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Abstract: Nowadays, the problem of finding families of graphs for which one may ensure the
existence of a vertex-labeling and/or an edge-labeling based on a certain class of integers, constitutes
a challenge for researchers in both number and graph theory. In this paper, we focus on those vertex-
labelings whose induced multiplicative edge-labeling assigns hyper totient numbers to the edges of the
graph. In this way, we introduce and characterize the notions of hyper totient graph and restricted hyper
totient graph. In particular, we prove that every finite graph is a hyper totient graph and we determine
under which assumptions the following families of graphs constitute restricted hyper totient graphs:
complete graphs, star graphs, complete bipartite graphs, wheel graphs, cycles, paths, fan graphs and
friendship graphs.
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1. Introduction

In 2017, Khalid and Shahbaz [1] introduced the notions of totient, super totient and hyper totient
numbers (see also [2]). Recall in this regard that a positive integer t is said to be totient if the sum of
its co-prime residues is 2kt, with k ≥ 1. Further, a positive integer s is called super totient if its set of
co-prime residues can be divided into two nonempty disjoint subsets with equal sum. Finally, a positive
integer h is said to be hyper totient if its set of co-prime residues including h can be divided into two
nonempty disjoint subsets with equal sum. This paper focuses on the use of hyper totient numbers in
graph labeling.

The assignment of positive integers as labels of vertices and/or edges of a graph is a classic problem
in graph theory (see, for instance, [3–5]), with a broad range of applications in real daily life problems
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as networking, coding theory, digital design, database or management, amongst other areas. Nowadays,
the problem of finding and characterizing new classes of integers satisfying certain given conditions,
together with the problem of finding illustrative families of graphs for which a labeling based on such
classes exists, constitutes a challenge for researchers in both number and graph theory. In the recent
literature, one can find a wide amount of examples in this regard [6–9]. Of particular interest for the
topic of this paper, it is remarkable the recent studies of Shahbaz and Khalid [1,10] on graph labelings
based on super totient numbers, and the introduction of both concepts of restricted super totient labeling
and super totient index of graphs by Joshua and Wong [11].

The paper is organized as follows. In Section 2, we describe some preliminary concepts and results
on graph theory and hyper totient numbers that are used throughout the paper. Then, we introduce
in Section 3 the concept of (restricted) hyper totient graph labeling. In particular, we prove that every
finite graph is hyper totient. Finally, we investigate in Section 4 under which assumptions the following
families of graphs constitute restricted hyper totient graphs: complete graphs, star graphs, complete
bipartite graphs, wheel graphs, cycles, paths, fan graphs and friendship graphs.

2. Preliminaries

This section deals with some preliminary concepts, notations and results on graph theory and hyper
totient numbers that are used throughout the paper. For more details about these topics, we refer the
reader to the manuscripts [1, 10, 12].

A graph is any pair G = (V, E) formed by a set V of vertices and a set E of edges so that each edge
joins two vertices, which are then said to be adjacent. The number of vertices and the number of edges
of G constitute, respectively, the order and size of G. A graph is said to be finite if both its order and
size are finite. A subgraph of G is any graph H = (W, F) such that W ⊆ V and F ⊆ E. The set of
vertices that are adjacent to a given vertex v ∈ V constitutes its neighborhood NG(v). The number of
such vertices constitutes the degree dG(v) of such a vertex v. The minimum vertex degree of the graph
G is denoted δ(G).

From now on, let vw be the edge formed by two vertices v,w ∈ V . If v = w, then it is a loop. A
graph is called simple if it does not contain loops. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are said
to be isomorphic if there exists a bijection f : V1 → V2 such that uv ∈ E1 if and only if f (u) f (v) ∈ E2.

A finite graph is called complete if all its vertices are pairwise adjacent. The complete graph of
order n is denoted Kn. Further, the complete bipartite graph Km,n is the finite graph of order m + n
whose set of vertices may be partitioned into two subsets of respective sizes m and n so that every edge
of the graph contains a vertex of each one of these two sets. The complete bipartite graph K1,n, with
n > 2, is called a star graph. Its center is the unique vertex that is contained in all the edges.

