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1. Introduction

In an ecosystem, there exist universally competitions between two species, which is very important.
And they tend to interact with each other so that there are some relationships such as predation or
symbiosis among them (i.e. coupled systems) (see [9, 39]). In addition, the delay and ambiguity may
appear because of different reasons such as physical properties of equipment used in the system, signal
transmission or measurement of system variables (see [14]), so we need to take them into account.
Thus, in this paper, motivated by the work of Dong et al. [13] and Fatullayev et al. [14], we come up
with the following problem of fuzzy fractional implicit delay differential coupled systems (FFIDDCs):

cDαx(t) = m1(t)y(t − τ) + F̃1 (t, y(t),c Dαx(t)) , t > 0,
cDβy(t) = m2(t)x(t − τ) + F̃2

(
t, x(t),c Dβy(t)

)
, t > 0,

x(t) = Φ̃1(t), −τ ≤ t ≤ 0,

y(t) = Φ̃2(t), −τ ≤ t ≤ 0,

(1.1)

and explore existence and uniqueness result of solution for the FFIDDC (1.1), where cDα f (t) denotes
α-order Caputo fractional derivative of function f (t) ∈ C1

α for 0 < α < 1 (see [22]), τ is the value of
time delay, Φ̃1(t) and Φ̃2(t) are triangular fuzzy functions (TFFs) defined on [−τ, 0], F̃1(t, y(t),c Dαx(t))
and F̃2(t, x(t),c Dβy(t)) are also TFFs defined on (0,∞)×R×R, and m1(t) and m2(t) are continuous crisp
functions. The concept of TFFs used in this paper was first proposed by Gasilov et al. [17], then it has
been widely employed [7, 16, 27]. Unlike in the past, Gasilov et al. [17] thought that a fuzzy function
is a fuzzy bunch of real functions rather than a fuzzy number-valued function. Each of these real
functions has a certain membership degree. The new concept of TFFs broadened the way (see [14]),
and so we deal with fuzzy functions and fuzzy problems.

Remark 1.1. In this paper, we consider the problem with Caputo fractional derivative, which is
based on Riemann-Liouville fractional derivative [22]. We note that for temporal variable, the
Caputo fractional derivative has been widely recognized in real application. For example, the Caputo
fractional derivative of a constant is 0, but in the case of finite number at the lower limit of the
interval, the Riemann-Liouville fractional derivative of a constant is not equal to 0. And the initial
conditions given by Riemann-Liouville method cannot be explained physically. For more related work,
see [28, 34]. However, can one discuss the existence and uniqueness results for the solutions of the
FFIDDC (1.1) with Riemann-Liouville fractional derivative or Hadamard fractional derivative? These
are usually presented as important and significative problems in future research.

Some special cases of the FFIDDC (1.1) are listed as follows:
(i) If τ = 0, 0 ≤ t ≤ 1 and α j = 1, where α j is the membership degrees (MDs) of F̃ j for j = 1, 2, the
FFIDDC (1.1) can be rewritten as the problem investigated by Dong et al. [13]:

cDαx(t) = f (t, y(t),c Dαx(t)) , 0 ≤ t ≤ 1,
cDβy(t) = g

(
t, x(t),c Dβy(t)

)
, 0 ≤ t ≤ 1,

x(0) = x(0),
y(0) = y(0).
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Making full use of fixed point theorem and the vector form of Gronwall inequality, Dong et al. [13]
gained existence and uniqueness of solution to the initial value problem (IVP), and discussed the
estimation of the solution.
(ii) If α = β = 1, the FFIDDC (1.1) reduces to the following fuzzy implicit delay differential coupled
systems: 

x′(t) = m1(t)y(t − τ) + F̃1
(
t, y(t), x′(t)

)
, t > 0,

y′(t) = m2(t)x(t − τ) + F̃2
(
t, x(t), y′(t)

)
, t > 0,

x(t) = Φ̃1(t), −τ ≤ t ≤ 0,

y(t) = Φ̃2(t), −τ ≤ t ≤ 0,

(1.2)

which is brand new and is worth studying in the future.
We note that the system (1.2) is an extension of the linear inhomogeneous fuzzy delay differential

equations (FDDEs) considered by Fatullayev et al. [14]:x′(t) = n(t)x(t) + m(t)x(t − τ) + F̃(t), t > 0,

x(t) = Φ̃(t), −τ ≤ t ≤ 0.

The authors presented a method to represent the solution of FDDE as a fuzzy set of real functions, and
proved existence and uniqueness of solution for FDDE involving TFFs. Furthermore, Fatullayev et
al. [14] showed clearly that the proposed method can be extended to the system of FDDEs by using the
research results of Gasilov and Amrahov [15]. The purpose of this paper is to discuss existence and
uniqueness of solution for the FFIDDC (1.1).

Comparing with the simpler integer-order differential equations, fractional differential equations
(FDEs) have more wide applications and play an important role in engineering, physics, finance and
other fields. Nowadays, FDEs have been used to more accurately describe the dynamics of many
systems when several complex phenomena in numerous seemingly diverse and widespread fields of
science and engineering is modeled and investigated. See, for example, [3,6,22,28,34] and references
therein. In addition, to study ecosystem problems in biology, one often discovers that an ecosystem
does not have only a single species. That is to say, there must be multiple species, so there exists
competition among them and coupling is taken into account (see [9, 39]). Coupling relationship refers
to the interaction and mutual influence between two or more objects. In fact, the coupled systems of
FDEs have been studied by multitudinous researchers. See, for example, [2, 38] and the references
cited therein. Recently, by applying standard fixed point theorems for multivalued maps, existence of
solutions for coupled systems of fractional differential inclusions with coupled boundary conditions
was obtained by Ahmad et al. [5].

