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1. Introduction

Tapezoidal intuitionistic fuzzy number (TIFN), as a special intuitionistic fuzzy set on a real
number, has the best capability to model ill-known quantities [1,2]. TIFNs are useful to deal with
uncertain knowledge and data in management decision and financial engineering problems.
Intuitionistic fuzzy number, as the extension of fuzzy number, has more flexibility in many real-time
uncertain application fields such as multi-criteria decision [3-6], portfolio selection [7,8], and
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aggregation [9]. Recently, the possibility measure theory of TIFN plays an important role in many
application fields like mulit-criteria decision and portfolio selection problem. For example,
Chakraborty [10] utilized possibility, necessity and credibility measure to solve intuitionistic fuzzy
optimization problem. Garai [11] applied possibility-necessity-credibility measures of generalized
trapezoidal intuitionistic fuzzy number (GTIFN) to multi-product manufacturing system.

As is well known, based on possibility theory the possibilistic mean and variance of fuzzy
numbers were presented by Carlsson and Full’er [12] and had been widely applied in solving fuzzy
portfolio decision problems [13-20]. Recently, inspired by the above-mentioned fuzzy possibilistic
mean theory Wan [21] proposed a definition of possibilistic mean and variance of intuitionistic fuzzy
number (IFN). And Wan [22-24] utilized the possibilistic mean and variance to intuitionistic fuzzy
group decision-making and matrix game problems with incomplete information. Later, Chen [25]
also discussed the mean-variance-skewness portfolio selection problems based on intuitionistic fuzzy
optimization under the assumption that the returns of assets are intuitionistic fuzzy numbers.
Although the possibilistic mean and variance of intuitionistic fuzzy numbers will have a lot of
application prospects, there is few study on the relationship between the possibilistic mean, variance
and covariance of two generalized trapezoidal intuitionistic fuzzy numbers, and it is not clear
whether subsethood entails smaller variance for generalized trapezoidal intuitionistic fuzzy number.

Moreover, we notice that the existing definitions of possibilistic mean and variance by Wan [21]
have some flaws. In his definitions the denominators of the fraction of possibilistic mean and

variance are improper because the level A value and y value are taken in [0,1] for granted. However,

the level A value and » level value of generalized trapezoidal intuitionistic fuzzy number A indeed lie

in the limited interval [O,u, ] and [v,,1], respectively. To overcome the flaw of Wan’s definition [21],

in this paper we will correct it and introduce the new definitions of lower and upper possibilistic
mean, variance of generalized trapezoidal intuitionistic fuzzy numbers based on possibility
distributions. We also give some properties of possibilistic mean, covariance and variance, such as
that the possibilistic variance of linear combinations of generalized trapezoidal intuitionistic fuzzy
numbers can easily be computed like in probability theory and that subsethood does entail smaller
variance. Moreover, in this paper we show that the possibilistic mean of generalized trapezoidal
intuitionistic fuzzy number remains additive in the sense of addition of GTIFNSs. In particular, we

easily deduce Var(A)=Cov(A, A)=Cov(A—A), which is not consistent with the properties of

covariance in crisp probability theory. The contribution of this work is as follows. We show that the
presented possibilistic variance and covariance of generalized trapezoidal intuitionistic fuzzy
numbers reserve many important properties of variance and covariance in traditional probability
theory, which is different from the known investigation results. We also investigate the important

relationship between two Kkinds of possibilistic variance var(,&) and var’(ﬂ) for generalized

trapezoidal intuitionistic fuzzy numbers.
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2. Preliminaries

Let us first introduce some basic concepts of trapezoidal intuitionistic fuzzy numbers, which
will be employed in the following sections.

Definition 1 [11,21]. A generalized trapezoidal intuitionistic fuzzy number (GTIFN)
E\:((a,b,c,d);ua,va) is a special kind of intuitionistic fuzzy set on the real number set R, whose

membership function and nonmembership function are defined as following forms, respectively (see
Figure 1).

u,(x—a)/(b—a),if a<x<b, vV, +(1-v,)(b—-x)/(b—a),if a<x<b,

u if b<x<c, v, if b<x<c,

V;(X) = a

a )

5 (X) =

u,(d-x)/(d-c), if c<x<d, v,+(@-v,)(x-c)/(d—c), if c<x<d,

0o , otherwise. 1 otherwise.

whereu,,v, are the greatest membership and the least nonmembership degree, respectively. And

u,,V, €[01], 0<u, +v, <1, 7;(X) =1-u;(X)—v;(x) is called the hesitation degree of x e A.