A path between two distinct vertices v and w of a given finite graph G is any ordered sequence of
adjacent and pairwise distinct vertices 〈 v0 = v, v1, . . . , vn−2, vn−1 = w 〉 in G, with n > 2. If v = w, then
it constitutes a cycle. As such, paths and cycles are also finite graphs. From here on, let Pn and Cn

respectively denote the path and the cycle of order n. A graph is connected if there always exists a path
between any pair of vertices. If no subgraph of a connected graph G is a cycle, then G is called a tree.

Further, the wheel graph Wn results after joining all the vertices of the cycle Cn to a new vertex,
which is called the center of the wheel graph. The fan graph Fm,n is the graph that results after joining
each vertex of a set of m isolated vertices with all the vertices of the path Pn. Finally, the friendship

AIMS Mathematics Volume 6, Issue 4, 3761–3771.



3763

graph Fn is the graph that results after joining n copies of the cycle C3 with a common vertex. Figure 1
illustrates the different families of graphs that we have enumerated until now.

P4 ≡ C4 ≡ K4 ≡

K2,4 ≡ K1,4 ≡ W4 ≡

F1,4 ≡ F4 ≡

Figure 1. Illustrative examples of a path, a cycle, a complete graph, a complete bipartite
graph, a star graph, a wheel graph, a fan graph and a friendship graph.

A vertex-labeling of a graph G is any map f : V → N assigning |V | positive integers or labels
to the set of vertices V . It gives rise to the induced multiplicative edge-labeling f ∗ : E → N so that
f ∗(vw) = f (v) f (w), for all vw ∈ E. In 2017, Khalid and Shahbaz [1] defined a super totient graph as
any finite graph G for which there exists an injective vertex-labeling f (which is called super totient
labeling of G) whose induced multiplicative edge-labeling f ∗ assigns a super totient number to each
one of its edges. In particular, they proved that every finite graph is super totient. Much more recently,
Joshua and Wong [11] defined the super totient index of a finite graph G as the minimum cardinality
of the image of f ∗, for every super totient labeling f of G. In this paper, we focus on those injective
vertex-labelings f so that the image of the induced map f ∗ is only formed by hyper totient numbers.
To this end, the following result characterizing this type of numbers is of particular interest. It gathers
together the different results on this subject that are enumerated in [2].

Theorem 2.1. Every hyper totient number is a positive integer n > 2 satisfying exactly one of the
following two assertions.

a) It is an even integer distinct from 10 and 30.
b) It is a prime power pk, with k ≥ 1, where p is a prime such that p ≡ 3 (mod 4).

Proof. If n < 32, then the result follows readily from a simple computational check (see, for instance,
[2, Table 1]). Further, according to [2, Theorem 3.6], a positive integer n ≥ 32 is hyper totient if and
only if n(ϕ(n) + 2) is divisible by 4. Here, ϕ(n) denote the Euler’s totient number associated to n. That
is, the number of co-prime residues of n. The result holds from the following study of cases.

• If n is even, then n(ϕ(n) + 2) is divisible by 4, because ϕ(m) is also even, whatever the positive
integer m is. Hence, n is hyper totient.
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• If n is odd, then n is hyper totient if and only if ϕ(n) + 2 is divisible by 4. Equivalently, if
n =

∏m
i=1 pki

i is the prime factorization of n, then ϕ(n) =
∏m

i=1 pki−1
i (pi − 1) ≡ 2 (mod 4). Since n

is an odd integer, we have that pi is also odd, for all i ≤ m. Thus, ϕ(n) ≡ 2 (mod 4) if and only
if m = 1 in the previous prime factorization. (Otherwise, if m > 1, then ϕ(n) would be divisible
by 4.) Hence, n = pk, for some prime p ≡ 3 (mod 4). (Notice to this last end that it would be
ϕ(n) = pk−1(p − 1) ≡ 2 (mod 4), where p is odd.)