In science and engineering and other practical applications, time delay usually occurs on account of
manual measurement, signal transmission, aging of equipments and so on (see [30]). Thereby, in recent
years, the scholars have been interested in solving the fractional differential equations with time delay
(DFDEs) (see, for instance, [30,35] and the references therein). Brzdek and Eghbali [10] considered the
Ulam’s stability of DFDEs and also proved that under some appropriate assumptions, each approximate
solution of DFDEs is close to its only exact solution. In order to acquire existence of solutions for a time
dependent delay differential equation with constant delay, Tabassum et al. [33] extended the previous
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approaches about fuzzy weakly contraction mapping principle. Of course, there are not just one type
of FDEs, whether they are linear or nonlinear. And the common ones are Caputo type, Riemann-
Liouville type and Hadamard type (see [11, 21, 36]). Moreover, the delay is not necessarily finite, it
can be also infinite. Some researchers dedicated themselves to the study of FDEs with infinite delay.
Banach fixed point theorem and the nonlinear alternative of Leray-Schauder type initiated by Granas
and Dugundji [18], had been utilized by Benchohra et al. [8] to investigate existence results of FDEs
with infinite delay.

Certainly, in actual application, there are not only time delay, but also exists the possibility of
ambiguity. Thus, one needs to take the fuzzy into account, and then the fuzzy fractional differential
equations (FFDEs) are proposed. Agarwal et al. [1] put forward a notion of fuzzy Riemann-Liouville
differentiability based on Hukuhara differentiability, which can be employed to solve the IVPs of
FFDEs. After that, many investigators have extended the concepts and expression forms of FFDEs,
and bent themselves to obtain existence and uniqueness of solution for FFDEs. These theories are
also well applied in real life. See, for example, [24, 25, 29] and the references therein. As Fatullayev
et al. [14] pointed out, “the types of fuzzy items are more important than their numbers when a fuzzy
problem needs to be solved”. In fact, we can easily deal with n-th order homogeneous linear differential
equations with fuzzy initial values (i.e. the problem with n fuzzy inputs) by using Zadeh’s extension
principle. But if a fuzzy forcing function appears in the problem, even for the delay differential equation
of first order (i.e. with 2 fuzzy inputs), it will be indistinct how to use the principle.

It is well know that explicit equations are special cases of implicit equations, and the implicit
equations are more general (see [12]). Cubiotti and Yao [12] introduced and studied a class of
implicit second-order ordinary differential equations with known endpoint values. They also proved
existence results under two conditions. However, as Hoa and Vu [21] stated briefly, “to the best of our
knowledge, there exists no literature devoted to the uncertain fractional implicit differential equation in
the fuzzy setting with the concepts of Riemann-Liouville, Caputo, Hadamard fractional derivatives”.
And then, Hoa and Vu [21] proposed some existence results for solutions of the fuzzy fractional implicit
differential equations associated with the fuzzy Caputo-type, fuzzy Riemann-Liouville-type and fuzzy
Hadamard-type concepts of fractional derivative, respectively. Very recently, Son and Dong [31]
proposed global existence and some properties of solutions for the nonlocal problem of implicit fuzzy
fractional differential systems. For more work on various forms of implicit FDE models, one can refer
to [19, 20, 26] and the references therein.

The major methods of this paper are as follows:
(i) We generalize TFF (Definition 2.1 of [17]) to a group of TFFs (see Example 2.1).
(ii) To solve the FFIDDC (1.1), we use the method of steps proposed by Fatullayev et al. [14]. Firstly,
we figure out the solution of the FFIDDC (1.1) on interval [0, τ]. Afterwards, we similarly find the
solution on interval [τ, 2τ]. And as we go along, eventually, the solution on interval [0,+∞) can be
obtained.
(iii) Because of the fuzzy coupled fractional initial value problem with delays (FCFDIVP) (3.1), which
is the identical transformation of the FFIDDC (1.1), is linear, the superposition principle can be used
to work out it. As a consequence, we can decompose the FCFDIVP (3.1) into three subproblems
(3.4)-(3.6) and solve them separately.

The remainder of this paper is organized as follows. The necessary preliminaries about the fuzzy
theory that we are going to use are listed in Section 2. In Section 3, we introduce the concept of
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solution for the FFIDDC (1.1) and describe how to get it. Ultimately, a solution algorithm is proposed.
In Section 4, we present an example to show that the hypotheses in all theorems can be met. Finally, in
Section 5, we summarize the research results of this paper, and provide the content that one can study
in the future.

2. Preliminaries

Based on the work of Zadeh [37], we define a fuzzy set Ã as a pair of the universal set U and the
membership function (MF) µ : U → [0, 1]. The MF of a fuzzy set Ã can be denoted as µÃ. For each
x ∈ U, the numerical value µÃ(x) is called the MD of x in Ã. The crisp set supp(Ã) = {x ∈ U | µÃ(x) >
0} is called the support of Ã.

