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Abstract: In this paper, we are concerned with the following fractional Choquard equation with
critical growth:

(−∆)su + λV(x)u = (|x|−µ ∗ F(u)) f (u) + |u|2
∗
s−2u in RN ,

where s ∈ (0, 1), N > 2s, µ ∈ (0,N), 2∗s = 2N
N−2s is the fractional critical exponent, V is a steep well

potential, F(t) =
∫ t

0
f (s)ds. Under some assumptions on f , the existence and asymptotic behavior of

the positive ground states are established. In particular, if f (u) = |u|p−2u, we obtain the range of p when
the equation has the positive ground states for three cases 2s < N < 4s or N = 4s or N > 4s.
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1. Introduction and the main results

The fractional Laplacian operator (−∆)s is defined by

(−∆)su(x) = CN,sP.V.
∫
RN

u(x) − u(y)
|x − y|N+2s dy = CN,s lim

ε→0+

∫
RN\Bε(0)

u(x) − u(y)
|x − y|N+2s dy,

where the symbol P. V. stands for the Cauchy principal value and CN,s is a dimensional constant
depending on N and s, precisely given by

CN,s =

[1 − cos ζ1

|ζ |N+2s dζ
]−1

.

The nonlocal operators can be seen as the infinitesimal generators of Lévy stable diffusion processes
[1]. Moreover, they allow us to develop a generalization of quantum mechanics and also to describe
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the motion of a chain or an array of particles that are connected by elastic springs as well as unusual
diffusion processes in turbulent fluid motions and material transports in fractured media. The more
physical background can be found in [9, 10, 16] and the references therein.

There are many papers considered the existence, multiplicity and qualitative properties of solutions
for the fractional equations in the last decades, we refer to [2, 7, 8, 11] for the subcritical case and
to [19, 24, 25, 28] for critical case, respectively.

It is worth mentioning that some authors have been investigated the following Schrödinger equation

(−∆)su + λV(x)u = g(u) in RN , (1.1)

where V satisfies the following assumptions:

(V1) V ∈ C(RN ,R) and V(x) ≥ 0, Ω := int(V−1(0)) is non-empty with smooth boundary.

(V2) There exists M > 0 such that
∣∣∣{x ∈ RN |V(x) ≤ M}

∣∣∣ < ∞, where | · | denotes the Lebesgue measure.

Note that the function V satisfying (V1) and (V2) is called the deepening potential well, which was first
proposed by Bartsch and Wang in [5]. When s = 1 and g(u) = |u|p−2u with 2 < p < 2∗, Bartsch and
Wang [6] showed that, for λ large, (1.1) has a positive least energy solution, they also proved that a
certain concentration behaviour of the solutions occur as λ → ∞. In [13], Clapp and Ding actually
generalized the results of [6] into the critical case. For more results to the Schrödinger equation with
deepening potential well, we also cite [3, 4, 21, 25–27, 31] with no attempt to provide the full list of
references.

Especially, if s ∈ (0, 1) and g(u) = (|x|−µ ∗F(u)) f (u), then (1.1) goes back to the following fractional
Choquard equation

(−∆)su + λV(x)u = (|x|−µ ∗ F(u)) f (u) in RN . (1.2)

There are many works involving the existence, multiplicity and qualitative properties for solutions of
(1.2) in the recent periods, we can refer to [12, 14, 18, 24, 30] as well as to the references therein. Very
recently, under the assumption of (V1) − (V2), Guo and Hu in [20] have proved the existence of the
least energy solution to (1.2) with subcritical growth, which localizes near the bottom of potential well
int(V−1(0)) as λ large enough. It is a natural question that whether one can establish the similar results
if nonlinearity is at critical growth, which inspired our present article. In this paper, we are concerned
with the existence and asymptotic behavior of ground states for the following fractional Choquard
equation with critical growth

(−∆)su + λV(x)u = (|x|−µ ∗ F(u)) f (u) + |u|2
∗
s−2u in RN , (Qλ)

where s ∈ (0, 1), N > 2s, µ ∈ (0,N), where 2∗s = 2N
N−2s is the fractional critical exponent, F(t) =∫ t

0
f (s)ds, f satisfies the following assumptions:

( f1) f ∈ C1(R,R), and there exist c1 > 0 and 2N−µ
N ≤ p1 ≤ p2 < 2N−µ

N−2s with p1 > 2N−µ
2N−4s such that

| f (t)| ≤ c1(|t|p1−1 + |t|p2−1) for all t > 0.

( f2) There exist q > 1 and c2 > 0 such that f (t) ≥ c2|t|q−1 for all t > 0.

( f3) f (t)
t is nondecreasing in (0,+∞).
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Remark 1.1. From ( f1)−( f2), we have p1 ≤ q ≤ p2.We point out that Ambrosetti-Rabinowitz condition
is not necessary in present paper.

Remark 1.2. Taking f (t) = |t|p−2t , where p ∈ [ 2N−µ
N , 2N−µ

N−2s ) with p > 2N−µ
2N−4s , then f satisfies ( f1) − ( f3).

We also remark that besides the usual power function, there are many other functions that satisfy our
assumptions. For example, we may choose suitable µ, s, p and q such that 2 ≤ q ≤ p < 2N−µ

N−2s . By a
direct calculation, the assumption ( f1) − ( f3) hold if we choose

g(t) = |t|q−1 + |t| ln(1 + |t|p−2).