�

3. Hyper totient graphs

In this section, we show how hyper totient numbers may be implemented in graph labeling.
In this regard, we say that a finite graph G = (V, E) is an hyper totient graph if there exists an
injective vertex-labeling f of G whose induced multiplicative edge-labeling f ∗ assigns a hyper totient
number to each edge in E. In such a case, we say that the map f is an hyper totient labeling
(HTL) and that the graph G is an hyper totient graph (HTG). In order to illustrate these concepts,
Figure 2 shows an HTG of order five and size ten, whose vertices are uniquely labeled by the positive
integers of the subset {2, 3, 4, 6, 7} ⊂ N and whose set of edges is then labeled by the set of totient
numbers {4, 6, 8, 9, 12, 14, 16, 36, 49}. In order to distinguish both vertex- and edge-labelings, they are
respectively colored in blue and black. Notice the fact that this graph is not simple.

Figure 2. Example of hyper totient labeling of a hyper totient graph.

Similarly to the concept of super totient index, which was introduced by Joshua and Wong in [11],
we define the hyper totient index of the graph G as

h∗(G) := min {| f ∗(V)| : f is an HT L of G} .

Then, we say that an HTL f of the graph G is optimal if | f ∗(V)| = h∗(G). In an analogous way to the
result obtained by the mentioned authors in [11, Lemma 4.3], the following lemma holds.

Lemma 3.1. Let G be an HTG. There always exists an optimal HTL of G whose image is contained in
the set {3i : i ∈ N}.

Proof. Let f be an optimal HTL of the graph G and let V = {v1, . . . , vn} be its set of vertices. Then, let
{p1, . . . , pt} be a set of primes such that f ∗(vi) =

∏t
j=1 pai j

j , for all positive integers i ≤ n, where each ai j

is a non-negative integer. Let m = 1 + max{ai j : 1 ≤ i ≤ n, 1 ≤ j ≤ t}. Then, Theorem 2.1 implies that
the map g : V → {3i : i ∈ N} that is described so that g(vi) = 3

∑t
k=1 aikmk−1

constitutes an optimal HTL of
the graph G. �
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The previous result enables us to ensure the equivalence of super totient and hyper totient indices,
and the subsequent result concerning the fact that every finite graph is an HTG.

Theorem 3.2. Both the hyper totient index and the super totient index of any given finite graph
coincide.

Proof. Let f be an injective vertex-labeling of a graph G = (V, E). This map induces the additive
edge-labeling f + : E → N so that f +(vw) = f (v) + f (w), for all vw ∈ E. In addition, it is defined the
sum index of the graph G as

min
{∣∣∣ f +(V)

∣∣∣ : f is an injective vertex-labeling of G
}
.

As a simple consequence of Lemma 3.1, the hyper totient index of the graph G coincides with the sum
index of such a graph. The result follows simply from the fact that, according to [11, Theorem 4.5],
this last index also coincides with the super totient index of the graph G. �

Corollary 3.3. Every finite graph constitutes an HTG.

Proof. The result follows straighforwardly from Theorem 3.2 and the fact that every finite graph is a
super totient graph (see [1, Theorem 5.5]). �

4. Characterization of families of restricted hyper totient graphs

We say that a finite graph G = (V, E) is a restricted hyper totient graph (RHTG) if it is a simple HTG
whose set of vertices may be labeled by the subset of positive integers {1, . . . , |V |}. The corresponding
vertex-labeling is termed a restricted hyper totient labeling (RHTL) of G. Thus, for instance, Figure 3
illustrates a RHTL of order and size six, whose set of edges is labeled by the set of totient numbers
{3, 4, 6, 12}. Again, the vertex-labeling is colored in blue and the edge-labeling is colored in black.

Figure 3. Example of a restricted hyper totient graph.

Of particular interest for the development of our work is the RHTG having maximum size for each
given order. It is described as follows. Let<n be the RHTG of order n that is defined so that there is an
edge between the vertices labeled as i and j, with 1 ≤ i , j ≤ n, if and only if the product i j is a hyper
totient number. Figure 4 illustrates this graph <n, for all positive integers n ≤ 9. In order to avoid a
tangled mess of labels, we remove from now on the edge-labeling of the corresponding graphs.
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Figure 4. The RHTG<n, for all n ≤ 9.

The following result follows straightforwardly from the previous definitions.

Lemma 4.1. For n > 3, every spanning subgraph of<n is an RHTG.

Lemma 4.1 enables us to ensure that the finding of RHTGs is completely solved once one may
construct the graph <n, for every positive integer n. In this regard, and based on Theorem 2.1,
Algorithm 1 describes a simple computational method of time complexity O(n2) for determining this
graph<n.

