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differential equations is proposed. Three different types of kernels are used, power law, exponential
decay and Mittag-Leffler kernels. The kernel’s fractional order and fractal dimension are the key
parameters for these operators. The main objective of this paper is to study the effect of the fractal-
fractional derivative order and the order of the nonlinear term, 1 < q < 2, in the equation on the
behavior of numerical solutions of fractal-fractional reaction diffusion equations (FFRDE). Iterative
approximations to the solutions of these equations are constructed by applying the theory of fractional
calculus with the help of Lagrange polynomial functions. In key parameter regimes, all these iterative
solutions based on a power kernel, an exponential kernel and a generalized Mittag-Leffler kernel are
very close. Hence, iterative solutions obtained using one of these kernels are compared with full
numerical solutions of the FFRDE and excellent agreement is found. All numerical solutions in this
paper were obtained using Mathematica.
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1. Introduction, definitions and preliminaries

Fractional calculus is a generalization of classical calculus and many researchers have paid attention
to this science as they encounter many of these issues in the real world. Most of these issues do not
have analytical exact solution. Which made many researchers interest and search in numerical and
approximate methods to obtain solutions using these methods. There are many of these methods, such
as the homotopy analysis [1–4], He’s variational iteration method [5, 6], Adomians decomposition

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2021225


3789

method [7–9], Fourier spectral methods [10], finite difference schemes [11], collocation methods [12–
14]. To find out more about the fractal calculus, refer to the following references [15, 16]. More
recently, a new concept was introduced for the fractional operator, as this operator has two orders,
the first representing the fractional order, and the second representing the fractal dimension. In our
work we aim to applied the idea of fractal-fractional derivative of orders β, k to a reaction-diffusion
equation with q-th nonlinear. To this end [17], we replace the derivative with respect to t by the fractal-
fractional derivatives power (FFP) law, the fractal-fractional exponential(FFE) law and the fractal-
fractional Mittag-Leffler (FFM) law kernels which corresponds to the [18], Caputo-Fabrizio (CF) [19]
and the Atangana-Baleanu (AB) [20] fractional derivatives, respectively. This topic has attracted many
researchers and has been applied to research related to the real world, such as [21–26]. Some recent
developments in the area of numerical techniques can be found in [27–31].

Merkin and Needham [32] considered the reaction-diffusion travelling waves that can develop in a
coupled system involving simple isothermal autocatalysis kinetics. They assumed that reactions took
place in two separate and parallel regions, with, in I, the reaction being given by quadratic autocatalysis

F + G → 2G(rate k1 f g), (1.1)

together with a linear decay step
G → H(rate k2 g) (1.2)

where f and g are the concentrations of reactant F and autocatalyst H, the ki(i = 1, 2) are the rate
constants and H is some inert product of reaction. The reaction in region II was the quadratic
autocatalytic step (1.1) only. The two regions were assumed to be coupled via a linear diffusive
interchange of the autocatalytic species G. We shall consider a similar system as I, but with cubic
autocatalysis

F + 2G → 3G(rate k3 f g2) (1.3)

together with a linear decay step
G → H(rate k4g). (1.4)

For q-th autocatalytic, we have

F + qG → (q + 1)G(rate k3 f gq), 1 ≤ q ≤ 2, (1.5)

together with a linear decay step
G → H(rate k4g). (1.6)

This yields to the following system

∂η1

∂t
=
∂2η1

∂ξ2 + ν(η2 − η1) − η1ζ
q
1 , (1.7)

∂ζ1

∂t
=
∂2ζ1

∂ξ2 − κζ1 + η1ζ
q
1 , (1.8)

∂η2

∂t
=
∂2η2

∂ξ2 + ν(η1 − η2) − η2ζ
q
2 , (1.9)
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∂ζ2

∂t
=
∂2ζ2

∂ξ2 + η2ζ
q
2 (1.10)

where ν represents the couple between (I) and (II) and κ represents the strength of the auto-catalyst
decay. For more details see [32]. Omitting the diffusion terms in the system (1.7)–(1.10), one has the
following ordinary differential equations

∂η1

∂t
= ν(η2 − η1) − η1ζ

q
1 , (1.11)

∂ζ1

∂t
= −κζ1 + η1ζ

q
1 , (1.12)

∂η2

∂t
= ν(η1 − η2) − η2ζ

q
2 , (1.13)

∂ζ2

∂t
= η2ζ

q
2 . (1.14)

Now we provide some basic definitions that be needed in this work. As for the theorems and proofs
related to the three fractal-fractional operators, they are found in details in [17]. Thus we suffice in
this work by constructing the algorithms and making the numerical simulations of the set of Eqs (1.7)–
(1.10) with the three fractal-fractional operators.