To statement our main results of this paper, let us introduce the following fractional Choquard
equation: 

(−∆)su = (|x|−µ ∗ F(u)) f (u) + |u|2
∗
s−2u in Ω,

u , 0 in Ω, (Q0)
u = 0 in RN \Ω,

where s ∈ (0, 1), N > 2s, µ ∈ (0,N), which acts as a limit role for (Qλ) as λ → ∞. Our main results of
this paper are stated as follows:

Theorem 1.1. Assume that (V1)− (V2) and ( f1)− ( f3) hold. Then, equation (Qλ) has at least a positive
ground state for λ large enough.

Theorem 1.2. Under the assumptions of Theorem 1.1, suppose that uλn is one of the positive ground
states of equation (Qλn) with λn → ∞. Then, up to a subsequence, uλn → u in H s(RN) as n → ∞.
Moreover, u is a positive ground state of equation (Q0).

In particular, by taking f (u) = |u|p−2u in (Qλ) and (Q0), we obtain the following fractional Choquard
equations:

(−∆)su + λV(x)u = (|x|−µ ∗ |u|p)|u|p−2u + |u|2
∗
s−2u in RN (Pλ)

and 
(−∆)su = (|x|−µ ∗ |u|p)|u|p−2u + |u|2

∗
s−2u in Ω,

u , 0 in Ω, (P0)
u = 0 in RN \Ω,

where s ∈ (0, 1), N > 2s, µ ∈ (0,N).
As a direct result of Theorem 1.1 and Theorem 1.2, we have

Theorem 1.3. Assume that µ ∈ (0,N) and (V1) − (V2) hold. Then, equation (Pλ) has at least a positive
ground state for λ large enough if one of the following cases occurs:

(a) 2s < N < 4s, p ∈ ( 2N−µ
2N−4s ,

2N−µ
N−2s ).

(b) N = 4s, p ∈ (2N−µ
N , 2N−µ

N−2s ).

(c) N > 4s, p ∈ [ 2N−µ
N , 2N−µ

N−2s ).

Furthermore, suppose that uλn is one of the positive ground states of equation (Pλn) with λn → ∞.
Then, up to a subsequence, uλn → u in H s(RN) as n → ∞. Moreover, u is a positive ground state of
equation (P0).
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Remark 1.3. By Hardy-Littlewood-Sobolev inequality (see [22]), the energy functional corresponding
to equation (Pλ) belongs to C1 if p ∈ [ 2N−µ

N , 2N−µ
N−2s ]. However, we need to put further restriction on p

to overcome the difficulties caused by the estimates of convolution term. It seems that the condition
p > 2N−µ

2N−4s is essential for the proof of Lemma 2.8 below. Under the assumptions (V1) − (V2), whether
or not the existence and asymptotic behavior of ground states of equation (Pλ) can be established is an
interesting question for the case N = 4s with p =

2N−µ
N and the case 2s < N < 4s with p ∈ ( 2N−µ

N , 2N−µ
2N−4s ).

Compared with the nonlocal nonlinearity, the term (|x|−µ ∗F(u)) f (u) depends not only the pointwise
value of f (u), but also on |x|−µ ∗ F(u), which leads to some estimates about nonlocal term are likely to
be confronted with some difficulties. In order to overcome them, some new variational techniques will
be employed in our paper. Another difficulty of the problem (Qλ) stems from that we can not verify
that the energy functional corresponding to equation (Qλ) satisfies the (PS )c condition under the any
level set due to the fact that H s(RN) ↪→ L2∗s (RN) is noncompact. On the contrary, we can only check
that the functional satisfies the (PS )c condition under a certain level set. Consequently, we have to
make some more precise estimations involving critical term and nonlocal term.

The paper is organized as follows. In Section 2, we will introduce the variational frame and prove
several Lemmas. In Section 3, we focus on the proofs of the main results.
Notation. Throughout this paper,→ and ⇀ denote the strong convergence and the weak convergence,
respectively. | · |r denotes the norm in Lr(Ω) for 1 ≤ r ≤ ∞. Bρ(x) denotes the ball of radius ρ centered
at x. C denote various positive constants whose value may change from line to line but are not essential
to the analysis of the proof.

2. Variational frame and some Lemmas

Before proving our main results, it is necessary to introduce some useful definitions and notations.
Firstly, fractional Sobolev spaces are the convenient setting for our problem, so we will give some
stretches of the fractional order Sobolev spaces. We recall that, for any s ∈ (0, 1), the fractional
Sobolev space H s(RN) = W s,2(RN) is defined as follows:

H s(RN) = {u ∈ L2(RN)|
∫
RN

(
|ξ|2s|F (u)|2 + |F (u)|2

)
dξ < ∞},

whose norm is defined as

‖u‖2Hs(RN ) =

∫
RN

(
|ξ|2s|F (u)|2 + |F (u)|2

)
dξ,

where F denotes the Fourier transform. We also define the homogeneous fractional Sobolev space
Ds,2(RN) as the completion of C∞0 (RN) with respect to the inner

[u, v] :=
∫
RN

∫
RN

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s dxdy

and the norm

[u] :=
("

RN×RN

|u(x) − u(y)|2

|x − y|N+2s dxdy
) 1

2

.
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The embedding Ds,2(RN) ↪→ L2∗s (RN) is continuous and for any s ∈ (0, 1), there exists a best constant
S s > 0 such that

S s := inf
u∈Ds,2(RN )

[u]2

|u|22∗s
The fractional laplacian, (−∆)su, of a smooth function u : RN → R, is defined by

F ((−∆)su)(ξ) = |ξ|2sF (u)(ξ), ξ ∈ RN .