After that, let U be the set of real numbers R, and a, c and b be real numbers which meet a ≤ c ≤ b.
Then the set ũ with MF

µ(x) =



x − a
c − a

, a < x < c,

1, x = c,
b − x
b − c

, c < x < b,

0, otherwise

is called a triangular fuzzy number (TFN) and we denote it as ũ = (a, c, b). On the grounds of the
geometric interpretation, the number c is called the vertex of ũ, we denote u = a and u = b to represent
the left and the right end-points of ũ, respectively. Frequently, we express ũ = (a, c, b) as ũ = ucr + ũun.
Here, ucr = c is the crisp part and ũun = (a − c, 0, b − c) is the uncertain part of ũ.

It is also useful to represent the fuzzy sets though their α-cuts. For each α ∈ (0, 1], the crisp set
Aα = {x ∈ U | µÃ(x) ≥ α} is called the α-cut of Ã. For α = 0, the A0 = closure(supp(Ã)).

For the TFN ũ = (a, c, b), the α-cuts are intervals uα = [uα, uα], where uα = a + α(c − a) and
uα = b +α(c−b). These formulas can be rewritten as uα = c + (1−α)(a− c) and uα = c + (1−α)(b− c).
Therefore, uα = [uα, uα] = c + (1 − α)[a − c, b − c]. From here we can see that an α-cut is homothetic
to [a, b] (which is the 0-cut) with center c and with ratio (1 − α).

There are different notions about the fuzzy functions. In this study, we use the concept of the fuzzy
function which was brought forward by Gasilov et al. [17], namely, fuzzy function is a bunch of fuzzy
real functions. As a value F̃(t) of a fuzzy bunch F̃ at time t, we understand the fuzzy set, which
elements are the values of the real functions at t, with the higher MD of the corresponding functions.
Mathematically,

µF̃(t)(x) = α ⇔ ∃y(·) :
(
µF̃(y) = α ∧ y(t) = x

)
∧ ∀z(·) :

(
µF̃(z) > α→ z(t) , x

)
,

where “∧” and “→” are the logical conjunction and implication symbols, respectively.

Definition 2.1. ( [17]) Let U be set of continuous functions defined on an interval I, and
Fa(·), Fc(·), Fb(·) ∈ U. We call the fuzzy subset F̃ of U, determined by the MF as follows:

µF̃(y(·)) =


α, y = Fa + α(Fc − Fa) and 0 < α ≤ 1,
α, y = Fb + α(Fc − Fb) and 0 < α ≤ 1,
0, otherwise,

AIMS Mathematics Volume 6, Issue 4, 3741–3760.



3746

as TFF and denote it as F̃ = 〈Fa, Fc, Fb〉.

According to this definition, a TFF is a fuzzy set (or, fuzzy bunch) of real functions. Among them
only two functions have the MD α: the functions y1 = Fa + α(Fc − Fa) and y2 = Fb + α(Fc − Fb).

Referring to the example of TFF given by Gasilov et al. [16], we give the following example of a
group of TFFs.

Example 2.1. In Figure 1, we depict a group of TFFs asF̃1 = 〈F1a, F1c, F1b〉

F̃2 = 〈F2a, F2c, F2b〉

where

F1a(t) = −t2 + 5 t − 4 (MD is 0, the black curve that is at bottom on [0, 1] and at upper on [1, 2]);
F1c(t) = 0.5 t2 − 1.5 t + 1 (MD is 1, the black dashed line);
F1b(t) = t2 − 5 t + 4 (MD is 0, the black curve that is at upper on [0, 1] and at bottom on [1, 2]);
F2a(t) = −2 t2 + 4 t − 2 (MD is 0, the blue curve that is at bottom on [0, 2]);
F2c(t) = t2 − 2 t + 1 (MD is 1, the blue dashed line);
F2b(t) = 2 t2 − 4 t + 2 (MD is 0, the blue curve that is at upper on [0, 2]).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-4

-3

-2

-1

0

1

2

3

4

Figure 1. A group of TFFs.

The TFF F̃1 with MDs 0.7 and 0.3 are depicted by red dotted and dashed-dotted lines, respectively.
And the TFF F̃2 with MDs 0.7 and 0.3 are described by cyan dotted and dashed-dotted lines which are
marked, respectively.

The value of a TFF at a time t ∈ I can be expressed by the following formula:

F̃(t) = (min {Fa(t), Fc(t), Fb(t)} , Fc(t),max {Fa(t), Fc(t), Fb(t)}) .

We can easily find out that this value is a TFN, and a TFF F̃ = 〈Fa, Fb, Fc〉 is not a fuzzy number-
valued function. Actually, it is a fuzzy subset of the universe of continuous functions. Each element of
this fuzzy subset is a real function with a certain MD.
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If Fa(t) ≤ Fc(t) ≤ Fb(t) for all t ∈ I, then the TFF F̃ = 〈Fa, Fc, Fb〉 is regular TFF on I, and we
have F̃(t) = (Fa(t), Fc(t), Fb(t)). Further, when a TFF F̃ is not regular, we call it as non-regular TFF. It
means that for a non-regular TFF, in general, F̃(t) , (Fa(t), Fc(t), Fb(t)). And the graphs of functions
Fa, Fc and Fb can interchanged as t goes. In Figure 1, the TFFs F̃1 and F̃2 are non-regular and regular
on [0, 2], respectively. Without loss of generality, no matter regular TFFs or non-regular TFFs, main
results and the algorithm in this paper are all valid. In the sequel, we assume that TTFs are regular.

3. Main results and an algorithm

Now, we will consider the FFIDDC (1.1) in this section. With respect to the FFIDDC (1.1), we can
solve it by using the method of steps introduced by Fatullayev et al. [14].