Definition 1. If η(t) is continuous and fractal differentiable on (a, b) of order k, then the
fractal-fractional derivative of η(t) of order β in Riemann Liouville sense with the power law is given
by [17]:

FFP
0 Dβ, k

t η(t) =
1

Γ(1 − β)
d

dtk

∫ t

0
(t − τ)−βη(τ)dτ, (0 < β, k ≤ 1), (1.15)

and the fractal-fractional integral of η(t) is given by

FFP
0Iβ, kt η(t) =

k
Γ(β)

∫ t

0
τk−1(t − τ)β−1η(τ)dτ. (1.16)

Definition 2. If η(t) is continuous in the (a, b) and fractal differentiable on (a, b) with order k, then the
fractal-fractional derivative of η(t) of order β in Riemann Liouville sense with the exponential decay
kernel is given by [17]:

FFE
0 Dβ,k

t η(t) =
M(β)
1 − β

d
dtk

∫ t

0
e
−β
1−β (t−τ)η(τ)dτ, (0 < β, k ≤ 1), (1.17)

and the fractal-fractional integral of η(t) is given by

FFE
0Iβ,kt η(t) =

(1 − β)ktk−1

M(β)
η(t) +

βk
M(β)

∫ t

0
τk−1η(τ)dτ (1.18)

where M(β) is the normalization function such that M(0) = M(1) = 1.
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Definition 3. If η(t) is continuous in the (a, b) and fractal differentiable on (a, b) with order k, then the
fractal-fractional derivative of η(t) of order β in Riemann Liouville sense with the Mittag–Leffler type
kernel is given by [17]:

FFE
0 Dβ,k

t η(t) =
A(β)
1 − β

d
dtk

∫ t

0
Eβ

( −β
1 − β

(t − τ)
)
η(τ)dτ, (0 < β, k ≤ 1), (1.19)

and the fractal-fractional integral of η(t) is given by

FFE
0Iβ,kt η(t) =

(1 − β)ktk−1

A(β)
η(t) +

β k
A(β)Γ(β)

∫ t

0
τk−1(t − τ)β−1η(τ)dτ, (1.20)

dη(t)
dtk = limτ→t

η(τ) − η(t)
τk − tk (1.21)

where where A(β) = 1 − β +
β

Γ(β)
is a normalization function such that A(0) = A(1) = 1.

Our contribution to this paper is to construct the successive approximations and evaluate the
numerical solutions of the FFRDE. These successive approximations allow us to study the behavior of
numerical solutions based on power , exponential , and the Mittag-Leffler kernels. Also we can study
the behavior of approximate solutions in the case of nonlinearity of the FFRDE in general. To our
best knowledge, this is the first study of the FFRDE using fractal-fractional with these kernels. The
importance of these results lies in the fact that they highlight the possibility of using these results for
the benefit of chemical and physical researchers, by trying to link the numerical results of these
mathematical models with the laboratory results. These results also contribute to the reliance on
numerical results in the case of many models related to the real world, which often cannot find an
analytical solution. The structure of this paper is summarized as follows: In sections, two, three and
four, the FFRDE is presented with the three kernels that proposed in this work and construct the
successive approximations. In section Five, numerical solutions for the FFRDE are discussed with a
study of their behavior. Section Six the conclusion is presented.

2. Numerical scheme of FFRDE of q-th-order autocatalysis due the power law kernel

The new model is obtained by replacing the ordinary derivative with the the fractal-fractional
derivative the power law kernel as [17]

FFP
0 Dβ

t η1(t) = ν(η2(t) − η1(t)) − η1(t)ζq
1 (t), (2.1)

FFP
0 Dβ

t ζ1(t) = −κζ1(t) + η1(t)ζq
1 (t), (2.2)

FFP
0 Dβ

t η2(t) = ν(η1(t) − η2(t)) − η2(t)ζq
2 (t), (2.3)

FFP
0 Dβ

t ζ2(t) = η2(t)ζq
2 (t). (2.4)

By following the procedure in [17], we can obtain the following successive approximations:

η1(t) − η1(0) =
k

Γ(β)

∫ t

0
τk−1(t − τ)β−1ϕ1(η1, ζ1, η2, ζ2, τ)dτ, (2.5)
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ζ1(t) − ζ2(0) =
k

Γ(β)