——Membership of IFN A
u ——Nonmembership of IFN A ||

09—

081 —
07 —
08 V) _
051 —
041 —
03 u,(x) i

02 —

01 =

Figure 1. Membership and nonmembership of trapezoidal intuitionistic fuzzy number A.
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Remark 1 [22,24]. If b=c , then the generalized trapezoidal intuitionistic fuzzy number

E\:((a,b,c,d);u v,) is reduced to a generalized triangular intuitionistic fuzzy number

a’

A=((ab,d);u,,v,).

Definition 2. Let A =((a,b,c,d;),u,v), =12 be two generalized trapezoidal intuitionistic

fuzzy numbers, the addition and scale multiplication of GTIFNs [2,11,21,24,26] are defined as
follows.

(1) Z‘14';2 =((a +a,,b +b,,c,+¢,,d; +d,);u AU,V VY,).

(2) x,Z, = ((xa;, Xb;, xc;, xd;);u;,v;), Vx=0. xb} =((xd;, xc;, xb,, xa;);u;,v;), Vx<0.

Definition 3 [22,24]. Let ,&:((a,b,c,d);ua ,V, ) be a generalized trapezoidal intuitionistic fuzzy

number, the 4 -level cut set and y -cut set of membership and nonmembership of GTIFN A are,

respectively, defined as
A ={x1 115 (x) = 2}=[a(2),a" (D] =[a+(b—a)A/u,,d —(d —c)2/u,)];
A ={xlv;(x) < r=[a(y),a (D] =[(b—av, —y(b—a))(1-V,), (c—dv, +y(d =) (1-V,))].
where 2€[0,u,], 7 €[v, 1], and 0< A+ <1.
Theorem 1 [11,21]. Let A =((a,,b;,¢;,d);u, .V, ), A =((3,,h,,C,,d,):u, v, ) be two generalized

trapezoidal intuitionistic fuzzy numbers, for any positive real number A € (0,u,], » €[v,.1], we can

easily get

1) (A+A)T =AM+ A =[a (1) +a, (A).a, (1) +a, (D], Vie(Ou,l;

@ (A+A)T=A"+ AV —[a () +a, (). () +a," ()], Vrelv, dI;

(3) (XA = xA =[xa™ (1), xa" (1)], Vx> O; (xA)H = xA =[xa" (1), xa (1)], ¥x <0;

(4) (XA = xA" =[xa (»), xa" ()], VX = 0; (XA = XA =[xa* (), xa~ ()], Vx <O.

The proof is straightforward from Definition 3 and Zadeh’s fuzzy extension principle.

AIMS Mathematics Volume 6, Issue 4, 3720-3740.



3724

Definition 4 [21]. Let Z\:((a,b,c,d) u,,v, ) be a generalized trapezoidal intuitionistic fuzzy

number, the lower and upper possibilistic mean value of the membership function of GTIFN A are,

respectively, defined as

j pos(u; <a”(A))a (A)dA j Aa” (A)dA

M (A) = _% jo Ja~(A)dA =1 (a+2b);
j pos(u; <a~(4))dA j Al U
0 0
pos(u; >a'(A)a*()dA [ Aa*(1)dA .

M (A)= J, POtz > ) u =2 [" 22" ()dA =1(d +20).
j pos(u; >a*(2))dA joa/wz Uy

The possibilistic mean of membership of GTIFN A can also be defined as
~ [M(A)+M(A y
M;,(A)=[ ul )2 il )]:zizLa;t(a‘(/I)Jra*(/I))d/I:%(a+2b+20+d).
Ua

Definition 5. Let A= ((a,b,c,d);u,,v,) be a generalized trapezoidal intuitionistic fuzzy number, the

lower and upper possibilistic mean value of the nonmembership function of GTIFN A are,
respectively, defined as

[[ posibzv; za ()a (1dy j R (dy

M- (B) =2 [ 7 (dy
La pos(b>v; >a (y))dy La7d7 —Va
= —Z(b-a)(L+v, +VI)];
. (A)_j pos(c <v; <a*())a’ (y)dy f | (dy

1 . d
La pos(c<v; <a “(y)dy .[va7d7 1-V? La ya’ (y)dy

:1—v2 2(d —c)(L+v, +V2)].

The possibilistic mean of nonmembership of GTIFN A can also be defined as

M, (A)+M;(A)]_ 1
2 T1-v?