First of all, we deal with the FFIDDC (1.1) on interval [0, τ]. Because x(t−τ) = Φ̃1(t−τ), y(t−τ) =

Φ̃2(t − τ) for t ∈ [0, τ], the FFIDDC (1.1) is equivalent to FCFDIVP as follows:

cDαx(t) = G̃1 (t, y(t),c Dαx(t)) ,
cDβy(t) = G̃2

(
t, x(t),c Dβy(t)

)
,

x(0) = Φ̃1(0),

y(0) = Φ̃2(0),

(3.1)

where

G̃1 (t, y(t),c Dαx(t)) = m1(t)Φ̃2(t − τ) + F̃1 (t, y(t),c Dαx(t)) ,
G̃2

(
t, x(t),c Dβy(t)

)
= m2(t)Φ̃1(t − τ) + F̃2

(
t, x(t),c Dβy(t)

)
.

Thus, we transform the FCFDIVP (3.1) in matrix form:D · Z(t) = G̃(·),

Z(0) = Φ̃(0).
(3.2)

Here, Z(t) =

(
x(t)
y(t)

)
, D =

(
cDα 0

0 cDβ

)
, G̃(·) =

(
G̃1(t, y(t),c Dαx(t))
G̃2(t, x(t),c Dβy(t))

)
and Φ̃(0) =

(
Φ̃1(0)
Φ̃2(0)

)
.

Definition 3.1. For the problem (3.2), the fuzzy set Z̃ with MF

µZ̃ (Z(·)) = min
{
µΦ̃ (φ(0)) , µG̃ (D · Z(t))

}
(3.3)

is called to be a solution of the problem (3.2), which is also a solution to the FCFDIVP (3.1), where
φ(0) = Z(0).

As for the formula (3.3), let Z(t) be a functional matrix. We determine φ(0) = Z(0) for t ∈ [0, τ]
and calculate µ1 , µΦ̃(φ(0)). After that, we compute g(·) = D · Z(t) on interval [0, τ] and determine
µ2 , µG̃(g(·)). Finally, we calculate the MD µ as µ = min{µ1, µ2}. We assign the number µ as the MD
of Z(t). We define the set of all functional matrices such as Z(t) with their MDs µ as the fuzzy solution
Z̃.
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According to Definition 3.1, the solution Z̃ is a fuzzy bunch of real functional matrices, which
consists of functional matrices such as Z(t). If a functional matrix Z(t) satisfiesD · Z(t) = g(·),

Z(0) = φ(0)

for some functional matrices g ∈ supp(G̃) and φ(0) ∈ supp(Φ̃(0)), then it has a positive MD.
Let us represent G̃1 = g1cr + g̃1 (crisp part + uncertainty), where g1cr = G1c and g̃1 = 〈g1a, 0, g1b〉 =

〈G1a −G1c, 0,G1b −G1c〉. Similarly, G̃2 = g2cr + g̃2, here g2cr = G2c and g̃2 = 〈g2a, 0, g2b〉.
Assume that Φ̃1 and Φ̃2 are regular TFFs. Then Φ̃1(0) and Φ̃2(0) are TFNs. Further, Φ̃1(0) =

φ1cr(0) + φ̃1(0), here φ1cr(0) = Φ1c(0) and φ̃1(0) = (φ1a(0), 0, φ1b(0)) = (Φ1a(0) − Φ1c(0), 0,Φ1b(0) −
Φ1c(0)). In the same way, Φ̃2(0) = φ2cr(0) + φ̃2(0), here φ2cr(0) = Φ2c(0) and φ̃2(0) = (φ2a(0), 0, φ2b(0)).

Since the FCFDIVP (3.1) is linear, we can solve it using the superposition principle. This follows
that in order to find the solution of the FCFDIVP (3.1), we can separately consider the following
subproblems:
(1) The associated crisp problem:

cDαx(t) = g1cr (t, y(t),c Dαx(t)) ,
cDβy(t) = g2cr

(
t, x(t),c Dβy(t)

)
,

x(0) = φ1cr(0),
y(0) = φ2cr(0).

(3.4)

(2) The problem with initial TFFs: 

cDαx(t) = 0,
cDβy(t) = 0,

x(0) = φ̃1(0),

y(0) = φ̃2(0).

(3.5)

(3) The problem with fuzzy source functions and zero initial functions:

cDαx(t) = g̃1 (t, y(t),c Dαx(t)) ,
cDβy(t) = g̃2

(
t, x(t),c Dβy(t)

)
,

x(0) = 0,
y(0) = 0.

(3.6)

By solving the above three subproblems (3.4)-(3.6), the solution of the FFIDDC (1.1) on interval
[0, τ] can be obtained. Similarly, at the next step, we can find the solution on interval [τ, 2τ]. Hence, we
can conclude that the solution of the FFIDDC (1.1) exists for t ∈ [0,∞) using the method of steps [14].

In the sequel, we make clear how to solve each of these three subproblems (3.4)-(3.6).
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3.1. The associated crisp problem

To solve the problem (3.4), we provide the following theorem.

Theorem 3.1. For the problem (3.4), we can get a unique solution to it, which is denoted as Zcr(t) =(
xcr(t)
ycr(t)

)
, when the following conditions fulfill:

(H1) g1cr, g2cr : [0, τ] × R × R→ R are continuous.
(H2) There exist constants Ki, Li ∈ (0, 1) for i = 1, 2 such that

0 < max
{

K2 +
K1

Γ(β + 1)
, L2 +

L1

Γ(α + 1)

}
< 1

and for each x1, x2, y1, y2 ∈ R,

| g1cr(t, x1, y1) − g1cr(t, x2, y2) |≤ K1 | x1 − x2 | +K2 | y1 − y2 |,

| g2cr(t, x1, y1) − g2cr(t, x2, y2) |≤ L1 | x1 − x2 | +L2 | y1 − y2 | .