∫ t

0
τk−1(t − τ)β−1ϕ2(η1, ζ1, η2, ζ2, τ)dτ, (2.6)

η2(t) − η3(0) =
k

Γ(β)

∫ t

0
τk−1(t − τ)β−1ϕ3(η1, ζ1, η2, ζ2, τ)dτ, (2.7)

ζ2(t) − ζ2(0) =
k

Γ(β)

∫ t

0
τk−1(t − τ)β−1ϕ4(η1, ζ1, η2, ζ2, τ)dτ (2.8)

where

ϕ1(η1, ζ1, η2, ζ2, τ) =
(
ν (η2(τ) − η1(τ)) − η1(τ)ζq

1 (τ)
)
, (2.9)

ϕ2(η1, ζ1, η2, ζ2, τ) =
(
− κ ζ1(τ) + η1(τ)ζq

1 (τ)
)
, (2.10)

ϕ3(η1, ζ1, η2, ζ2, τ) =
(
ν(η1(τ) − η2(τ)) − η2(τ)ζq

2 (τ)
)
, (2.11)

ϕ4(η1, ζ1, η2, ζ2, τ) = η2(τ)ζq
2 (τ). (2.12)

Equation (2.5)–(2.8) can be reformulated as

η1(t) − η1(0) =
k

Γ(β)

n∑
m=0

∫ tm+1

tm
τk−1(tn+1 − τ)β−1ϕ1(η1, ζ1, η2, ζ2, τ)dτ, (2.13)

ζ1(t) − ζ1(0) =
k

Γ(β)

n∑
m=0

∫ tm+1

tm
τk−1(tn+1 − τ)β−1ϕ2(η1(τ), ζ1(τ), η2(τ), ζ2(τ), τ)dτ, (2.14)

η2(t) − η2(0) =
k

Γ(β)

n∑
m=0

∫ tm+1

tm
τk−1(tn+1 − τ)β−1ϕ3(η1, ζ1, η2, ζ2, τ)dτ, (2.15)

ζ2(t) − ζ2(0) =
k

Γ(β)

n∑
m=0

∫ tm+1

tm
τk−1(tn+1 − τ)β−1ϕ4(η1, ζ1, η2, ζ2, τ)dτ. (2.16)

Using the two-step Lagrange polynomial interpolation, we obtain

η1(t) − η1(0) =
k

Γ(β)

n∑
m=0

∫ tm+1

tm
(tn+1 − τ)β−1Q1,m(τ)dτ, (2.17)

ζ1(t) − ζ1(0) =
k

Γ(β)

n∑
m=0

∫ tm+1

tm
(tn+1 − τ)β−1Q2,m(τ)dτ, (2.18)

η2(t) − η2(0) =
k

Γ(β)

n∑
m=0

∫ tm+1

tm
(tn+1 − τ)β−1Q3,m(τ)dτ, (2.19)

ζ2(t) − ζ2(0) =
k

Γ(β)

n∑
m=0

∫ tm+1

tm
(tn+1 − τ)β−1Q4,m(τ)dτ, (2.20)

where,

Q1,m(τ) =
τ − tm−1

tm − tm−1
tk−1
m ϕ1(η1(τm), ζ1(τm), η2(τm), ζ2(τm), τm) −

τ − tm

tm − tm−1
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×tk−1
m−1ϕ1(η1(τm−1), ζ1(τm−1), η2(τm−1), ζ2(τm−1), τm−1), (2.21)

Q2,m(τ) =
τ − tm−1

tm − tm−1
tk−1
m ϕ2(η1(τm), ζ1(τm), η2(τm), ζ2(τm), τm) −

τ − tm

tm − tm−1

×tk−1
m−1ϕ2(η1(τm−1), ζ1(τm−1), η2(τm−1), ζ2(τm−1), τm−1), (2.22)

Q3,m(τ) =
τ − tm−1

tm − tm−1
tk−1
m ϕ3(η1(τm), ζ1(τm), η2(τm), ζ2(τm), τm) −

τ − tm

tm − tm−1

×tk−1
m−1ϕ3(η1(τm−1), ζ1(τm−1), η2(τm−1), ζ2(τm−1), τm−1), (2.23)

Q4,m(τ) =
τ − tm−1

tm − tm−1
tk−1
m ϕ4(η4(τm), ζ1(τm), η2(τm), ζ2(τm), τm) −

τ − tm

tm − tm−1

×tk−1
m−1ϕ4(η1(τm−1), ζ1(τm−1), η2(τm−1), ζ2(τm−1), τm−1). (2.24)

