CM. �

Proof of Theorem 8. Since f (z) is entire,σ(a) < σ( f ) and λ( f−a) < σ( f ), by Hadamard’s factorization
theorem, we get

f (z) − a(z) = H(z)eg(z), (3.7)

AIMS Mathematics Volume 6, Issue 4, 3874–3888.



3885

where g(z) is a polynomial, H(z) is an entire function satisfying λ(H) = σ(H) < σ( f ) = σ(eg) =

deg g(z). So f (z) is of regular growth and we obtain

T (r, a) = S (r, f ), δ(a, f ) = 1.

If L(z, a) . a(z), we see from Theorem 7 that f (z) and L(z, f ) cannot share either a(z) or L(z, a) CM.
So in the following, we discuss the case L(z, a) ≡ a(z), i.e.,

b1a(z + c1) + b2a(z + c2) + · · · + bna(z + cn) ≡ a(z).

Since a(z) . 0, we affirm that σ(a) ≥ 1. Otherwise, by Lemma 5, there exists an ε-set E1 such that

a(z + ci)
a(z)

= 1 + oi(1) as z→ ∞ in C \ E1, i = 1, 2, · · · , n,

where for i = 1, 2, · · · , n, oi(1)→ 0 as z→ ∞ in C \ E1. So we have

(b1 + b2 + · · · + bn) + b1o1(1) + b2o2(1) + · · · + bnon(1) ≡ 1 as z→ ∞ in C \ E1.

Since b1o1(1) + b2o2(1) + · · · + bnon(1) → 0 as z → ∞ in C \ E1, we get b1 + b2 + · · · + bn = 1,
contradicting the hypothesis. So σ(a) ≥ 1 and

m := deg g(z) = σ( f ) ≥ 2. (3.8)

Suppose that f (z) and L(z, f ) share a(z) CM, we have

L(z, f ) − a(z) = ( f (z) − a(z))eh(z),

where h(z) is an entire function. By L(z, a) ≡ a(z) and (3.7), we have

L(z,Heg) = H(z)eh(z)+g(z).

Considering (2.1), we have

b1
H(z + c1)

H(z)
eg(z+c1)−g(z) + b2

H(z + c2)
H(z)

eg(z+c2)−g(z) + · · · + bn
H(z + cn)

H(z)
eg(z+cn)−g(z) = eh(z). (3.9)

Setting

g(z) = dmzm + dm−1zm−1 + · · · (m ≥ 2, dm , 0),

we have for every j = 1, 2, · · · , n,

g(z + c j) − g(z) = c jmdmzm−1 + O(zm−2). (3.10)

By (3.7), (3.8) and the hypothesis of λ( f − a), we have

λ( f − a) = λ(H) = σ(H) < m − 1.

So by Lemma 2, we have
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σ

(
H(z + c j)

H(z)

)
< m − 1, j = 1, 2, · · · , n.

Set

s j(z) = b j
H(z + c j)

H(z)
eO(zm−2), j = 1, 2, · · · , n. (3.11)

Then for every j = 1, 2, · · · , n, σ(s j) < m − 1. While eηzm−1
is of regular growth with order m − 1

provided η , 0. So for every j = 1, 2, · · · , n,

T (r, s j) = S (r, eηzm−1
)

provided η , 0. By (3.9)–(3.11), we see that

s1(z)ec1mdmzm−1
+ s2(z)ec2mdmzm−1

+ · · · + sn(z)ecnmdmzm−1
= eh(z). (3.12)

By (3.12), we easily see that deg h(z) ≤ m − 1. Now we divide our discussion into two cases.
Case 1. c1c2 · · · cn , 0.
Subcase 1.1. deg h(z) < m − 1. Then T (r, eh) = S (r, eηzm−1

) provided η , 0. Since c1, c2, · · · , cn are
distinct complex numbers, by (3.12) and Lemma 6, we have eh(z) ≡ 0. This is impossible.

Subcase 1.2. deg h(z) = m − 1. By setting

h(z) = lm−1zm−1 + · · · , (lm−1 , 0),

we have

eh(z) = u(z)elm−1zm−1
,

where u(z) . 0 and T (r, u) = S (r, eηzm−1
) provided η , 0. If for all j = 1, 2, · · · , n, lm−1 , c jmdm, then

by (3.12) and Lemma 6, we have u(z) ≡ 0, a contradiction. Otherwise, without loss of generality, we
set lm−1 = c1mdm. (3.12) can be written as

(s1(z) − u(z))ec1mdmzm−1
+ s2(z)ec2mdmzm−1

+ · · · + sn(z)ecnmdmzm−1
= 0. (3.13)

Since n ≥ 2, we deduce from (3.13) and Lemma 6 that s2(z) ≡ · · · ≡ sn(z) ≡ 0. So by (3.11), we have
b2 = · · · = bn = 0, contradicting b j , 0, j = 1, 2, · · · , n.

Case 2. One of c1, c2, · · · , cn is a zero. Without loss of generality, we set cn = 0. So (3.12) can be
written as

s1(z)ec1mdmzm−1
+ s2(z)ec2mdmzm−1

+ · · · + sn(z) = eh(z).

Using a similar proof as in Case 1, we can also deduce a contradiction. �
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4. Conclusions

Using the theory of meromorphic functions and the Nevanlinna theory, this paper study the
uniqueness results about f (z) and a linear difference polynomial L(z, f ) and promote the existing
results on differential cases and difference cases of Brück conjecture. Meanwhile, some sufficient
conditions to show that f (z) and L(z, f ) cannot share some small functions are also presented.
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