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Abstract: The purpose of this work is to find the numerical solution of the Caputo time-
fractional diffusion equation using the modified cubic exponential B-spline (CExpB-spline) collocation
technique. First, the CExpB-spline functions are modified and then used to discretize the space
derivatives. Three numerical examples are considered for checking the efficiency and accuracy of
the method. The obtained results are compared with those reported earlier showing that the present
technique gives highly accurate results. Von Neumann stability is carried out which gives the guarantee
that the technique is unconditionally stable. The rate of convergence is also obtained. Furthermore,
this technique is efficient and requires less storage.
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1. Introduction

Fractional differential equations have been applied in modelling of many fields of physics and
processes such as earthquakes, optics, finance, hydrology, traffic flow, fluid mechanics, fractional
kinetics, mathematical biology, measurement of visco-elastic material properties, electrical network,
electro-chemistry electro-magnetic, signal processing, control theory, acoustics, material
sciences [2, 5, 8, 9, 17, 22, 39, 41–46]. The nonlocal property is the most important advantage of these
equations showing state of a complex system does not depend only on its current state but also
depends on its all-previous states. Due to this reason, the fractional calculus has becoming more and
more popular.
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The fractional diffusion equations (FDEs) are generalized forms of classical diffusion equations.
These equations have been solved by many researchers. For example, authors of [6, 11, 24, 26, 32]
have been applied finite element method, compact FDM, Crank-Nicolson FDM, B-spline based
method, implicit difference approximation, respectively, to solve FDEs. Khader [14] considered an
efficient method based upon Chebyshev approximations. Murio [20] developed an implicit
unconditionally stable method. Sun et al. [25] applied a semi-analytical FEM to solve a class of these
equations. Tadjeran et al. [27] applied aforesaid method with spatial extrapolation to solve a class of
variable coefficients FDEs. Lin and Xu [15] constructed a method based on FDM and Legendre
spectral method while Ghanbari and Atangana [7] presented a method based on the
product-integration rule for solving aforesaid equations. Çelik and Duman [3] examined a
Crank-Nicolson method with the Riesz fractional derivative. Zhai and Feng [35] introduced a
block-centered FDM for solving these equations.

Additionally, Zhai et al. [34, 36] constructed unconditionally stable FDMs to solve the time-space
fractional diffusion and three-dimensional time-fractional subdiffusion equations, respectively. Wu
and Zhai [33] proposed a high order FDM to solve the 2D time-fractional convection-dominated
diffusion equation while Zhai et al. [37, 38] proposed a high-order compact FDM and ADI method to
solve the 3D fractional convection-diffusion equation. Furthermore, Hanert [10] proposed a flexible
numerical method to discretize the space-time FDEs, where pseudo-spectral expansion has been used
for discretization of the time derivative and either high order pseudo-spectral or low order FE and FD
have been used for space derivative. Murillo and Yuste [19] considered explicit difference scheme,
where three-point centered formula has been used to approximate the spatial derivative. Verma et
al. [31] studied nonlinear diffusion equations analytically and numerically using the classical Lie
symmetry method.

In this paper, we consider a Caputo time-fractional diffusion equation

cDα
t u (x, tn) =

∂2u (x, t)
∂x2 + f (x, t) , 0 ≤ x ≤ 1, 0 ≤ t ≤ T, (1.1)

subject to the initial condition

u (x, 0) = ϕ(x), 0 ≤ x ≤ 1, (1.2)

the Dirichlet boundary conditions

u (0, t) = 0, u (1, t) = 0, 0 ≤ t ≤ T, (1.3)

where cDα
t u (x, tn) denotes the Caputo time-fractional derivative [40] as

cDα
t u (x, tn) =

1
Γ (1 − α)

∫ t

0
(t − ζ)−α

∂u (x, ζ)
∂ζ

dζ. (1.4)

2. Discretization of the problem

First, the Caputo time-fractional derivative is discretized. For this, we partition the time domain
[0,T ] uniformly as 0 = t0 < t1, ..., < tN = T , where interval ∆t = tn − tn−1 = T