These integrals are evaluated directly and the numerical solutions of (2.1)–(2.4) involving the FFP
derivative are given by

η1(tn+1) = η1(0) +
khβ

Γ(β + 2)

n∑
m=0

tk−1
m ϕ1(η1(tm), ζ1(tm), η2(tm), ζ2(tm), tm)Ξ1(n,m)

− tk−1
m−1ϕ1(η1(τm−1), ζ1(tm−1), η2(tm−1), ζ2(tm−1), tm−1)Ξ2(n,m)

)
, (2.25)

ζ1(tn+1) = ζ1(0) +
khβ

Γ(β + 2)

n∑
m=0

tk−1
m ϕ2(η1(tm), ζ1(tm), η2(tm), ζ2(tm), tm)Ξ1(n,m)

− tk−1
m−1ϕ2(η1(τm−1), ζ1(tm−1), η2(tm−1), ζ2(tm−1), tm−1)Ξ2(n,m)

)
, (2.26)

η2(tn+1) = η2(0) +
khβ

Γ(β + 2)

n∑
m=0

tk−1
m ϕ3(η1(tm), ζ1(tm), η2(tm), ζ2(tm), tm)Ξ1(n,m)

− tk−1
m−1ϕ4(η1(τm−1), ζ1(tm−1), η2(tm−1), ζ2(tm−1), tm−1)Ξ2(n,m)

)
, (2.27)

ζ2(tn+1) = ζ2(0) +
khβ

Γ(β + 2)

n∑
m=0

tk−1
m ϕ4(η1(tm), ζ1(tm), η2(tm), ζ2(tm), tm)Ξ1(n,m)

− tk−1
m−1ϕ4(η1(τm−1), ζ1(tm−1), η2(tm−1), ζ2(tm−1), tm−1)Ξ2(n,m)

)
, (2.28)

Ξ1(n,m) =
(
(n + 1 − m)β(n − m + 2 + β) − (n − m)β × (n − m + 2 + 2β)

)
, (2.29)

Ξ2(n,m) =
(
(n + 1 − m)β+1 − (n − m)β(n − m + 1 + β)

)
. (2.30)

3. Numerical scheme of FFRDE of q-th-order autocatalysis due the exponential decay kernel

Considering the FFE derivative, we have from [17]

FFE
0 Dβ

t η1(t) = ν(η2(t) − η1(t)) − η1(t)ζq
1 (t), (3.1)
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FFE
0 Dβ

t ζ1(t) = −κζ1(t) + η1(t)ζq
1 (t), (3.2)

FFE
0 Dβ

t η2(t) = ν(η1(t) − η2(t)) − η2(t)ζq
2 (t), (3.3)

FFE
0 Dβ

t ζ2(t) = η2(t)ζq
2 (t). (3.4)

For the successive approximations of the system (3.1)–(3.4), we follow the same procedures as in [17],
we obtain

η1(t) − η1(0) =
ktk−1(1 − β)

M(β)
ϕ1(η1, ζ1, η2, ζ2, t)

+
β

M(β)

∫ t

0
k τk−1ϕ1(η1, ζ1, η2, ζ2, τ)dτ, (3.5)

ζ1(t) − ζ1(0) =
ktk−1(1 − β)

M(β)
ϕ2(η1, ζ1, η2, ζ2, t)

+
β

M(β)

∫ t

0
k τk−1ϕ2(η1, ζ1, η2, ζ2, τ)dτ, (3.6)

η2(t) − η2(0) =
ktk−1(1 − β)

M(β)
ϕ3(η1, ζ1, η2, ζ2, t)

+
β

M(β)

∫ t

0
k τk−1ϕ3(η1, ζ1, η2, ζ2, τ)dτ, (3.7)

ζ2(t) − ζ2(0) =
ktk−1(1 − β)

M(β)
ϕ4(η1, ζ1, η2, ζ2, t)

+
β

M(β)

∫ t

0
k τk−1ϕ4(η1, ζ1, η2, ζ2, τ)dτ. (3.8)

Using t = tn+1 the following is established

η1(tn+1) − η1(0) =
ktk−1(1 − β)

M(β)
ϕ1(η1, ζ1, η2, ζ2, tn)

+
β

M(β)

∫ tn+1

0
k τk−1ϕ1(η1, ζ1, η2, ζ2, τ)dτ, (3.9)

ζ1(tn+1) − ζ1(0) =
ktk−1(1 − β)

M(β)
ϕ2(η1, ζ1, η2, ζ2, tn)

+
β

M(β)