Algorithm 1 Construction of the graph<n.
1: procedure R(n)
2: V(<n) = {1, . . . , n};
3: for i← 1, n do
4: for j← i + 1, n do
5: if i j satisfies either Condition (a) or Condition (b) in Theorem 2.1 then
6: E(<n)← E(<n) ∪ {i j};
7: end if
8: end for
9: end for

10: return<n = (V(<n), E(<n))
11: end procedure

In this section, we study under which assumptions the following types of graphs constitute RHTGs:
a complete graph Kn, a star graph K1,n, a complete bipartite graph Km,n, a wheel graph Wn, a cycle Cn, a
path Pn, a fan graph F1,n and a friendship graph Fn. Notice that, according to Lemma 4.1, any subgraph
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of any of these types of graphs satisfying the mentioned assumptions constitutes also an RHTG. Firstly,
we focus on the complete graph Kn.

Proposition 4.2. Let n be a positive integer. Then, the complete graph Kn is an RHTG if and only if
n = 1.

Proof. The case n = 1 is trivial. Further, the case n ≥ 2 follows straightforwardly from the fact that
the vertices labeled as 1 and 2 must be adjacent, but the induced edge label 2 is not a hyper totient
number. �

Proposition 4.3. Let n > 2 be a positive integer. Then, the star graph K1,n is a spanning subgraph of
<n+1. As a consequence, every star graph constitutes an RHTG.

Proof. According to Theorem 2.1, every multiple of 4 is a hyper totient number. Hence, the spanning
subgraph of<n+1 having as edges those ones containing the vertex labeled as 4 constitutes a star graph
K1,n. This vertex corresponds indeed to the center of the star graph. The consequence follows readily
from Lemma 4.1. �

Theorem 4.4. Let m and n be two positive integers such that 2 ≤ m ≤ n. The complete bipartite graph
Km,n is an RHTG if and only one of the following assertions hold.

a) m = n = 2.
b) m = 2 and n ≥ 6.
c) 3 ≤ m ≤ 11 and n ≥ m + 6.
d) m ≥ 12 and n ≥ m + 8.

Proof. Figure 5 illustrates the case m = n = 2. Thus, let us suppose the existence of two positive
integers m ≥ 2 and n ≥ 2 such that m + n > 4 and Km,n is an RHTG. Let vi denote the vertex that is
labeled as i ∈ {1, . . . ,m + n} in the graph<m+n. Since 10 is not a hyper totient number, the two vertices
v2 and v5 must belong to the same part of Km,n. Let P denote such a part. Then,

NKm,n(v2) = NKm,n(v5) = Km,n \ P ⊆ N<m+n(v2) ∩ N<m+n(v5).

From Theorem 2.1, we have that

N<m+n(v5) = {v4} ∪

{
v2k : 4 ≤ k ≤

m + n
2

}
⊂ N<m+n(v2).

In particular, since 2 ≤ m ≤ n, it must be m + n ≥ 8 and n = |P|. Moreover, Theorem 2.1 enables us
to ensure that every vertex in the set N<m+n(v5), except for v10 (if m + n ≥ 10) and v30 (if m + n ≥ 30),
is adjacent to any other vertex in the set <m+n. Notice to this end that all the indices of such vertices
are even integers and that both vertices v10 and v30 are not adjacent to v1 ∈ P. Due to this last aspect, it
must be {v10, v30} ⊂ P. As a consequence,

m + n ≥


8, if m = 2,
2(m + 3), if 3 ≤ m ≤ 11,
2(m + 4), if m ≥ 12.
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Let αm,n denote the previous lower bound, for the positive integers m and n under consideration. Then,
in order to get an RHTL of the graph Km,n, it is enough to take

Km,n \ P =

{
v2k : 2 ≤ k ≤

αm+n

2

}
\ {v6, v10, v30}.

�

Figure 5. RHTL of the complete bipartite graph K2,2.

Figure 6 illustrates an RHTL for the complete bipartite graph K4,13.

Figure 6. RHTL of the complete bipartite graph K4,13.

Theorem 4.5. Every tree containing at least 32 vertices is an RHTG.