Also, by the Plancherel formular in Fourier analysis, we have

[u]2
Hs(RN ) =

2
C(s)
|(−∆)

s
2 u|22.

As a consequence, the norms on H s(RN) defined below

u 7−→
( ∫
RN
|u|2dx +

"
RN×RN

|u(x) − u(y)|2

|x − y|N+2s dxdy
) 1

2

,

u 7−→
( ∫
RN

(|ξ|2s|F (u)|2 + |F (u)|2)dξ
) 1

2

,

u 7−→
( ∫
RN
|u|2dx + |(−∆)

s
2 u|22

) 1
2

are equivalent. For more details on fractional Sobolev spaces, we refer the reader to [15] and the
references therein. In this paper, the definition of fractional Sobolev space H s(RN) is chosen by

H s(RN) = {u ∈ L2(RN)
∣∣∣[u] < +∞}

equipped with the inner

〈u, v〉 =

∫
RN

∫
RN

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s dxdy +

∫
RN

uvdx

whose associated norm we denote by ‖ · ‖.
Now, for fixed λ > 0, we define the following fractional Sobolev space

Eλ = {u ∈ H s(RN)|
∫
RN
λV(x)u2dx < +∞}

equipped with the inner product

〈u, v〉λ =

∫
RN

∫
RN

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s dxdy +

∫
RN
λV(x)uvdx

whose associated norm we denote by ‖ · ‖λ. Define

E0 = {u ∈ H s(RN)|u(x) = 0 in Ω}.

Obviously, E0 is a closed subspace of H s(RN), and hence is a Hilbert space.
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Lemma 2.1. [25] Let 0 < s < 1, then there exists a constant C = C(s) > 0, such that

|u|22∗s ≤ C[u]2

for any u ∈ H s(RN). Moreover, the embedding H s(RN) ↪→ Lr(RN) is continuous for any r ∈ [2, 2∗s] and
is locally compact whenever r ∈ [1, 2∗s).

Because we are concerned with the nonlocal problems, we would like to recall the well-known
Hardy-Littlewood-Sobolev inequality.

Lemma 2.2. [22] Suppose µ ∈ (0,N), and s, r > 1 with 1
s + 1

r = 1 +
µ

N . Let g ∈ Ls(RN), h ∈ Lr(RN),
there exists a sharp constant C(s, µ, r,N), independent of g and h, such that∫

RN
(|x|−µ ∗ g)hdx ≤ C(s, µ, r,N)|g|s|h|r.

Since we are looking for ground states of (Qλ) when λ is large enough, without loss of generality,
we assume λ ≥ 1 in the rest of the paper. We have the following embedding result.

Lemma 2.3. Assume that V(x) satisfies (V2). Then the embedding Eλ ↪→ H s(RN) is continuous for any
λ ≥ 1. Moreover, there exists τ0 independent of λ such that

‖u‖ ≤ τ0‖u‖λ (2.1)

for any u ∈ Eλ.

Proof. Let
Ω1 = {x ∈ RN |V(x) > M}, Ω2 = {x ∈ RN |V(x) ≤ M}.

For λ ≥ 1, we have ∫
Ω1

u2dx ≤
1
M

∫
RN
λV(x)u2dx.

By (V2), the Hölder inequality and Lemma 2.1, one has∫
Ω2

u2dx ≤ |Ω2|
N
2s

( ∫
Ω2

u2∗s dx
) 2

2∗s
≤ |Ω2|

N
2s [u]2.

Consequently,

‖u‖ ≤
( 1
M

+ |Ω2|
N
2s + 1

) 1
2 ‖u‖λ := τ0‖u‖λ. (2.2)

The proof is completed. �

Since our main aim is to find the positive solutions, without loss of generality, we assume that
f (t) = 0 for t ≤ 0. The corresponding energy functionals associated with equations (Qλ) and (Q0) are
given by

Iλ(u) =
1
2
‖u‖2λ −

1
2

∫
RN

(|x|−µ ∗ F(u))F(u)dx −
1
2∗s

∫
RN
|u+|2

∗
s dx

and
I0(u) =

1
2

[u]2 −
1
2

∫
Ω

(|x|−µ ∗ F(u))F(u)dx −
1
2∗s

∫
Ω

|u+|2
∗
s dx,

AIMS Mathematics Volume 6, Issue 4, 3838–3856.
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respectively. Clearly, Iλ ∈ C1(Eλ,R) and I0 ∈ C1(E0,R). Denote

mλ = inf
u∈Nλ

Iλ(u), m0 = inf
u∈N0

I0(u),

where
Nλ = {u ∈ Eλ \ {0}|〈I′λ(u), u〉 = 0}, N0 = {u ∈ H1

0(Ω) \ {0}|〈I′0(u), u〉 = 0}.

Remark 2.1. Obviously, u is a critical point of Iλ if and only if u is a solution of (Qλ). Similarly, u is
a critical point of I0 if and only if u is a solution of (Q0). Hence, in order to prove Theorem 1.1 and
Theorem 1.2, it suffices to check that mλ is achieved by a positive critical point of Iλ for λ large enough.
Furthermore, for any sequence λn → ∞, if uλn be one of the critical points of Iλ, then there exists
u ∈ H s(RN) such that I′0(u) = 0 and I0(u) = m0. Moreover, up to a subsequence, uλn → u in H s(RN).

Lemma 2.4. Let c > 0 be fixed. Assume that {uλn} ⊂ Eλ be a (PS )c sequence of Iλ. Then

lim sup
n→∞

‖uλn‖λ ≤
2κsc
κs − 2

, (2.3)

where κs = min{2∗s, 4}. Moreover, there exist δ > 0 independent of λ such that either uλn → 0 in Eλ or
lim supn→∞ ‖u

λ
n‖λ > δ.