∫ tn+1

0
k τk−1ϕ2(η1, ζ1, η2, ζ2, τ)dτ, (3.10)

η2(tn+1) − η2(0) =
ktk−1(1 − β)

M(β)
ϕ3(η1, ζ1, η2, ζ2, tn)
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+
β

M(β)

∫ tn+1

0
k τk−1ϕ3(η1, ζ1, η2, ζ2, τ)dτ, (3.11)

ζ2(tn+1) − ζ2(0) =
ktk−1(1 − β)

M(β)
ϕ4(η1, ζ1, η2, ζ2, tn)

+
β

M(β)

∫ tn+1

0
k τk−1ϕ4(η1, ζ1, η2, ζ2, τ)dτ. (3.12)

Further, we have the following:

η1(tn+1) − η1(tn) =
ktk−1

n (1 − β)
M(β)

ϕ1(η1, ζ1, η2, ζ2, tn)

−
ktk−1

n−1(1 − β)
M(β)

ϕ1(η1, ζ1, η2, ζ2, tn−1)

+
β

M(β)

∫ tn+1

tn
k τk−1ϕ1(η1, ζ1, η2, ζ2, τ)dτ, (3.13)

ζ1(tn+1) − ζ1(tn) =
ktk−1

n (1 − β)
M(β)

ϕ2(η1, ζ1, η2, ζ2, tn)

−
ktk−1

n−1(1 − β)
M(β)

ϕ2(η1, ζ1, η2, ζ2, tn−1)

+
β

M(β)

∫ tn+1

tn
k τk−1ϕ2(η1, ζ1, η2, ζ2, τ)dτ, (3.14)

η2(tn+1) − η2(tn) =
ktk−1

n (1 − β)
M(β)

ϕ3(η1, ζ1, η2, ζ2, tn)

−
ktk−1

n−1(1 − β)
M(β)

ϕ3(η1, ζ1, η2, ζ2, tn−1)

+
β

M(β)

∫ tn+1

tn
k τk−1ϕ3(η1, ζ1, η2, ζ2, τ)dτ, (3.15)

ζ2(tn+1) − ζ2(tn) =
ktk−1

n (1 − β)
M(β)

ϕ4(η1, ζ1, η2, ζ2, tn)

−
ktk−1

n−1(1 − β)
M(β)

ϕ4(η1, ζ1, η2, ζ2, tn−1)

+
β

M(β)

∫ tn+1

tn
k τk−1ϕ4(η1, ζ1, η2, ζ2, τ)dτ. (3.16)

It follows from the Lagrange polynomial interpolation and integrating the following expressions:

η1(tn+1) − η1(tn) =
ktk−1

n (1 − β)
M(β)

ϕ1(η1, ζ1, η2, ζ2, tn)
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−
ktk−1

n−1(1 − β)
M(β)

ϕ1(η1, ζ1, η2, ζ2, tn−1) +
khβ

2M(β)

×
(
3tk−1

n ϕ1(η1, ζ1, η2, ζ2, tn) − tk−1
n−1ϕ1(η1, ζ1, η2, ζ2, tn−1), (3.17)

ζ1(tn+1) − ζ1(tn) =
ktk−1

n (1 − β)
M(β)

ϕ2(η1, ζ1, η2, ζ2, tn)

−
ktk−1

n−1(1 − β)
M(β)

ϕ2(η1, ζ1, η2, ζ2, tn−1) +
khβ

2M(β)

×
(
3tk−1

n ϕ2(η1, ζ1, η2, ζ2, tn) − tk−1
n−1ϕ2(η1, ζ1, η2, ζ2, tn−1), (3.18)

η2(tn+1) − η2(tn) =
ktk−1

n (1 − β)
M(β)

ϕ3(η1, ζ1, η2, ζ2, tn)

−
ktk−1

n−1(1 − β)
M(β)

ϕ3(η1, ζ1, η2, ζ2, tn−1) +
khβ

2M(β)

×
(
3tk−1

n ϕ3(η1, ζ1, η2, ζ2, tn) − tk−1
n−1ϕ3(η1, ζ1, η2, ζ2, tn−1), (3.19)

ζ2(tn+1) − ζ2(tn) =
ktk−1

n (1 − β)
M(β)

ϕ4(η1, ζ1, η2, ζ2, tn)

−
ktk−1

n−1(1 − β)
M(β)

ϕ4(η1, ζ1, η2, ζ2, tn−1) +
khβ

2M(β)

×
(
3tk−1

n ϕ4(η1, ζ1, η2, ζ2, tn) − tk−1
n−1ϕ4(η1, ζ1, η2, ζ2, tn−1). (3.20)