Proof. The result follows straightforwardly from Lemma 4.1, Proposition 4.3 and Theorem 4.4 once it
is noticed that every tree is a bipartite graph. �

Theorem 4.6. The wheel graph Wn is an RHTG if and only if n ≥ 9.

Proof. Throughout this proof, let vi denote the vertex labeled as i ∈ N in the graph under consideration.
Notice in Figure 4 that δ(<n) ≤ 2, for all positive integer n ≤ 9. To this end, observe in the mentioned
figure the vertex v1, if 1 ≤ n ≤ 5, and the vertex v5, if 6 ≤ n ≤ 9. Then, since δ(Wn) = 3, for all positive
integers n, we have from Lemma 4.1 that the wheel graph Wn is not an RHTG, if n < 9.

Figure 7. RHTL of the wheel graph W9.
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Now, Figure 7 illustrates an RHTL of the wheel graph W9. If we replace the edge v10v6 in that figure
by the path 〈 v10, v11, . . . , vn+1, v6 〉, so that all the vertices are joined with the center v4 by an edge, then
Theorem 2.1 implies that the resulting vertex-labeling is an RHTL of the wheel graph Wn. �

Theorem 4.7. Let n > 2 be a positive integer. Then, the cycle graph Cn is an RHTG if and only if n = 4
or n ≥ 8.

Proof. Again, let vi denote the vertex labeled as i ∈ N in the graph under consideration. Notice in
Figure 4 that δ(<n) ≤ 1, for all positive integer n ≤ 7, except for n = 4. To this end, observe in the
mentioned figure the vertex v1, if 1 ≤ n ≤ 3, and the vertex v5, if 5 ≤ n ≤ 7. Then, since δ(Cn) = 2, for
all positive integers n, we have from Lemma 4.1 that the cycle Cn is not an RHTG, if n ∈ {3, 5, 6, 7}.

Now, Figures 5 and 8 illustrate, respectively, RHTLs of the cycles C4, which is isomorphic to the
complete bipartite graph K2,2, and C8. Finally, if n ≥ 9, then the result follows simply from Lemma 4.1
and Theorem 4.6, once it is noticed that the cycle Cn is a subgraph of the wheel graph Wn+1. �

Figure 8. RHTL of the cycle C8.

Theorem 4.8. Every path is an RHTG.

Proof. Firstly, notice that the path P3 is isomorphic to the graph<3, and hence, it constitutes an RHTG.
In addition, if n = 4 or n ≥ 8, then the result follows simply from Lemma 4.1 and Theorem 4.7, once
it is noticed that the path Pn is a subgraph of the cycle Cn. Finally, the case n ∈ {5, 6, 7} is illustrated
by the RHTL of the path P7 in Figure 9, which contains implicitly the RHTLs of both paths P5 and P6

as subgraphs. �

Figure 9. RHTL of the path P7.

Theorem 4.9. Let n > 2 be a positive integer. Then, the fan graph F1,n is an RHTG if and only if n ≥ 9.

Proof. Since δ(F1,n) = 2, for all positive integers n > 2, Lemma 4.1 enables us to ensure that the fan
graph F1,n is not an RHTG, for all n ∈ {4, 5, 6}, because δ(<n+1) = 1 in such cases. Further, the case
n ≥ 9 follows simply from Lemma 4.1 and Theorem 4.6, once it is noticed that the fan graph F1,n is a
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subgraph of the wheel graph Wn. Finally, the case n ∈ {3, 7, 8} is illustrated by the RHTLs of the fan
graphs F1,3 and F1,8 in Figure 10. Notice to this end that the RHTL of the fan graph F1,7 is implicitly
indicated in that one of the fan graph F1,8, of which the former constitutes a subgraph. �

Figure 10. RHTLs of the fan graphs F1,3 and F1,8.

Theorem 4.10. The friendship graph Fn is an RHTG if and only if n ≥ 4.