Proof. The proof is similar to Theorem 3.1 of Dong et al. [13] and it is omitted. �

3.2. The problem with initial TFFs

In this subsection, we will give solvability of the problem (3.5) as follows.

Theorem 3.2. Consider the problem (3.5), where φ̃1(0) = (φ1a(0), 0, φ1b(0)), φ̃2(0) = (φ2a(0), 0, φ2b(0)).

If Za(t) =

(
xa(t)
ya(t)

)
and Zb(t) =

(
xb(t)
yb(t)

)
are solutions of the problem


cDαx(t) = 0,
cDβy(t) = 0,
x(0) = φ1(0),
y(0) = φ2(0)

(3.7)

for
(
φ1(0)
φ2(0)

)
=

(
φ1a(0)
φ2a(0)

)
and

(
φ1(0)
φ2(0)

)
=

(
φ1b(0)
φ2b(0)

)
, respectively, then the problem (3.5) has a unique

solution Z̃φ, which is a TFF matrix given by

Z̃φ = 〈Za, 0,Zb〉. (3.8)

Proof. On the one hand, according to Definition 3.1, it is easy for us to know that each Z(t) with

non-zero MD from the bunch Z̃φ is a solution of the problem (3.7) for some
(
φ1(0)
φ2(0)

)
from

(
φ̃1(0)
φ̃2(0)

)
.

On the other hand, in terms of Definition 2.1, the bunch φ̃1 = 〈φ1a, 0, φ1b〉 consists of functions kφ1a

and kφ1b ([0, 1] 3 k = 1 − α) owing to φ1c = 0. And the bunch φ̃2 = 〈φ2a, 0, φ2b〉 is similar to the former.
Moreover, if a Z(t) is a solution of the problem (3.7), then kZ(t) is a solution of the same equation

with
(

kφ1(0)
kφ2(0)

)
taken instead of

(
φ1(0)
φ2(0)

)
.

From the above reasoning we can get the conclusion that the bunch Z̃φ consists of kZa and kZb.
Therefore, the bunch Z̃φ is a TFF matrix determined to be Z̃φ = 〈Za, 0,Zb〉. �
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Actually, we can get the solutions Za(t) =

(
φ1a(0)
φ2a(0)

)
and Zb(t) =

(
φ1b(0)
φ2b(0)

)
.

We can express the value of the TFF matrix Z̃φ (3.8) at a time t by the formula Z̃φ(t) =

(min{Za(t), 0,Zb(t)}, 0,max{Za(t), 0,Zb(t)}). Note that this value is a matrix of TFNs.

3.3. The problem with fuzzy source functions and zero initial functions

As for the solution of the problem (3.6), we give the theorem as follows.

Theorem 3.3. In the problem (3.6), assume g̃1 = 〈g1a, 0, g1b〉, g̃2 = 〈g2a, 0, g2b〉, where
(

g1a

g2a

)
and(

g1b

g2b

)
separately satisfy the conditions (H1) and (H2) of Theorem 3.1. If Zu(t) =

(
xu(t)
yu(t)

)
and Zv(t) =(

xv(t)
yv(t)

)
are solutions of the following problem:

cDαx(t) = g1 (t, y(t),c Dαx(t)) ,
cDβy(t) = g2

(
t, x(t),c Dβy(t)

)
,

x(0) = 0,
y(0) = 0

(3.9)

for
(

g1

g2

)
=

(
g1a

g2a

)
and

(
g1

g2

)
=

(
g1b

g2b

)
in several, then the problem (3.6) has a unique solution Z̃g,

which is a TFF matrix given by
Z̃g = 〈Zu, 0,Zv〉 . (3.10)

Proof. Since g1a and g2a satisfy (H1) and (H2), it follows from Theorem 3.1 that there will be a unique

solution when
(

g1

g2

)
=

(
g1a

g2a

)
in (3.9). By the same token, from the assumption for

(
g1

g2

)
=

(
g1b

g2b

)
in the problem (3.9), only one solution will exist in this case. Thus, the proof can be done by the same
way as in Theorem 3.2. �

Thus, we can also express the value of the TFF matrix Z̃g (3.10) at a time t by Z̃g(t) =

(min{Zu(t), 0,Zv(t)}, 0,max{Zu(t), 0,Zv(t)}), which is a matrix of TFNs.

3.4. A solution algorithm

By integrating Theorems 3.1-3.3 above, we can obtain the following solution algorithm for solving
the FFIDDC (1.1).

Algorithm 3.1. Step 1. Using the method of steps and dealing with the FFIDDC (1.1) on interval
[0, τ], transform the FFIDDC (1.1) into the FCFDIVP (3.1).

Step 2. Represent the initial values and source functions as

G̃1 = g1cr + 〈g1a, 0, g1b〉, G̃2 = g2cr + 〈g2a, 0, g2b〉,

Φ̃1(0) = φ1cr(0) + (φ1a(0), 0, φ1b(0)),
Φ̃2(0) = φ2cr(0) + (φ2a(0), 0, φ2b(0)).
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Step 3. Find the solution Zcr(t) of the problem (3.4).