Finally, it is appropriate to write the successive approximations of the system (3.1)–(3.4) as follows:

η1(tn+1) − η1(tn) = ktk−1
n

( (1 − β)
M(β)

+
3hβ

2M(β)

)
ϕ1(η1, ζ1, η2, ζ2, tn)

− ktk−1
n−1

( (1 − β)
M(β)

+
hβ

2M(β)

)
ϕ1(η1, ζ1, η2, ζ2, tn−1), (3.21)

ζ1(tn+1) − ζ1(tn) = ktk−1
n

( (1 − β)
M(β)

+
3hβ

2M(β)

)
ϕ2(η1, ζ1, η2, ζ2, tn)

− ktk−1
n−1

( (1 − β)
M(β)

+
hβ

2M(β)

)
ϕ2(η1, ζ1, η2, ζ2, tn−1), (3.22)

η2(tn+1) − η2(tn) = ktk−1
n

( (1 − β)
M(β)

+
3hβ

2M(β)

)
ϕ3(η1, ζ1, η2, ζ2, tn)

− ktk−1
n−1

( (1 − β)
M(β)

+
hβ

2M(β)

)
ϕ3(η1, ζ1, η2, ζ2, tn−1), (3.23)

ζ2(tn+1) − ζ2(tn) = ktk−1
n

( (1 − β)
M(β)

+
3hβ

2M(β)

)
ϕ4(η1, ζ1, η2, ζ2, tn)

− ktk−1
n−1

( (1 − β)
M(β)

+
hβ

2M(β)

)
ϕ4(η1, ζ1, η2, ζ2, tn−1). (3.24)
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4. Numerical scheme of FFRDE of q-th-order autocatalysis due the generalized Mittag Lefller
kernel

Considering the FFM derivative, we have [18]

FFM
0 Dβ

t η1(t) = ν(η2(t) − η1(t)) − η1(t)ζq
1 (t), (4.1)

FFM
0 Dβ

t ζ1(t) = −κζ1(t) + η1(t)ζq
1 (t), (4.2)

FFM
0 Dβ

t η2(t) = ν(η1(t) − η2(t)) − η2(t)ζq
2 (t), (4.3)

FFM
0 Dβ

t ζ2(t) = η2(t)ζq
2 (t). (4.4)

Also, for this system (4.1)–(4.4), we follow the same treatment that was done in [17] to obtain the
successive approximate solutions as follows:

η1(t) − η1(0) =
ktk−1(1 − β)

A(β)
ϕ1(η1, ζ1, η2, ζ2, t)

+
β

A(β)Γ(β)

∫ t

0
k τk−1(t − τ)β−1ϕ1(η1, ζ1, η2, ζ2, τ)dτ, (4.5)

ζ1(t) − ζ1(0) =
ktk−1(1 − β)

A(β)
ϕ2(η1, ζ1, η2, ζ2, t)

+
β

A(β)Γ(β)

∫ t

0
k τk−1(t − τ)β−1ϕ2(η1, ζ1, η2, ζ2, τ)dτ, (4.6)

η2(t) − η2(0) =
ktk−1(1 − β)

A(β)
ϕ3(η1, ζ1, η2, ζ2, t)

+
β

A(β)Γ(β)

∫ t

0
k τk−1(t − τ)β−1ϕ3(η1, ζ1, η2, ζ2, τ)dτ, (4.7)

ζ2(t) − ζ2(0) =
ktk−1(1 − β)

A(β)
ϕ4(η1, ζ1, η2, ζ2, t)

+
β

A(β)Γ(β)

∫ t

0
k τk−1(t − τ)β−1ϕ4(η1, ζ1, η2, ζ2, τ)dτ. (4.8)

At tn+1 we obtain the following

η1(tn+1) − η1(0) =
ktk−1

n (1 − β)
A(β)

ϕ1(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
β

A(β)Γ(β)

∫ tn+1

0
k τk−1(tn+1 − τ)β−1ϕ1(η1, ζ1, η2, ζ2, τ)dτ, (4.9)

ζ1(tn+1) − ζ1(0) =
ktk−1

n (1 − β)
A(β)

ϕ2(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)
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+
β

A(β)Γ(β)

∫ tn+1

0
k τk−1(tn+1 − τ)β−1ϕ2(η1, ζ1, η2, ζ2, τ)dτ, (4.10)

η2(tn+1) − η2(0) =
ktk−1

n (1 − β)
A(β)