Proof. Since the order of the friendship graph Fn is 2n + 1 and δ(<n) = 1, for all n ∈ {3, 5, 7}, then
Lemma 4.1 implies that the friendship graph Fn is not an RHTG, for all n ≤ 3. Further, the case n ≥ 4
follows simply from Lemma 4.1 and Theorem 4.6, once it is noticed that the friendship graph Fn is a
subgraph of the wheel graph Wm, for all m ≥ 2n. �

5. Conclusion

In this paper, we have introduced the notion of hyper totient graph as any finite graph G = (V, E)
admitting an injective vertex-labeling f : V → N so that its induced multiplicative edge-labeling
assigns a hyper totient number to each edge. We have proved in particular that every finite graph is
hyper totient. Furthermore, we have introduced the concept of restricted hyper totient graph as a hyper
totient graph of order n whose vertices are labeled by the elements of the set {1, . . . , n}. Then, we have
determined under which assumptions some well-known families of graphs are restricted hyper totient.

Of course, the current manuscript constitutes a starting point for the study of hyper totient graphs,
but a much deeper study is required in order to characterize all the structural properties of this type of
graphs. In this regard, we propose as further work the study of locating, dominating and independent
sets within a given RHTG, together with their corresponding locating, dominating and independent
numbers. We also propose the following open questions for further work on this subject.

Problem 5.1. In Theorem 4.5, we have determined a lower bound for the number of vertices of a tree
in order to ensure that the latter is an RHTG. But, what about trees of smaller orders? A similar
reasoning to that one developed by Joshua and Wong in [11, Theorem 3.9] may be done in this regard.

Problem 5.2. In 2001, Beineke and Hedge [13] defined a strongly multiplicative graph as a finite graph
of order n for which there exists an injective vertex-labeling f : V → {1, . . . , n} so that the induced
multiplicative edge-coloring f ∗ is injective. In a similar way, we may introduce here the notion of
strongly hyper totient graph (SHTG) as an RHTG having distinct all the hyper totient numbers that are
used for labeling its edges. Notice in this regard that the majority of RHTGs appearing in the figures
of this paper are not SHTGs. The study of this type of RHTGs is established as further work.

Problem 5.3. Under which assumptions is the condition of being RHTG preserved by the different
graph products existing in the literature? A similar question may be dealt with concerning the just
introduced notion of SHTG.

AIMS Mathematics Volume 6, Issue 4, 3761–3771.



3771

Acknowledgments

Falcón’s work is partially supported by the research project FQM-016 from Junta de Andalucı́a. In
addition, the authors want to express their gratitude to the anonymous referees for the comprehensive
reading of the paper and their pertinent comments and suggestions, which helped improve the
manuscript.

Conflict of interest

All authors are here with confirm that there are no competing interests between them.

References

1. M. Khalid, A. Shahbaz, A novel labeling algorithm on several classes of graphs, Punjab Univ. J.
Math., 49 (2017), 23–35.

2. A. Shahbaz, M. Khalid, New numbers on Euler’s totient function with application, J. Math.
Extension, 14 (2019), 61–83.

3. A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs: Int. Symp., Rome,
1966, (1967), 349–355.

4. G. S. Bloom, S. W. Golomb, Application of numbered undirected graphs, P. IEEE, 65 (1977),
562–570.

5. J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb., 6 (2009), 1–219.
6. H. V. Dinh, M. Rosenfeld, A new labeling of C2n proves that K4 + M6n decomposes K6n + 4, Ars

Comb., 4 (2018), 255–267.
7. M. Hussain, A. Tabraiz, Super d-anti-magic labeling of subdivided kC5, Turk. J. Math., 39 (2015),

773–783.
8. M. Seoud, S. Salman, Some results and examples on difference cordial graphs, Turk. J. Math., 40

(2016), 417–427.
9. M. Seoud, M. Salim, Further results on edge-odd graceful graphs, Turk. J. Math., 40 (2016),

647–656.
10. M. Khalid, A. Shahbaz, On super totient numbers with applications and algorithms to graph

labeling, Ars Comb., 143 (2019), 29–37.
11. H. Joshua, W. H. T. Wong, On super totient numbers and super totient labelings of graphs, Discrete

Math., 343 (2020), 111670.
12. F. Harary, Graph Theory, Reading, Massachusetts: Addison Wesley, 1969.
13. L. W. Beineke, S. M. Hegde, Strongly multiplicative graphs, Discuss. Math. Graph T., 21 (2001),

63–75.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 4, 3761–3771.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Hyper totient graphs
	Characterization of families of restricted hyper totient graphs
	Conclusion