N for n = 1, 2, . . . ,N. Here
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N is the number of time mesh. By the definition of Caputo derivative at time t = tn, the time-fractional
derivative is approximated as

cDα
t u (x, tn) =

1
Γ (1 − α)

∫ tn

0
(tn − ζ)−α

∂u (x, ζ)
∂ζ

dζ

=
∆t−α

Γ (2 − α)

n−1∑
l=0

(u (x, tn−l) − u (x, tn−l−1)) b̄l + Tr
n
∆t, (2.1)

where b̄l = (l + 1)1−α
− l1−α ∀ 0 ≤ l ≤ N and Tr

n
∆t gives the truncation error ≤ c̄u∆t2−α, where the

constant c̄u is only related to u(x, t).
Lemma 3.1 The below relations should be hold for the coefficients b̄l

(1) b̄0 = 1,
(2) b̄l > 0, ∀ 0 ≤ l ≤ N,
(3) b̄l−1 > b̄l, ∀ 1 ≤ l ≤ N.

Proof. For the proof of Lemma 3.1, see [16].
Next, we use CExpB-spline collocation technique to discretize the space derivatives. First, we

partition the space domain [a, b] uniformly as a = x0 < x1, ..., xM = b with space size ∆x = h =

xm+1− xm = b−a
M ,where m = 0, 1, . . . ,M. For discrete form, we denote un

m = u(xm, tn) for m = 0, 1, ...,M
and n = 0, 1, ...,N. The CExpB-spline functions Epm (x) for m = −1, 0, 1, . . . ,M + 1 are defined
as [28–30]:

Epm (x) =
1
h3



γ̂5

(
(xm−2 − x) − 1

κ̂
(sinh (κ̂ (xm−2 − x)))

)
, x ∈ [xm−2, xm−1)

γ̂1 + γ̂2 (xm − x) + γ̂3eκ̂(xm−x) + γ̂4e−κ̂(xm−x), x ∈ [xm−1, xm)
γ̂1 + γ̂2 (x − xm) + γ̂3e−κ̂(xm−x) + γ̂4eκ̂(xm−x), x ∈ [xm, xm+1)

γ̂5

(
(x − xm+2) − 1

κ̂
(sinh (κ̂ (x − xm+2)))

)
, x ∈ [xm+1, xm+2)

0, otherwise

(2.2)

where

γ̂1 = κ̂hc
κ̂hc−s , γ̂2 = κ̂

2

(
c(c−1)+s2

(κ̂hc−s)(1−c)

)
, γ̂3 = 1

4

(
(1−c)e−κ̂h+s(e−κ̂h−1)

(κ̂hc−s)(1−c)

)
,

γ̂4 = 1
4

(
eκ̂h(c−1)+s(eκ̂h−1)

(κ̂hc−s)(1−c)

)
, γ̂5 = κ̂

2(κ̂hc−s) , s = sinh(κ̂h), c = cosh(κ̂h).

In Eq (2.2), the free parameter κ̂ have been used for obtaining the different forms of CExpB-spline
functions. The set of Epm (x) ∀ m = −1, 0, 1, . . . ,M + 1 forms a basis over the problem domain. We
assume that the approximation uM to the exact u(x, t) at the point (xm, tn) is expressed in terms of linear
combinations of the CExpB-spline functions and unknown time-dependent quantities as follows:

uM (xm, tn) =

M+1∑
i=−1

Ci(t)Epi(x), (2.3)

where Ci (t) are the unknown quantities which we have to evaluate for the approximated solution
uM (x, t) at

(
xi, t j

)
. Since each CExpB-spline covers four elements, so each element is covered by four
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CExpB-splines. So the variation of the uM(x, t), over the element, can be written as:

uM (x, t) =

m+1∑
i=m−1

Ci(t)Epi(x). (2.4)

Using Eq (2.4), the u(x, t) and its first two derivatives at the knots in terms of Cn
m are given as:

un
m =

s − κ̂h
2 (κ̂hc − s)