Proof. By ( f3), F(t) ≤ 2 f (t)t for any t ∈ R. Since I′λ(u
λ
n) = on(1) and Iλ(uλn) = c + on(1),

c + on(1)‖uλn‖λ = Iλ(uλn) −
1
κs
〈I′λ(u

λ
n), uλn〉

=
(1
2
−

1
κs

)
‖uλn‖

2
λ −

1
2

∫
RN

(|x|−µ ∗ F(uλn))F(uλn)dx

+
1
κs

∫
RN

(|x|−µ ∗ F(uλn)) f (uλn)uλndx +
( 1
κs
−

1
2∗s

) ∫
RN
|(uλn)+|2

∗
s dx

≥
(1
2
−

1
κs

)
‖uλn‖

2
λ +

( 2
κs
−

1
2
) ∫
RN

(|x|−µ ∗ F(uλn))F(uλn)dx +
( 1
κs
−

1
2∗s

) ∫
RN
|(uλn)+|2

∗
s dx

≥
(1
2
−

1
κs

)
‖uλn‖

2
λ.

(2.4)
Hence {uλn} is bounded in Eλ, and hence

c + on(1) ≥
(1
2
−

1
κs

)
‖uλn‖

2
λ.

This leads to
lim sup

n→∞
‖uλn‖

2
λ ≤

2κsc
κs − 2

.

For any u ∈ Eλ, by the Hardy-Littlewood-Sobolev inequality and Lemma 2.3, we have

〈I′λ(u), u〉 ≥
1
2
‖u‖2λ −C(‖u‖2p1

λ + ‖u‖p1+p2
λ + ‖u‖2p2

λ ) −C‖u‖2
∗
s
λ . (2.5)

Consequently, there exist δ > 0 such that u ∈ Eλ with ‖u‖λ ≤ δ, we have

〈I′λ(u), u〉 ≥
1
4
‖u‖2λ. (2.6)
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If lim supn→∞ ‖u
λ
n‖λ ≤ δ, without loss of generality, we may assume ‖uλn‖ ≤ δ for all n. By (2.6), one

has
on(1)‖uλn‖λ ≥ 〈I

′
λ(u

λ
n), uλn〉 ≥

1
4
‖uλn‖

2
λ,

and hence ‖uλn‖ → 0 as n→ ∞. �

Lemma 2.5. Let C0 > 0 be fixed, uλn ⇀ uλ in Eλ with I(uλn) ∈ [0,C0]. Then for any small ε > 0, there
exists Λε > 0 such that

lim sup
n→∞

∫
RN
|uλn − uλ|rdx ≤ ε

for any λ > Λε and 2 ≤ r < 2∗s.

Proof. Firstly, we claim that for any ε > 0, there exists Λε > 0 such that

lim sup
n→∞

∫
RN
|uλn − uλ|2dx ≤ ε

for any λ > Λε. We argue by contradiction that there exist ε0 > 0 , λk → +∞ and nk → +∞ such that∫
RN
|uλk

nk
− uλk |

2dx ≥ ε0, ∀k. (2.7)

Let DR = {x ∈ RN ||x| > R and V(x) ≤ M}. In view of (V2), limR→∞

∣∣∣DR

∣∣∣ = 0. For k large enough, by
(2.3) and the fact thatDs,2(RN) ↪→ L2∗s (RN) is continuous, one has∫

DR

|uλk
nk
|2dx ≤

∣∣∣DR

∣∣∣ 2s
N

( ∫
DR

|uλk
nk
|2
∗
s dx

) 2
2∗s

≤
∣∣∣DR

∣∣∣ 2s
N [uλk

nk
]2

≤ C1|DR

∣∣∣ 2s
N .

(2.8)

It follows from (2.3) that ∫
Bc

R\DR

|uλk
nk
|2dx ≤

1
λkM

∫
Bc

R\DR

λkV(x)|uλk
nk
|2dx

≤
C1

λk
.

(2.9)

By (2.8)–(2.9), there exist K > 0 and R > 0 such that∫
RN\BR(0)

|uλk
nk
|2dx <

ε0

8
, ∀k > K. (2.10)

Similarly, one can check that ∫
RN\BR(0)

|uλk |
2dx <

ε0

8
, ∀k > K. (2.11)

Since uλn → uλ in Lr
loc(R

N) for 1 ≤ r < 2∗s, we may assume that∫
BR(0)
|uλk

nk
− uλk |

2 <
ε0

4
. (2.12)

AIMS Mathematics Volume 6, Issue 4, 3838–3856.



3846

Combining (2.7) and (2.10)–(2.12), one has

ε0 ≤ lim sup
n→∞

∫
RN
|uλk

nk
− uλk |

2dx

≤ 2 lim sup
n→∞

∫
Bc

R(0)
|uλk

nk
|2dx + 2 lim sup

n→∞

∫
Bc

R(0)
|uλk |

2dx

+ lim sup
n→∞

∫
BR(0)
|uλk

nk
− uλk |

2dx

<
3ε0

4
,

a contradiction. For small ε > 0 and λ > Λε, by the interpolation inequality, we have

lim sup
n→∞

∫
RN
|uλn − uλ|rdx ≤ ε,

where 2 ≤ r < 2∗s. �

Lemma 2.6. Let λ be fixed and {uλn} ⊂ Eλ be (PS )c of Iλ. Then, there exists uλ ∈ Eλ such that I′λ(uλ) = 0
and Iλ(uλ) ≥ 0. Moreover, we have

Iλ(uλn) − Iλ(vλn)→ Iλ(uλ) (2.13)

and
I′λ(un) − I′λ(vn)→ I′λ(uλ), (2.14)

where vλn := uλn − uλ.