Step 4. Seek the solutions Za(t) and Zb(t) of the problem (3.7) in regard to
(
φ1(0)
φ2(0)

)
=

(
φ1a(0)
φ2a(0)

)
and(

φ1(0)
φ2(0)

)
=

(
φ1b(0)
φ2b(0)

)
, respectively, and define

Z̃φ(t) = (min{Za(t), 0,Zb(t)}, 0,max{Za(t), 0,Zb(t)}).

Step 5. Solve the problem (3.9) and denote the solutions by Zu(t) and Zv(t), corresponding to
(

g1

g2

)
=(

g1a

g2a

)
and

(
g1

g2

)
=

(
g1b

g2b

)
, respectively, and let

Z̃g(t) = (min{Zu(t), 0,Zv(t)}, 0,max{Zu(t), 0,Zv(t)}).

Step 6. Construct the unique solution of the FFIDDC (1.1) on interval [0, τ] as follows:

Z̃(t) = Zcr(t) + Z̃φ(t) + Z̃g(t).

Similarly, we can find the unique solution on interval [τ, 2τ], · · · . In consequence, we obtain a
unique solution of the FFIDDC (1.1) which exists at t ≥ 0.

4. An example

In this section, referring to Example 1 in Fatullayev et al. [14], we take an example to clarify that
the hypotheses in Theorems 3.1-3.3 can be satisfied, which can be also employed to verify the main
results presented in Dong et al. [13].

Example 4.1. Let us solve the problem

cD
1
2 x(t) = cos t y(t −

π

2
) + F̃1

(
t, y(t),c D

1
2 x(t)

)
, t > 0,

cD
1
2 y(t) = sin t x(t −

π

2
) + F̃2

(
t, x(t),c D

1
2 y(t)

)
, t > 0,

x(t) = Φ̃1(t), −
π

2
≤ t ≤ 0,

y(t) = Φ̃2(t), −
π

2
≤ t ≤ 0,

(4.1)

where

F̃1 = f1cr + 〈 f1a, 0, f1b〉, F̃2 = f2cr + 〈 f2a, 0, f2b〉,

Φ̃1 = φ1cr + 〈φ1a, 0, φ1b〉, Φ̃2 = φ2cr + 〈φ2a, 0, φ2b〉

with

f1cr = −0.5 sin y(t) + 10−3 sinc D
1
2 x(t), f2cr = 0.7 sin x(t) − 10−3 sinc D

1
2 y(t),
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f1a = −0.15 sin t cos t, f1b = 0.15 sin t cos t,

f2a = 0.15 sin t cos t, f2b = −0.15 sin t cos t,

φ1cr = cos t, φ1a = 0.15 sin t − 0.25 cos t, φ1b = −0.15 sin t + 0.25 cos t,

φ2cr = sin t, φ2a = 0.15 cos t − 0.25 sin t, φ2b = −0.15 cos t + 0.25 sin t.

In the sequel, we only deal with the problem (4.1) on interval
[
0,
π

2

]
. The unique solution on interval

[τ, 2τ], · · · can be likewise found.
Firstly, the problem (4.1) can be transformed as the problem

cD
1
2 x(t) = G̃1

(
t, y(t),c D

1
2 x(t)

)
,

cD
1
2 y(t) = G̃2

(
t, x(t),c D

1
2 y(t)

)
,

x(0) = Φ̃1(0),

y(0) = Φ̃2(0),

(4.2)

where

G̃1

(
t, y(t),c D

1
2 x(t)

)
= cos t Φ̃2

(
t −

π

2

)
+ F̃1

(
t, y(t),c D

1
2 x(t)

)
,

G̃2

(
t, x(t),c D

1
2 y(t)

)
= sin t Φ̃1

(
t −

π

2

)
+ F̃2

(
t, x(t),c D

1
2 y(t)

)
.

Then, after performing some arithmetics, one can get

G̃1 = g1cr + 〈g1a, 0, g1b〉 , G̃2 = g2cr + 〈g2a, 0, g2b〉 ,

Φ̃1(0) = φ1cr(0) + φ̃1(0), Φ̃2(0) = φ2cr(0) + φ̃2(0),

where

g1cr = − cos2 t − 0.5 sin y(t) + 10−3 sinc D
1
2 x(t), g2cr = sin2 t + 0.7 sin x(t) − 10−3 sinc D

1
2 y(t),

g1a = 0.25 cos2 t, g1b = −0.25 cos2 t, g2a = −0.25 sin2 t, g2b = 0.25 sin2 t,

φ1cr(0) = 1, φ̃1(0) = (−0.25, 0, 0.25), φ2cr(0) = 0, φ̃2(0) = (−0.15, 0, 0.15).

Next, we respectively solve the three subproblems of the problem (4.2) on
[
0,
π

2

]
one by one.

(i) With respect to g1cr and g2cr, we can rewrite them in another forms:

g1cr (t, u, v) = − cos2 t − 0.5 sin u + 10−3 sin v,

g2cr (t,m, n) = sin2 t + 0.7 sin m − 10−3 sin n,

where

u = y(t), v =c D
1
2 x(t), m = x(t), n =c D

1
2 y(t).