Cn
m−1 + Cn

m +
s − κ̂h

2 (κ̂hc − s)
Cn

m+1, (2.5)

(ux)n
m = −

κ̂(c − 1)
2 (κ̂hc − s)

(
Cn

m−1 −Cn
m+1

)
, (2.6)

(uxx)n
m =

κ̂2s
2 (κ̂hc − s)

(
Cn

m−1 − 2Cn
m + Cn

m+1
)
, (2.7)

Now, we modify the CExpB-spline basis functions which generate a new set of CExpB-spline basis
functions. The procedure, for modifying the basis functions, is given as [1, 12, 13]:

Ê p0(x) = 4Ep−1(x) + Ep0(x),
Ê p1(x) = Ep1(x) − Ep−1(x),
Ê pm(x) = Epm(x), m = 2, 3, . . . ,M − 2,
Ê pM−1(x) = EpM−1(x) − EpM+1(x),
Ê pM(x) = EpM(x) + 4EpM+1(x),

(2.8)

where {Ê p0(x), Ê p1(x) . . . . . . Ê pM(x)} forms a basis over the problem domain. Next, the modified form
of the approximated solutions, as a linear combination of modified CExpB-spline functions, is given
by 

uM(x0, tn) = 0, f or m = 0,
uM(xm, tn) =

∑M
j=0 Ê p j(x)C j(t), f or m = 1, 2, . . . ,M − 1,

uM(xM, tn) = 0, f or m = M.
(2.9)

Next, the initial vector
(
C0

m, m = 0, 1, . . . , M
)

can be obtained by initial condition and boundary
values of its derivatives as:

uM(x0, 0) = 0, f or m = 0,
uM(xm, 0) = ϕm, f or m = 1, 2, . . . ,M − 1,
uM(xM, 0) = 0, f or m = M.

(2.10)

Eq (2.10) yields a (M + 1) × (M + 1) system as:

κ̂h(c−1)
(κ̂hc−s) 0

s−κ̂h
2(κ̂hc−s) 1 s−κ̂h

2(κ̂hc−s)
0 s−κ̂h

2(κ̂hc−s) 1 s−κ̂h
2(κ̂hc−s)

. . .
. . .

. . .
s−κ̂h

2(κ̂hc−s) 1 s−κ̂h
2(κ̂hc−s)

0 κ̂h(c−1)
(κ̂hc−s)





C0
1

C0
2

C0
3
...

C0
M−1

C0
M


=



0
ϕ1

ϕ2
...

ϕM−1

0


. (2.11)
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Now, discretizing the Eq (1.1) by using (2.1) and Crank-Nicolson method, we have

∆t−α

Γ (2 − α)

n−1∑
l=0

(
un−l

m − un−l−1
m

)
(b̄l) =

1
2
{(uxx)n

m + (uxx)n−1
m } +

1
2

(
f n
m + f n−1

m

)
,

m = 0, 1, ...,M, n = 1, 2, ...,N. (2.12)

Using Eqs (2.4) and (2.6) in Eq (2.12) and simplifying the terms, we have(
∆t−α

Γ (2 − α)
k0ω1 − 0.5ω2

)
Cn

m−1 +

(
∆t−α

Γ (2 − α)
k0 + ω2

)
Cn

m +

(
∆t−α

Γ (2 − α)
k0ω1

−0.5ω2) Cn
m+1 =

∆t−α

Γ (2 − α)

 n−1∑
l=1

(
ω1Cl−1

m−1 + Cl−1
m + ω1Cl−1

m+1

) (
b̄l−1 − b̄l

)
+

b̄n−1

(
ω1C0

m−1 + C0
m + ω1C0

m+1

)]
+ 0.5ω2

(
Cn−1

m−1 − 2Cn−1
m + Cn−1

m+1

)
+

1
2

(
f n
m + f n−1

m

)
, m = 1, 2, ...,M, n = 1, 2, ...,N. (2.13)

where

ω1 = s−κ̂h
2(κ̂hc−s) , and ω2 = κ̂2 s

2(κ̂hc−s) .