Proof. The proof is similar to [23]. For convenience sake, we give an outline here. For the sake of
simplicity of symbols, we denote uλn by un. Lemma 2.4 implies that {un} is bounded in Eλ. Up to a
subsequence, we may assume that

un ⇀ uλ in Eλ and un → uλ in Lr
loc(R

N) in 1 ≤ r < 2∗s.

It is easy to prove that I′λ(uλ) = 0. Similar to (2.4), one has Iλ(uλ) ≥ 0. As the proof of the Lemma 2.4
in [23] , we have the following nonlocal Brézis-Lieb result∫

RN
(|x|−µ ∗ F(un))F(un)dx −

∫
RN

(|x|−µ ∗ F(uλ))F(uλ)dx

→

∫
RN

(|x|−µ ∗ F(vn))F(vn)dx.
(2.15)

It follows from Brézis-Lieb Lemma (see Lemma 1.32 in [29]) that∫
RN
|(uλn)+|2

∗
s dx −

∫
RN
|u+
λ |

2∗s dx→
∫
RN
|(vλn)+|2

∗
s dx. (2.16)

Combining (2.15) and (2.16), one has

Iλ(un) − Iλ(vn)→ Iλ(uλ). (2.17)

Similarly, (2.14) is satisfied with some slight modifications. �
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Lemma 2.7. If c < s
N S

N
2s
s , then there exists Λ0 > 0 such that Iλ satisfies the (PS )c condition for λ ≥ Λ0.

Proof. Consider any sequence {uλn} ⊂ Eλ satisfying I′λ(u
λ
n) → 0 with Iλ(uλn) → c < s

N S
N
2s
s . By Lemma

2.4, {uλn} is bounded in Eλ. Let vλn = uλn − uλ. Then∫
RN

(|x|−µ∗F(uλn)) f (uλn)uλndx −
∫
RN

(|x|−µ ∗ F(uλ)) f (uλ)uλdx

→

∫
RN

(|x|−µ ∗ F(vλn)) f (vλn)vλndx.
(2.18)

By (2.16), (2.18) and Lemma 2.6, one has

‖vλn‖
2
λ = ‖uλn‖

2
λ − ‖uλ‖

2
λ + on(1)

= 〈I′λ(u
λ
n), uλn〉 +

∫
RN

(|x|−µ ∗ F(uλn)) f (vλn)uλndx +

∫
RN
|(uλn)+|2

∗
s dx

− 〈I′λ(uλ), uλ〉 −
∫
RN

(|x|−µ ∗ F(uλ)) f (uλ)uλdx −
∫
RN
|u+
λ |

2∗s dx + on(1)

=

∫
RN
|(vλn)+|2

∗
s dx +

∫
RN

(|x|−µ ∗ F(vλn)) f (vλn)vλndx + on(1).

Hence, up to a subsequence, we may assume

lim
n→∞
‖vλn‖

2
λ = lim

n→∞

∫
RN
|(vλn)+|2

∗
s dx + lim

n→∞

∫
RN

(|x|−µ ∗ F(vλn)) f (vλn)vλndx := θλ ≥ 0.

It suffices to check that there exists ε0 > 0 such that θλ = 0 for λ > Λε0 , where Λε is given in
Lemma 2.5. Otherwise, without loss of generality, there exists λk ≥ Λ 1

k
≥ 1 such that θλk > 0 for any

k ∈ Z . For large k and n, by Lemma 2.5 and the Hardy-Littlewood-Sobolev inequality, one has∫
RN

(|x|−µ ∗ F(vλk
n )) f (vλk

n )vλndx ≤ C2

( ∫
RN

(
|vλk

n |
p1 + |vλk

n |
p2
) 2N

2N−µ dx
) 2N−µ

N

≤C3

(
|vλk

n |
2p1
2N p1
2N−µ

+ |vλk
n |

p1
N p1

2N−µ

|vλk
n |

p2
N p2

2N−µ

+ |vλk
n |

2p2
2N p2
2N−µ

)
≤ C3

( 1
k2p1

+
1

kp1+p2
+

1
k2p2

)
≤

1
k
.

(2.19)

By Lemma 2.6, {vλk
n } be (PS )ck for Iλk , where ck = c − Iλk(uλk). Since θλk > 0, by Lemma 2.4, we may

assume that θλk ≥ δ for all k. By the definition of S s, there holds

‖vλk
n ‖

2
λ ≥ [vλk

n ]2 ≥ S s|vλk
n |

2
2∗s
≥ S s|(vλk

n )+|22∗s .

Hence

θλk ≥ S s(θλk −
1
k

)
2

2∗s ≥ S sθ
2

2∗s
λk

(1 −
1
δk

),
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and hence θλk ≥ S
N
2s
s (1 − 1

δk )
N
2s . For large k, by Lemma 2.6 and (2.19), one has

c = Iλk(v
λk
n ) + Iλk(uλk) + on(1)

≥ Iλk(v
λk
n ) + on(1)

=
1
2
‖vλk

n ‖
2
λk
−

1
2

∫
RN

(|x|−µ ∗ F(vλk
n ))F(vλk

n )dx −
1
2∗s

∫
RN
|(vλk

n )+|2
∗
s dx + on(1)

≥
1
2
‖vλk

n ‖
2
λk
−

1
2∗s

∫
RN
|(vλk

n )+|2
∗
s dx −

1
2k

+ on(1)

≥
s
N
θλk −

1
2k

+ on(1)

≥
s
N

S
N
2s
s (1 −

1
δk

)
N
2s −

1
2k

+ on(1).