We can easily see that g1cr, g2cr : [0,
π

2
] × R × R→ R are continuous and satisfy (H1).
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Moreover, taking K1 = 0.5, K2 = 10−3, L1 = 0.7 and L2 = 10−3, then we have

max

K2 +
K1

Γ( 1
2 + 1)

, L2 +
L1

Γ( 1
2 + 1)

 = max

10−3 +
0.5
Γ( 3

2 )
, 10−3 +

0.7
Γ( 3

2 )


= max {0.5718, 0.8000}
= 0.8000 ∈ (0, 1),

and
| g1cr(t, u1, v1) − g1cr(t, u2, v2) |≤ K1 | u1 − u2 | +K2 | v1 − v2 |,

| g2cr(t,m1, n1) − g2cr(t,m2, n2) |≤ L1 | m1 − m2 | +L2 | n1 − n2 |

for i = 1, 2 and any ui, vi, mi, ni ∈ R. Hence, it is easy to see that (H2) holds.
To sum up, all the hypotheses (H1) and (H2) in Theorem 3.1 are satisfied and we can obtain a unique

solution Zcr(t), which is illustrated in Figure 2 to the following associated crisp subproblem via using
the “L1 method” due to Li and Zeng [23]:

cD
1
2 x(t) = g1cr

(
t, y(t),c D

1
2 x(t)

)
= − cos2 t − 0.5 sin y(t) + 10−3 sinc D

1
2 x(t),

cD
1
2 y(t) = g2cr

(
t, x(t),c D

1
2 y(t)

)
= sin2 t + 0.7 sin x(t) − 10−3 sinc D

1
2 y(t),

x(0) = φ1cr(0) = 1,
y(0) = φ2cr(0) = 0,

(4.3)

which is the first subproblem of the problem (4.2).
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Figure 2. The crisp solutions (global).

From Figure 2, one can easily see that the order of magnitude of the ordinate value in Figure 2
is 108, and xcr and ycr established by relying on the “L1 method” discretization [23] of the Caputo
fractional derivatives in (4.3), are growing very fast, and after iterating 43 times (t ≈ 0.66), the values
of xcr and ycr approach 1 and 27.88, respectively. Since the ordinate value of Figure 2 is too large to
observe between t = 0.6 and t = 0.7, we give the local graph Figure 3 for the crisp discretized solutions
to the problem (4.3) on the ordinate value interval [0, 100], which right endpoint is far less than that
of the ordinate value interval [0, 4 × 108] in Figure 2. We note that Figure 3 locally shows the unique

solution Zcr(t) =

(
xcr(t)
ycr(t)

)
=

(
1

27.88

)
of the problem (4.3) at t ≈ 0.66 ∈

[
0,
π

2

]
.
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Figure 3. The crisp solutions (ordinate local interval [0, 100]).

(ii) Solve the following crisp problem:

cD
1
2 x(t) = 0,

cD
1
2 y(t) = 0,

x(0) = φ1(0),
y(0) = φ2(0)

for
(
φ1(0)
φ2(0)

)
=

(
−0.25
−0.15

)
and

(
φ1(0)
φ2(0)

)
=

(
0.25
0.15

)
, and find the solutions Za(t) =

(
−0.25
−0.15

)
and

Zb(t) =

(
0.25
0.15

)
, respectively.

Letting φ̃1(0) = (−0.25, 0, 0.25) and φ̃2(0) = (−0.15, 0, 0.15), then it follows that the solution to the
second subproblem of the problem (4.2) as hereunder mentioned:

cD
1
2 x(t) = 0,

cD
1
2 y(t) = 0,

x(0) = φ̃1(0),

y(0) = φ̃2(0)

(4.4)

is the TFF matrix Z̃φ = 〈Za, 0,Zb〉, which is graphed in Figure 4, and one knows that

Z̃φ(t) = (min{Za(t), 0,Zb(t)}, 0,max{Za(t), 0,Zb(t)}) .

Hence, Theorem 3.2 holds and there is one and only solution to the problem (4.4). Indeed, since
the solutions Za(t) and Zb(t) are all constant matrices in Figure 4, it is easy to see that the values of x̃φ1

and ỹφ2 are all constants when MD α ∈ [0, 1] is determined. That is, the values of x̃φ1 and ỹφ2 remain
constant as t increases. For example, x̃φ1a = 0.25, x̃φ1b = −0.25, ỹφ2a = 0.15 and ỹφ2b = −0.15 when
α = 0.
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Figure 4. Uncertainty of the solutions with initial TFFs.

(iii) Consider the following crisp problem:

cD
1
2 x(t) = g1

(
t, y(t),c D

1
2 x(t)

)
,

cD
1
2 y(t) = g2

(
t, x(t),c D

1
2 y(t)

)
,

x(0) = 0,
y(0) = 0

for
(

g1

g2

)
=

(
g1a

g2a

)
and

(
g1

g2

)
=

(
g1b

g2b

)
, and find the solutions Zu(t) =

(
xu(t)
yu(t)

)
and Zv(t) =

(
xv(t)
yv(t)

)
,

respectively. That is, one solves the following crisp problems:

cD
1
2 x(t) = g1a

(
t, y(t),c D

1
2 x(t)

)
= 0.25 cos2 t,

cD
1
2 y(t) = g2a

(
t, x(t),c D

1
2 y(t)

)
= −0.25 sin2 t,

x(0) = 0,
y(0) = 0

(4.5)

and 

cD
1
2 x(t) = g1b

(
t, y(t),c D

1
2 x(t)

)
= −0.25 cos2 t,

cD
1
2 y(t) = g2b

(
t, x(t),c D

1
2 y(t)

)
= 0.25 sin2 t,

x(0) = 0,
y(0) = 0.

(4.6)

As for the problem (4.5), g1a and g2a can be written in following forms:

g1a (t, u, v) = 0.25 cos2 t, g2a (t,m, n) = −0.25 sin2 t,

where

u = y(t), v =c D
1
2 x(t), m = x(t), n =c D

1
2 y(t).
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It is clear to find that g1a, g2a : [0,
π

2
] × R × R→ R are continuous.