For m = 0, from Eq (2.13), we get(
∆t−α

Γ (2 − α)
(1 + 2ω1) b̄0

)
Cn

0 = (1 + 2ω1)
∆t−α

Γ (2 − α)

 n−1∑
l=1

((
b̄l−1 − b̄l

)
Cl−1

0 + b̄n−1C0
0

)
+

1
2

(
f n
0 + f n−1

0

)
, n = 1, 2, ...,N. (2.14)

For m=M, from Eq (2.13), we get(
∆t−α

Γ (2 − α)
(1 + 2ω1) b̄0

)
Cn

M = (1 + 2ω1)
∆t−α

Γ (2 − α)

 n−1∑
l=1

((
b̄l−1 − b̄l

)
Cl−1

M + b̄n−1C0
M

)
+

1
2

(
f n
M + f n−1

M

)
, n = 1, 2, ...,N. (2.15)

At time step tn, n = 1, 2, ...,N, the Eqs (2.13)–(2.15) can be formulated into a (M + 1) × (M + 1)
linear system as follows:

Â 0 0
B̂1 B̂2 B̂1

B̂1 B̂2 B̂1
. . .

. . .
. . .

B̂1 B̂2 B̂1

0 0 Â





Cn
0

Cn
1

Cn
2
...

Cn
M−1

Cn
M


=



R0

R1

R2
...

RM−1

RM


, (2.16)
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where

Â = ∆t−α
Γ(2−α) (1 + 2ω1) b̄0, B̂1 = ∆t−α

Γ(2−α)k0ω1 − 0.5ω2, B̂2 = ∆t−α
Γ(2−α)k0 + ω2,

R0 = ∆t−α
Γ(2−α)

[
n−1∑
l=1

((
b̄l−1 − b̄l

)
(1 + 2ω1) Cl−1

0 + b̄n−1 (1 + 2ω1) C0
0

)]
+ 1

2

(
f n
0 + f n−1

0

)
,

n = 1, 2, ...,N,

Rm = ∆t−α
Γ(2−α)

[
n−1∑
l=1

((
ω1Cl−1

m−1 + Cl−1
m + ω1Cl−1

m+1

) (
b̄l−1 − b̄l

)
+ b̄n−1

(
ω1C0

m−1 + C0
m+

ω1C0
m+1

))]
+ 0.5

(
ω2Cn−1

m−1 − 2ω2Cn−1
m + ω2Cn−1

m+1

)
+ 1

2

(
f n
m + f n−1

m

)
,

m = 1, 2, ...,M − 1, n = 1, 2, ...,N,

RM = ∆t−α
Γ(2−α)

[
n−1∑
l=1

((
b̄l−1 − b̄l

)
(1 + 2ω1) Cl−1

M + b̄n−1 (1 + 2ω1) C0
M

)]
+ 1

2

(
f n
M + f n−1

M

)
,

n = 1, 2, ...,N.

3. Stability analysis

The von-Neumann stability analysis [4,18,21,23] have been done in this section. Taking f (x, t) = 0
in Eq (1.1) and discretizing, we get(

∆t−α

Γ (2 − α)
k0ω1 − 0.5ω2

)
Cn

m−1 +

(
∆t−α

Γ (2 − α)
k0 + ω2

)
Cn

m +

(
∆t−α

Γ (2 − α)
k0ω1

−0.5ω2) Cn
m+1 =

∆t−α

Γ (2 − α)

 n−1∑
l=1

(
ω1Cl−1

m−1 + Cl−1
m + ω1Cl−1

m+1

) (
b̄l−1 − b̄l

)
+

b̄n−1

(
ω1C0

m−1 + C0
m + ω1C0

m+1

)]
+ 0.5ω2

(
Cn−1

m−1 − 2Cn−1
m + Cn−1

m+1

)
.