ϕ3(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
β

A(β)Γ(β)

∫ tn+1

0
k τk−1(tn+1 − τ)β−1ϕ3(η1, ζ1, η2, ζ2, τ)dτ, (4.11)

ζ2(tn+1) − ζ2(0) =
ktk−1

n (1 − β)
A(β)

ϕ4(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
β

A(β)Γ(β)

∫ tn+1

0
k τk−1(tn+1 − τ)β−1ϕ4(η1, ζ1, η2, ζ2, τ)dτ, (4.12)

The integrals involving in (4.9)–(4.12) can be approximated as:

η1(tn+1) − η1(0) =
ktk−1

n (1 − β)
A(β)

ϕ1(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
β

A(β)Γ(β)

n∑
m=0

∫ tm+1

tm
k τk−1(tn+1 − τ)β−1ϕ1(η1, ζ1, η2, ζ2, τ)dτ, (4.13)

ζ1(tn+1) − ζ1(0) =
ktk−1

n (1 − β)
A(β)

ϕ2(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
β

A(β)Γ(β)

n∑
m=0

∫ tm+1

tm
k τk−1(tn+1 − τ)β−1ϕ2(η1, ζ1, η2, ζ2, τ)dτ, (4.14)

η2(tn+1) − η2(0) =
ktk−1

n (1 − β)
A(β)

ϕ3(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
β

A(β)Γ(β)

n∑
m=0

∫ tm+1

tm
k τk−1(tn+1 − τ)β−1ϕ3(η1, ζ1, η2, ζ2, τ)dτ, (4.15)

ζ2(tn+1) − ζ2(0) =
ktk−1

n (1 − β)
A(β)

ϕ4(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
β

A(β)Γ(β)

n∑
m=0

∫ tm+1

tm
k τk−1(tn+1 − τ)β−1ϕ4(η1, ζ1, η2, ζ2, τ)dτ. (4.16)

The following numerical schemes after approximating the expressions
τk−1ϕi(η1, ζ1, η2, ζ2, τ), i = 1, 2, 3, 4 in the interval [tm, tm+1] in (4.13)–(4.16) are given by

η1(tn+1) − η1(0) =
ktk−1

n (1 − β)
A(β)

ϕ1(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)
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+
khβ

A(β)Γ(β + 2)

n∑
m=0

[
tk−1
m ϕ1(η1(tm), ζ1(tm), η2(tm), ζ2(tm), (tm))Ξ1(n,m)

− tk−1
m−1ϕ1(η1(tm−1), ζ1(tm−1), η2(tm−1), ζ2(tm−1), (tm−1))Ξ2(n,m)

]
, (4.17)

ζ1(tn+1) − ζ1(0) =
ktk−1

n (1 − β)
A(β)

ϕ2(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
khβ

A(β)Γ(β + 2)

n∑
m=0

[
tk−1
m ϕ2(η1(tm), ζ1(tm), η2(tm), ζ2(tm), (tm))Ξ1(n,m)

− tk−1
m−1ϕ2(η1(tm−1), ζ1(tm−1), η2(tm−1), ζ2(tm−1), (tm−1))Ξ2(n,m)

]
, (4.18)

η2(tn+1) − η2(0) =
ktk−1

n (1 − β)
A(β)

ϕ3(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
khβ

A(β)Γ(β + 2)

n∑
m=0

[
tk−1
m ϕ3(η1(tm), ζ1(tm), η2(tm), ζ2(tm), (tm))Ξ1(n,m)

− tk−1
m−1ϕ3(η1(tm−1), ζ1(tm−1), η2(tm−1), ζ2(tm−1), (tm−1))Ξ2(n,m)

]
, (4.19)

ζ2(tn+1) − ζ2(0) =
ktk−1

n (1 − β)
A(β)

ϕ4(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
khβ

A(β)Γ(α + 2)

n∑
m=0

[
tk−1
m ϕ4(η1(tm), ζ1(tm), η2(tm), ζ2(tm), (tm))Ξ1(n,m)

− tk−1
m−1ϕ4(η1(tm−1), ζ1(tm−1), η2(tm−1), ζ2(tm−1), (tm−1))Ξ2(n,m)

]
. (4.20)

5. Numerical results

In this section, we study in detail the effect of the non-linear term in general, as well as the effect
of the fractal-fractional order on the numerical solutions that we obtained by using successive
approximations in the above sections. First we begin by satisfying the effective of the numerical
solutions of the proposed system when β = 1 and k = 1.