On the other hand, let K1 = 0.4, K2 = 0.1, L1 = 0.6 and L2 = 0.2. Then

max

K2 +
K1

Γ( 1
2 + 1)

, L2 +
L1

Γ( 1
2 + 1)

 = max

0.1 +
0.4
Γ( 3

2 )
, 0.2 +

0.6
Γ(3

2 )


= max {0.5514, 0.8770}
= 0.8770 ∈ (0, 1),

and for each u1, u2, v1, v2, m1, m2, n1, n2 ∈ R,

| g1a(t, u1, v1) − g1a(t, u2, v2) |≤ K1 | u1 − u2 | +K2 | v1 − v2 |,

| g2a(t,m1, n1) − g2a(t,m2, n2) |≤ L1 | m1 − m2 | +L2 | n1 − n2 | .

According to the above, all the hypotheses (H1) and (H2) hold. And that on the basis of Theorem 3.1,
we can obtain the unique solution Zu(t) to the last subproblem of the problem (4.2) involving fuzzy
source functions and zero initial functions as follows:

cD
1
2 x(t) = 〈g1a, 0, g1b〉,

cD
1
2 y(t) = 〈g2a, 0, g2b〉,

x(0) = 0,
y(0) = 0.

(4.7)
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Figure 5. Uncertainty of the solutions owing to fuzzy source functions.

Similarly, we can conclude that the problem (4.6) also has a unique solution Zv(t). It follows that
the solution to the problem (4.7) is the TFF matrix Z̃g = 〈Zu, 0,Zv〉, which is depicted in Figure 5, and
we have

Z̃g(t) = (min{Zu(t), 0,Zv(t)}, 0,max{Zu(t), 0,Zv(t)}) .
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As a consequence, Theorem 3.3 holds and there is a unique solution to the problem (4.7). Moreover,
it can be seen that, in Figure 5, the images of x̃g1 and ỹg2 are respectively symmetric when the
corresponding MDs are chosen. For MD α ∈ [0, 1), as t increases, the upper branch of x̃g1 firstly
increases and then decreases (t ≈ 0.69 is the turning point), and the upper branch of ỹg2 gets bigger and
bigger. Especially, the values of x̃g1 and ỹg2 are constant 0 when the MD α = 1. However, the ordinate
value of Figure 5 is of order of magnitude 10−1 and very small compared with that in Figure 2, so it
has little effect on the final solution Z̃(t).

In conclusion, by solving the problems (4.3), (4.4) and (4.7), it follows from Algorithm 3.1 that we

can find the unique solution of the problem (4.1) on interval
[
0,
π

2

]
as

Z̃(t) = Zcr(t) + Z̃φ(t) + Z̃g(t),
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Figure 6. The fuzzy solutions obtained by the proposed method (global).
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Figure 7. The fuzzy solutions acquired by the proposed method (ordinate local interval
[0, 30]). And the black α−cuts of x̃: 0−cut (continues lines), 1−cut (dashed line); the blue
α−cuts of ỹ: 0−cut (continues lines), 1−cut (dashed line).

which can be found from Figure 6. It is easy to note that the image of fuzzy solution Z̃(t) in Figure 6
has a similar trend to that of the crisp solution Zcr(t) in Figure 2. That is because when MD is fixed, the
unique solution Z̃(t) of the problem (4.1) is composed of three parts and the value of the crisp solution
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Zcr(t) for the problem (4.3) is too large (order of magnitude 108 of the ordinate value for Figure 2).
Further, since the ordinate value of Figure 6 is very big (order of magnitude 108) and the curves of x̃, ỹ
can not be distinguished obviously, a local graph Figure 7 of Figure 6 is given for the fuzzy solutions
of the problem (4.1) when the ordinate value interval is restricted to [0, 30]. Choosing specially MD
α = 0, we have x̃φ1a = 0.93, x̃φ1b = 1.07, ỹφ2a = 27.68 and ỹφ2b = 28.08.

Before the end of this section, we remark that the unique solution of the problem (4.1) on interval[
π

2
, π

]
, · · · can be found in the same way. Therefore, one can find the unique solution of the problem

(4.1) for t > 0 via Algorithm (3.1).

5. Concluding remarks

In this paper, inspired by Fatullayev et al. [14] and Dong et al. [13], by using the methods of steps
and separating fuzzy items, we solved the implicit coupled systems of fuzzy fractional delay differential
equations with fuzzy initial values and source functions (FFIDDC) (1.1). Under the conditions (H1) and
(H2), and based on the concept of TFFs and examples in [16,17], we obtained existence and uniqueness
of solution for the FFIDDC (1.1). We note that the solution is a triangular fuzzy function matrix which
is composed of real functional matrices. Furthermore, an algorithm for solution procedure and an
example for graphical confirmation of explicit solution were given.

As Remark 1.1 mentioned, except for considering the problem (1.1) with Caputo fractional
derivative, we will explore the problem of form (1.1) with fractional derivatives of Riemann-Liouville
or Hadamard in the future. Recently, there are more and more researchers to explore the relevant
(fractional) differentiable set-value problems and impulsive problems, such as Amrahov et al. [4] and
Sun et al. [32]. Therefore, for further study, we can introduce the set-valued delay and the impulse into
the FFIDDC (1.1), and extend the methods proposed in this paper to solve the new problems associated
with set-values or impulsive elements.
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