(3.1)

Simplifying and rearranging the terms, we get(
∆t−α

Γ (2 − α)
b̄0ω1 − 0.5ω2

)
Cn

m−1 +

(
∆t−α

Γ (2 − α)
b̄0 + ω2

)
Cn

m +

(
∆t−α

Γ (2 − α)
b̄0ω1

− 0.5ω2) Cn
m+1 = 0.5ω2

(
Cn−1

m−1 − 2Cn−1
m + Cn−l

m+1

)
+

∆t−α

Γ (2 − α)

n−1∑
l=1

(
ω1Cn−l

m−1

+Cn−l
m + ω1Cn−l

m+1

)
(b̄l−1 − b̄l) +

∆t−α

Γ (2 − α)
b̄n−1

(
ω1C0

m−1 + C0
m + ω1C0

m+1

)
, (3.2)

which can be written as

ACn
m−1 + BCn

m + ACn
m+1 = DCn−1

m−1 + ECn−1
m + DCn−1

m+1 + F, (3.3)

where

A =

(
∆t−α

Γ (2 − α)
b̄0ω1 − 0.5ω2

)
, B =

(
∆t−α

Γ (2 − α)
b̄0 + ω2

)
, D = 0.5ω2, S = −ω2
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and

F =
∆t−α

Γ (2 − α)

n−1∑
l=1

(
ω1Cn−l

m−1 + Cn−l
m + ω1Cn−l

m+1

)
(b̄l−1 − b̄l)

+
∆t−α

Γ (2 − α)
b̄n−1

(
ω1C0

m−1 + C0
m + ω1C0

m+1

)
.

Now we consider one Fourier mode out of the full solution Cn
m = δnekiφ as trial solutions at a given

point xi, where φ = θh. The θ and h are the mode number and element size respectively, and k =
√
−1.

Substituting the trial solution in above equation and simplifying the terms, we get

δn (2A cos φ + B) = δn−1 (2D cos φ + D) +
∆t−α

Γ(2 − α)
(1 + 2ω1 cos φ) F̄,

where F̄ =
n−1∑
l=1

(
b̄l−1 − b̄l

)
δn−l + b̄n−1δ

0.

Now we define

δn−1
max = max

0≤ j≤n−1
|δ j| (3.4)

Using (3.4), we get

F̄ =

n−1∑
l=1

(
b̄l−1 − b̄l

)
δn−l + b̄n−1δ

0 ≤

n−1∑
l=1

(
b̄l−1 − b̄l + b̄n−1

)
δn−1

max = b̄0δ
n−1
max. (3.5)

Now, using above equation and the values of A, B, D and E in Eq (3.3), we have

|δ| ≤

∣∣∣∣∣∣∣∣
∆t−α

Γ(2−α) (1 + 2ω1 cos φ) b̄0 − ω2

(
1 + 2 sin2 (φ)

)
∆t−α

Γ(2−α) (1 + 2ω1 cos φ) b̄0 + ω2

(
1 + 2 sin2 (φ)

)
∣∣∣∣∣∣∣∣ . (3.6)

From (3.6), we get |δ| ≤ 1 , and hence the method is unconditionally stable for the discretized system
of the Caputo time-fractional diffusion equation.

4. Computational results and discussions

In this section, we consider numerical examples of the Caputo time-fractional diffusion equation in
order to check the accuracy and efficiency of the method. We use the following error norms :

L2 =

√√√
h

M∑
j=0

∣∣∣∣uexact
j − unumerical

j

∣∣∣∣2, Lmax = max
0≤ j≤M

|uexact
j − unumerical

j |. (4.1)

The ROC is calculated by

ROC =
log

(
Eh1/Eh2

)
log (h1/h2)

and ROC =
log

(
Ek1/Ek2

)
log (k1/k2)

, (4.2)

where, Eh1 and Eh2 represent the errors at space mesh sizes h1 and h2, respectively and Ek1 and Ek2

represent the errors at time mesh sizes k1 and k2, respectively.
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4.1. Example 1