This leads to c ≥ s
N S

N
2s
s , which contradicts c < s

N S
N
2s
s . This completes the proof. �

Lemma 2.8. If p1 ∈ [2N−µ
N , 2N−µ

N−2s ) with p1 >
2N−µ
2N−4s , then there exists α > 0 such that α ≤ mλ ≤ m0 <

s
N S

N
2s .

Proof. Clearly, mλ ≤ m0. Since the proof of mλ ≥ α is standard, we only need to prove that m0 <
s
N S

N
2s .

Without loss of generality, we assume that 0 ∈ Ω. Then there exist δ > 0 and k ∈ Z such that
Bδ ⊂ B2δ ⊂ Ω ⊂ Bkδ. Let η ∈ C∞0 (RN) be such that 0 ≤ η ≤ 1, η = 1 in Bδ, η = 0 in RN \ B2δ. Denote

Uε(x) = ε−
N−2s

2 u0

( x
ε|u0|2∗s

)
,

where u0(x) = α(β2 + S −
1
2s

s |x|2)−
N−2s

2 with α, β > 0. Set

uε(x) := η(x)Uε(x),

then uε(x) ∈ E0. It follows from Proposition 21 and Proposition 22 in [25] that

[uε]2 ≤ S
N
2s
s + o(εN−2s),

∫
RN
|uε|2

∗
s dx = S

N
2s
s + o(εN). (2.20)

Let

gε(t) :=
t2

2
[uε]2 −

t2∗s

2∗s

∫
RN
|uε|2

∗
s dx.

In view of (2.20), one has

max
t≥0

gε(t) =
s
N

( [uε]2

|uε|22∗s

) N
2s

=
s
N

[ S
N
2s
s + o(εN−2s)

(S
N
2s
s + o(εN))

N−2s
N

] N
2s

≤
s
N

S
N
2s
s + o(εN−2s).

(2.21)
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Clearly, there exists tε > 0 such that tεuε ∈ N0 and I0(tεuε) = maxt≥0 I0(tuε). As a consequence,
m0 ≤ I0(tεuε) and

t2
ε[uε]

2 =

∫
Ω

(|x|−µ ∗ F(tεuε)) f (tεuε)tεuεdx + t2∗s
ε

∫
RN
|u|2

∗
s dx. (2.22)

Next, we prove the following claim:

Claim 2.1.
1

t2p1
ε + t2p2

ε

∫
Ω

(|x|−µ ∗ F(tεuε)) f (tεuε)tεuεdx ≤ O(ε2N−p2(N−2s)−µ). (2.23)

.

In fact, by ( f2), for small ε > 0, we have

1

t2p1
ε + t2p2

ε

∫
Ω

(|x|−µ ∗ F(tεuε)) f (tεuε)tεuεdx

≤

∫
Ω

∫
Ω

2c1
(
|uε(x)|p1 + |uε(x)|p2

)(
|uε(y)|p1 + |uε(y)|p2

)
|x − y|µ

dxdy

≤

∫
B2δ

∫
B2δ

c1|Uε(x)|p1 |Uε(y)|p1

|x − y|µ
dxdy

+

∫
B2δ

∫
B2δ

2c1|Uε(x)|p1 |Uε(y)|p2

|x − y|µ
dxdy

+

∫
B2δ

∫
B2δ

c1|Uε(x)|p2 |Uε(y)|p2

|x − y|µ
dxdy

≤

∫
B2δ

∫
B2δ

C4ε
p1(N−2s)

(ε2 + |x|2)
p1(N−2s)

2 (ε2 + |y|2)
p1(N−2s)

2 |x − y|µ
dxdy

+

∫
B2δ

∫
B2δ

C4ε
(N−2s)(p1+p2)

2

(ε2 + |x|2)
p1(N−2s)

2 (ε2 + |y|2)
p2(N−2s)

2 |x − y|µ
dxdy

+

∫
B2δ

∫
B2δ

C4ε
p2(N−2s)

(ε2 + |x|2)
p2(N−2s)

2 (ε2 + |y|2)
p2(N−2s)

2 |x − y|µ
dxdy

≤

∫
RN

∫
RN

C4ε
2N−p1(N−2s)−µ

(1 + |x|2)
p1(N−2s)

2 (1 + |y|2)
p1(N−2s)

2 |x − y|µ
dxdy

+

∫
RN

∫
RN

C4ε
4N−(N−2s)(p1+p2)−2µ

2

(1 + |x|2)
p1(N−2s)

2 (1 + |y|2)
p2(N−2s)

2 |x − y|µ
dxdy

+

∫
RN

∫
RN

C4ε
2N−p2(N−2s)−µ

(1 + |x|2)
p2(N−2s)

2 (1 + |y|2)
p2(N−2s)

2 |x − y|µ
dxdy

:= C5(I1 + I2 + I3),

(2.24)
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where c1 and c2 are given by ( f1). Since p1 >
2N−µ
2N−4s , N − 1 − 2p1N(N−2s)

2N−µ < −1. Consequently,∫
RN

(1 + |x|2)−
p1N(N−2s)

2N−µ dx = C6

∫ 1

0

rN−1

(1 + |r|2)
p1N(N−2s)

2N−µ

dr

+ C6

∫ ∞

1

rN−1

(1 + |r|2)
p1N(N−2s)

2N−µ

dr

≤ C7 + C6

∫ ∞

1
rN−1− 2p1N(N−2s)

2N−µ dr

< +∞.