We compare only for the power kernel with a known numerical method which is the finite
differences method. This is because all numerical solutions based on the three fractal-fractional
operators that presented in this paper are very close each other when β = 1 and k = 1. Figure 1
illustrates the comparison between numerical solutions (2.25)–(2.28) and numerical solutions
computed by using the finite differences method with k and β. The parameters that used are
γ = 0.4, κ = 0.004, h = 0.02. From this figure we note that an excellent agreement. And the accurate
is increasing as we take small h. From, Figure 1(a) and 1(c), we can see, that the profiles for η1 and η2

are very similar, but the profiles of ζ1 and ζ2 are more distinct with ζ2 > ζ2. For Figure 1(b), the
profiles of ζ1 and ζ2 are very close than in Figure 1(a) and 1(c), also for ζ1 and ζ2. Figures 2 and 3
show that the behavior of the approximate solutions based on FFP, FFE and FFM, when the degree of
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the non-linear term is cubic and for different values of k and β. For the parameters γ and κ , we fixed
them in all computations. The remain parameters are the same as in Figure 1. Similarly, in Figures 4
and 5, the approximate solutions are plotted in the case of a non-linear with quadratic degree and for
different values of k and β. Finally in Figures 6 and 7, the approximate solutions are shown in the case
of non-linear with fractional order and for different values for k and β. For the Figures 2 and 3 which
the nonlinear is cubic, all the profiles are distinct. Similarly with Figures 6 and 7 when the nonlinear
is quadratic. From Figures 4 and 5, we can see in the case of fraction non-linear, the profiles of η1 and
η2 are very close to each other than the profiles of ζ1 and ζ2.
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Figure 1. Comparison between the numerical solutions (2.25)–(2.28) and numerical based on
finite difference methods for β = 1, k = 1, γ = 0.4, κ = 0.001, h = 0.01. (a) q = 2; (b) q =

1; (c) q = 1.8; (Green solid color: Numerical solutions (2.25)–(2.28); Red dashed color:
FDM).
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Figure 2. Graph of the numerical solutions with q = 2 for β = 0.8, k = 1, γ = 0.4, κ =

0.001, h = 0.01 (a) FFP; (b) FFE; (c) FFM; (Red color: η1; Blue color: ζ1; Green color: η2;
Cyan color: ζ2).
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Figure 3. Graph of the numerical solutions with q = 2 for β = 0.7, k = 0.8, γ = 0.4, κ =

0.001, h = 0.01 (a) FFP; (b) FFE; (c) FFM; (Red color: η1; Blue color: ζ1; Green color: η2;
Cyan color: ζ2).
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Figure 4. Graph of the numerical solutions with q = 1 for β = 0.8, k = 1, γ = 0.4, κ =

0.001, h = 0.01 (a) FFP; (b) FFE; (c) FFM; (Red color: η1; Blue color: ζ1; Green color: η2;
Cyan color: ζ2).
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Figure 5. Graph of the numerical solutions with q = 1 for β = 0.7, k = 0.8, γ = 0.4, κ =

0.001, h = 0.01 (a) FFP; (b) FFE; (c) FFM; (Red color: η1; Blue color: ζ1; Green color: η2;
Cyan color: ζ2).
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Figure 6. Graph of the numerical solutions with q = 1.8 for β = 0.8, k = 1, γ = 0.4, κ =

0.001, h = 0.01 (a) FFP; (b) FFE; (c) FFM; (Red color: η1; Blue color: ζ1; Green color: η2;
Cyan color: ζ2).
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Figure 7. Graph of the numerical solutions with q = 1.8 for β = 0.7, k = 0.8, γ = 0.4, κ =

0.001, h = 0.01 (a) FFP; (b) FFE; (c) FFM; (Red color: η1; Blue color: ζ1; Green color: η2;
Cyan color: ζ2).

6. Conclusions

In this paper, numerical solutions of the of the fractal-fractional reaction diffusion equations with
general nonlinear have been studied. We introduced the FFRDE in three instances of fractional
derivatives based on power, exponential, and Mittag-Leffler kernels. After that, we used the
fundamental fractional calculus with the help of Lagrange polynomial functions. We obtained the
iterative and approximate formulas in the three cases. We studied the effect of the non-linear term
order, in the case of cubic, quadratic, and fractional for different values of the fractal-fractional
derivative order. The accuracy of the numerical solutions in the classic case of the FFRDE was tested
in the case of power kernel, where all the numerical solutions in the classic case of integer order
coincide to each other, and the comparison result has excellent agreement . In all calculations was
used the Mathematica Program Package.
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