First, we consider the Caputo time-fractional diffusion equation

cDα
t u (x, tn) =

∂2u (x, t)
∂t2 + f (x, t) , x ∈ [0, 1] , t ≥ 0, 0 < α < 1, (4.3)

with the exact solution
u (x, t) = t2 sin(2πx),

where

f (x, t) =

(
2

Γ (3 − α)
t2−α + 4π2t2

)
sin (2πx) .
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Figure 1. Analytical and approximate solutions together with absolute errors for κ̂ = 11,
∆x = 0.001, and α = 0.5 at (a) ∆t = 0.2, (b) ∆t = 0.1 , and (c) ∆t = 0.05 (Example 1).
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We solve the Caputo time-fractional diffusion Eq (4.3) for different values of M and N. Table
1 shows the comparison of the present method with the finite element method [6] and cubic B-spline
collocation method [24] for different values of M, fixed ∆t = 0.001 at the time-fractional order α = 0.5
in terms of L2 and Lmax error norms. This table shows that the present method gives better results
than the results obtained by those available in [6, 24]. Moreover, one can notice from Table 1 that
the error norms are decreasing as we increase the space as well as time mesh sizes. The analytical
and approximate solutions together with the absolute errors are presented in Figure 1 for κ̂ = 11,
∆x = 0.001, and α = 0.5 at ∆t = 0.2, ∆t = 0.1 , and ∆t = 0.05, respectively. Figure 2 shows the
comparison between analytical and approximate solutions for M = 64, ∆t = 0.001, and α = 0.5 at
different t. From these figures, we notice that there is an excellent agreement between analytical and
approximate solutions. Also, the absolute errors are decreasing on increasing the time interval.

Table 1. Comparison of present results and the results available in [6, 24], for Example 1.

M
Present Method
Lmax

Present Method
L2

Cubic B-spline
collocation method [24]
Lmax

Finite element
method [6]
L2

4 1.28e-03 9.06e-03 1.72e-01 1.09e-01
8 2.73e-04 1.93e-04 4.80e-02 3.20e-02
16 1.09e-04 7.67e-05 1.23e-02 8.42e-03
32 8.65e-05 6.12e-05 3.08e-03 2.15e-03
64 8.23e-05 5.82e-05 7.70e-04 5.42e-04
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x
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-0.5
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u
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,t
)

Approx. sol. at t=0.9990
Exact. sol. at t=0.9990
Approx. sol. at t=0.4990
Exact. Sol. at t=0.4990

Figure 2. Analytical and approximate u(x, t) for M = 64, ∆t = 0.001 and α = 0.5 at different
t (Example 1).
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4.2. Example 2

Next, we consider the Caputo time-fractional diffusion equation

cDα
t u (x, tn) =

∂2u (x, t)
∂x2 + f (x, t) , x ∈ [0, 1] , t ≥ 0, 0 < α < 1, (4.4)

with the exact solution

u (x, t) = x2(x − 1)2ext(2+α),

where

f (x, t) = 0.5t2exx2(x − 1)2Γ (α + 3) − t(2+α)ex(x4 + 6x3 + x2 − 8x + 2).

We solve the Caputo time-fractional diffusion Eq (4.4) for various values of M. Table 2 shows the
maximum absolute error norms Lmax for different values of time-fractional orders i. e. α = 0.2, 0.5
and 0.8 at fixed time mesh size of N = 50 for different space mesh sizes. One can see from Tables 2
and 3 that the error norms are decreasing as we increase the mesh sizes. As we can notice from this
table that the present method is of order O

(
(∆x)2, (∆t)1+α

)
. The approximate solutions for time levels

t = 0.1, 0.4, 0.6 and 0.8 are plotted in Figure 3 for M = 32, N = 50 and time-fractional order α = 0.5.
One can notice that the amplitude of the approximate solutions is increasing on incresing the time t.

Table 2. The Lmax error norms and convergence order for different M and α at fixed N = 50
(Example 2).