(2.25)

By the Hardy-Littlewood-Sobolev inequality, we have

I1 ≤ C8ε
2N−p1(N−2s)−µ

( ∫
RN

(1 + |x|2)−
p1N(N−2s)

2N−µ dx
) 4N

2N−µ

= O
(
ε2N−p1(N−2s)−µ). (2.26)

Similarly, one can check that
I1 = O

(
ε

4N−(N−2s)(p1+p2)−2µ
2

) (2.27)

and
I2 = O

(
ε2N−p2(N−2s)−µ). (2.28)

Since p1 ≤ p2 , the claim follows from (2.24), (2.26)–(2.28).
For small ε > 0, by (2.21) and (2.23), there exist C9, C10 > 0 such that∫

RN
|uε|2

∗
s dx ≥ C9, [uε]2 ≤ C10,

and ∫
Ω

(|x|−µ ∗ F(tεuε)) f (tεuε)tεuεdx ≤ C10(t2p1
ε + t2p2

ε ).

According to (2.22), we have

C9 ≤ C10(t2p1−2
ε + t2p2−2

ε ) + C10t2∗s−2
ε .

Thus, for small ε > 0 there exists t0 > 0 such that tε ≥ t0 . On the other hand, by ( f2), there holds
q

t2q
ε

∫
Ω

(|x|−µ ∗ F(tεuε))F(tεuε)dx ≥ c2

∫
Ω

(
|x|−µ ∗ |uε|q

)
|uε|qdx

≥

∫
Bδ

∫
Bδ

c2|uε(x)|q|uε(y)|q

|x − y|µ
dxdy

≥

∫
Bδ

∫
Bδ

C11ε
q(N−2s)

(ε2 + |x|2)
q(N−2s)

2 (ε2 + |y|2)
q(N−2s)

2 |x − y|µ
dxdy

≥

∫
B δ
ε

∫
B δ
ε

C11ε
2N−q(N−2s)−µ

(1 + |x|2)
q(N−2s)

2 (1 + |y|2)
q(N−2s)

2

dxdy

≥

∫
Bδ

∫
Bδ

C11ε
2N−q(N−2s)−µ

(1 + |x|2)
q(N−2s)

2 (1 + |y|2)
q(N−2s)

2

dxdy

= C12ε
2N−q(N−2s)−µ.

(2.29)
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Hence ∫
Ω

(
|x|−µ ∗ F(tεuε)

)
F(tεuε)dx ≥ C13t2q

ε ε
2N−q(N−2s)−µ.

Since N > 2s and q ≥ p1 >
2N−µ
2N−4s , then q > N+2s−µ

N−2s . Combining (2.21) and (2.29), one has

m0 ≤ I0(tεuε) ≤ max
t≥0

gε(t) −C13t2q
ε ε

2N−q(N−2s)−µ

< S
N
2s
s + o(εN−2s) −C13t2q

0 ε
2N−q(N−2s)−µ

<
s
N

S
N
2s
s .

The proof is completed. �

3. The proof of the main results

3.1. The proof of Theorem 1.1

Proof. Assume that {uλn} ⊂ Nλ be a minimizing sequence of mλ. By Ekeland’s Variational principle
(see [17]), we may assume that {uλn} be a (PS )mλ

sequence for Iλ, that is I′λ(u
λ
n) → 0 and Iλ(uλn) → mλ.

In view of Lemma 2.8, mλ <
s
N S

N
2s
s . By lemma 2.7, there exist Λ0 > 0 , up to a subsequence, uλn → uλ

in Eλ for any λ > Λ0. Since Iλ ∈ C1(Eλ,R), then Iλ(uλ) = mλ and I′λ(uλ) = 0. Noting that f (t) = 0 for
t ≤ 0 and (t − s)(t− − s−) ≥ |t− − s−|2 for all t , s ∈ R, one has

‖u−λ‖
2
λ ≤

∫
RN

∫
RN

(uλ(x) − uλ(y))(u−λ (x) − u−λ (y))
|x − y|N+2s dxdy +

∫
RN
λV(x)uλu−λdx

= (|x|−µ ∗ F(uλ)) f (uλ)u−λdx +

∫
RN
|u+
λ |

2∗s−1u−λdx

= 0.

Thus uλ ≥ 0. By Lemma 2.8, we have uλ , 0. In view of the Harnack inequality, uλ > 0 and the proof
is completed. �

3.2. The proof of Theorem 1.2

Proof. Suppose that λn → ∞ and uλn be one of the ground states of equation (Qλn). That is, Iλn(uλn) =

mλn and I′λn
(uλn) = 0. We denote uλn by un for notion simplicity. Without loss of generality, we assume

that λn ≥ 1 for all n. As the proof of (2.4), one has

m0 ≥ mλn = Iλn(un) −
1
κs
〈I′λn

(un), un〉

≥
(1
2
−

1
κs

)(
[un]2 +

∫
RN
λnV(x)|un|

2dx
)

≥
1
τ0

(1
2
−

1
κs

)
‖un‖

2.

Hence {un} is bounded in H s(RN). Up to a subsequence, we may assume that

un ⇀ u in H s(RN) and un → u in Lr
loc(R

N) in 1 ≤ r < 2∗s. (3.1)
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We divide into four steps to prove Theorem 1.2 as follows.
Step 1: u(x) = 0 a.e in RN \Ω.

If fact, by using the Fatou’s Lemma, we get∫
RN\Ω

V(x)u2dx ≤ lim inf
n→∞

∫
RN

V(x)u2
ndx ≤ lim inf

n→∞

C20

λn
= 0,

which implies that u(x) = 0 a.e in RN \Ω.
Step 2: u is a critical point of I0.
Since I′λn

(uλn) = 0,

〈un, ϕ〉λn −

∫
RN

(|x|−µ ∗ F(un)) f (un)ϕdx −
∫
RN
|un|

2∗s−1ϕdx = 0, ∀ϕ ∈ E0.

It is clear that ∫
RN
λnV(x)unϕdx = 0, ∀ϕ ∈ E0.

By (3.1), we have
[un, ϕ]→ [un, ϕ], ∀ϕ ∈ E0.

It is standard to prove that∫
RN

(|x|−µ ∗ F(un)) f (un)ϕdx→
∫

Ω

(|x|−µ ∗ F(u)) f (u)ϕdx, ∀ϕ ∈ E0,

and ∫
RN
|un|

2∗s−1ϕdx→
∫

Ω

|u|2
∗
s−1ϕdx, ∀ϕ ∈ E0.

Combining with the above results, we have I′0(u) = 0.
Step 3: un → u in Ls(RN) for 2 ≤ s < 2∗s.
Similar to (2.8) and (2.9), one has∫

DR

|un|
2dx ≤

∣∣∣DR

∣∣∣ 2s
N [un]2 ≤ C21

∣∣∣DR

∣∣∣ 2s
N , (3.2)

∫
Bc

R\DR

|un|
2dx ≤

C22

λn
. (3.3)

Hence, for any ε > 0 there exist R1 = R1(ε) > 0 such that∫
RN\BR1 (0)

|un|
2dx <

ε

4
+ on(1)

By the decay of the Lebesgue integral, there exists R2 = R2(ε) > 0 such that∫
RN\BR2 (0)

|u|2dx <
ε

4
.
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By (3.1), one has∫
RN
|un − u|2dx ≤

∫
BR(0)
|un − u|2dx + 2

∫
RN\BR(0)

|un|
2dx + 2

∫
RN\BR(0)

|u|2dx

≤ on(1) + ε,

where R = max{R1,R2}. Consequently, un → u in L2(RN). By the interpolation inequality and the
boundedness of {un} in H s(RN), we have un → u in Lr(RN) for 2 ≤ r < 2∗s.

Step 4: m0 = I0(u) and un → u in H s(RN).
By the Hardy-Littlewood-Sobolev inequality and the Lebesgue dominant convergence theorem, we

get

lim
n→∞

∫
RN

(|x|−µ ∗ F(un)) f (un)undx→
∫
RN

(|x|−µ ∗ F(u)) f (u)udx,

and
lim
n→∞

∫
RN

(|x|−µ ∗ F(un))F(un)dx→
∫
RN

(|x|−µ ∗ F(u))F(u)dx.

It follows from the lower semicontinuity and the Fatou’s Lemma that

m0 ≥ lim inf
n→∞

mλn = lim inf
n→∞

(
Iλn(un) −

1
κs
〈I′λn

(un), un〉
)

≥
(1
2
−

1
κs

)
lim inf

n→∞
‖un‖

2
λn

+
1
κs

lim inf
n→∞

∫
RN

(|x|−µ ∗ F(un)) f (un)undx

−
1
2

lim sup
n→∞

∫
RN

(|x|−µ ∗ F(un))F(un)dx +
( 1
κs
−

1
2∗s

)
lim inf

n→∞

∫
RN
|un|

2∗s dx

≥
(1
2
−

1
κs

)
[u]2 +

1
κs

∫
RN

(|x|−µ ∗ F(u)) f (u)udx

−
1
2

∫
RN

(|x|−µ ∗ F(u))F(u)dx +
( 1
κs
−

1
2∗s

) ∫
RN
|u|2

∗
s dx

≥
(1
2
−

1
κs

)
[u]2 +

1
κs

∫
Ω

(|x|−µ ∗ F(u)) f (u)udx

−
1
2

∫
Ω

(
|x|−µ ∗ F(u))F(u)dx +

( 1
κs
−

1
2∗s

) ∫
Ω

|u|2
∗
s dx

= I0(u) −
1
κs
〈I′0(u), u〉

= I0(u) ≥ m0.

As a consequence, I0(u) = m0 and [un] → [u]. By Step 3, ‖un‖ → ‖u‖. This together with un ⇀ u
in H s(RN), we have un → u in H s(RN). By Lemma 2.8, u ≥ 0 and u , 0. According to the Harnack
inequality, we have u > 0. The proof is completed. �

3.3. The proof of Theorem 1.3

Proof. Theorem 1.3 is directly concluded by Theorem 1.1 and Theorem 1.2. �

From the proof of Theorem 1.2, we immediately get the following two Corollaries.
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Corollary 3.1. mλ → m0 as λ→ ∞.

Corollary 3.2. Let {uλn} be a solutions of equation (Qλn) with λn → ∞ satisfying |Iλn(un)| ≤ K. Then
up to a subsequence, un → u in H s(RN) as n→ ∞. Moreover, u is a solution of equation (Q0).

4. Conclusions

In this paper, we are concerned with a fractional Choquard equation with critical growth. Under
some assumptions of nonlinearity, we obtain the existence and asymptotic behavior of the positive
ground states to this problem by applying some analytical techniques. Several recent results of the
literatures are extended and improved.
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