M α = 0.2 ROC α = 0.5 ROC α = 0.8 ROC
2 6.67e-01 - 1.94e-01 - 1.287e-02 -
4 1.715e-01 1.96 5.01e-02 1.95 2.987e-03 2.10
8 4.205-02 2.03 1.23e-02 2.02 6.958e-04 2.10

16 1.040e-02 2.02 3.99e-03 1.99 1.710e-04 2.02
32 2.051e-03 2.05 7.81e-04 1.98 4.297e-05 1.99

Table 3. The Lmax error norms and convergence order for different N and α at fixed M = 50
(Example 2).

N α = 0.2 ROC α = 0.5 ROC α = 0.8 ROC
2 9.270e-04 - 5.478e-04 - 3.733e-04 -
4 3.927e-04 1.23 1.987e-04 1.46 1.032e-04 1.85
8 1.618e-04 1.27 7.182e-05 1.47 2.733e-05 1.91

16 6.901e-05 1.22 2.609e-05 1.46 7.793e-05 1.81
32 2.950e-05 1.22 9.472e-06 1.46 2.139e-06 1.86
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Figure 3. Numerical solutions for M = 32, N = 50 and α = 0.5 at different t (Example 2).

4.3. Example 3

Now, we consider the Caputo time-fractional diffusion equation

cDα
t u (x, tn) =

∂2u (x, t)
∂x2 + f (x, t) , 0 < x, α < 1, t > 0, (4.5)

where

f (x, t) = tβex

(
Γ (β + 1)

Γ (β + 1 − α)
t−α − 1

)
,

subject to the initial and boundary conditions

u (x, 0) = 0, 0 < x < 1,

u (0, t) = tβ, u (1, t) = etβ ∀t ≥ 0 ,

and with the exact solution

u (x, t) = extβ.

Now, we solve the Caputo time-fractional diffusion Eq (4.5) for different values of M and N. Table
4 shows the comparison in term of Lmax error norms obtained by the present method and the method
based on the product-integration (PI) rule presented in [7] for ∆x = 1

101 , β = 6, different values of N
and α at t = 1. As we can see that the present method gives more accurate results than the method
presented in [7]. Also, we notice that the error norms are decreasing as we increase the time mesh
sizes. Figure 4 shows the analytical and approximate solutions together with absolute error norms for
∆x = 1

101 , α = 0.85, β = 5, ∆t = 0.01 at T = 0.35 showing that errors are decreasing on increasing the
grid sizes.
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Figure 4. Analytical and approximate solutions together with absolute errors for p = 0.01,
∆x = 0.001, and α = 0.5 at (a) ∆t = 0.08, (b) ∆t = 0.04 , and (c) ∆t = 0.02 (Example 3).
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Table 4. The Lmax error norms for different time-fractional orders with ∆x = 1
101 , β = 6 at

T = 1 (Example 3).

N

Present
Method
for
α = 0.5

Method
based on
PI rule [7]
for α = 0.5

Present
method
for
α = 0.7

Method
based on
PI rule [7]
for α = 0.7

Present
method
for
α = 0.9

Method
based on
PI rule [7]
for α = 0.9

10 2.34e-03 7.63e-03 8.41e-03 1.07e-02 7.59e-03 1.14e-02
20 6.23e-04 2.03e-03 1.25e-03 2.76e-04 2.71e-03 3.53e-03
40 2.54e-04 5.27e-04 6.18e-04 7.03e-04 6.78e-04 8.89e-04
80 7.22e-05 1.36e-04 1.57e-04 1.78e-04 1.54e-04 2.23e-04
160 3.31e-05 3.55e-05 4.49e-05 4.56e-05 4.35e-05 5.67e-05

5. Conclusions

A modified CExpB-spline collocation technique has been presented for solving the Caputo time-
fractional diffusion equation . The modified CExpB-spline collocation technique is used to discretize
the space derivatives. The three examples of the Caputo time-fractional diffusion equation have been
considered. The obtained results show that the present method gives more accurate results than the
results obtained in [6, 7, 24]. It is observed numerically that the method is second-order accurate in
space and (1 + α) order in time. The stability analysis shows that the method is unconditionally stable.
Moreover, the implementation of the present method is easy and needs low memory storage which is
the advantage. The present method can easily be extended for solving higher dimensional fractional
PDEs.
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