M, (R)= [, r@()+ao)dy

:m[%(b+c—(a+d)va)(1+va)+%(a—b—c+d)(1+va +Vv2)].
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Definition 6. Let A = ((a,b,c,d);u,,v,) be a generalized trapezoidal intuitionistic fuzzy number, the
possibilistic mean value of GTIFN A is defined as M (f&) :%[Mﬂ(/&)-i- MV(,&)] .
Definition 7. Let A=((a,b,c,d);u,,v,) be a GTIFN with A,y cut set A =[a (1),a*(1)]

K[ylz[a‘(y),a%y)] of membership and nonmembership of A , the possibilistic variance of

membership and nonmembership of GTIFN Aare respectively defined as [21,22],
var#(;&) = %_[: (@ (A1) —-a*(1))*AdA =4 u?[(d—a)* —2(d —a)(b—c)+3(b—c)?];

var, (A) = %'[Vla (@ () —-a" (1)) Wy = 55 [6A+V, )M +8(L+v, +VI)MN +3(1+V, +V2 +VI)N?],

where M =c-b+(a—d)v,, N=d-c+b-a.
Hence, the variance of GTIFN A can be defined by var(,&) :%[varﬂ(ﬂ)Jrvarv(,&)].
Definition 8. Let A =((a,b,,c,.d,);u,,v,) be a GTIFN with 2,7 cut set A™ =[a; (1), a (1)],
A" =[a; (7). ()] and GTIFN A, =((a,,b,,c,,d,);u, ,v, Ywith 4,y cut set A" =[a; (1),a; ()],
KZM =[a, (»),a, (»)]of membership and nonmembership, the possibilistic covariance of membership
and nonmembership of GTIFNs Z& Kz are respectively defined as [17,19],

cov, (A, A) =3[ (& (A) -2 ())& (A) - (A)AdA;

cov, (A, A) =4, (& ()~ (D)@ (-2 (i
The covariance of GTIFNs ,3.1 [&2 can be also defined by cov(,z\l, ZZ) :%[cov#(ﬂi, ,&Z)+covv(,'5&, 52)] :
Definition 9. Let A=((a,b,c,d):u,,v,) be a GTIFN with A cut set A =[a (1),a*(1)] of

membership and » cut set A =[a"(y),a" ()] of nonmembership, the new possibilistic variance of

membership and nonmembership of GTIFN A are respectively defined as

var, (A) = ["[(M,,(A)-a (1))’ + (M, (A) -a" (1))°14d4;
var, (R) = [ [(M,(A)=a~())" + (M, (A)—-a" (7)) ]dy
The new possibilistic variance of GTIFN A can also be computed by var’(f&) :%[varl’,(,&)Jrvarv’(,&)] ;
where a”(4),a" (A1) is the lower bound and upper bound of A level interval value of membership of
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GTIFN A, var;l(,&) expresses the weighted deviation squares between the membership mean and
lower bound, upper bound of A level interval of membership of A and a (y),a"(y) is the lower

bound and upper bound of A level interval of nonmembership of GTIFN A, varv’(;&) expresses the
weighted deviation squares between the nonmembership mean and lower bound, upper bound of 4

level interval of nonmembership of A. However, the existing varﬂ(f&) only indicates the weighted

deviation squares between lower bound and upper bound of A level interval of membership of A

varv(,&) only indicates the weighted deviation squares between lower bound and upper bound of A4

level interval of nonmembership of A. Moreover, the above-mentioned definition 9 of possibilistic

variance coincides with the definition of crisp variance, so it is more meaningful and rathional than

the existing possibilistic variance of GTIFN A.

Definition 10. Let A =((a,b;,c,.d,);u,,v,) be a GTIFN with 2,7 cut set A™ =[a; (1),a; (A)],
A" =[a;(7).a ()] and TIFN A, =((a,,b,,c,,d,);u, ,v, Ywith A,y cut set A =[a;(4),a; ()],
A =[a; (»),a; ()] of membership and nonmembership, the new possibilistic covariance of

membership and nonmembership of TIFNs A, A, are respectively defined as

cov,, (A, A) = [T, (A)—a (M, (A) -2 (D) +(M, (A)—a (DM, (A) -3, (A)]4dA
cov, (A, &)= [, [V (A)-a, (M, (A)-a; (/)+(M.(A)-a" ()M, (A)-a, ()
The  new  covariance  of  GTIFNs  A,A, can  be  computed by
cov'(A, A) =[cov, (A, A) +cov, (A, A)l.

Theorem 2. Let A:((ai,bl,cl,dl);ul,val) be a GTIFN with A4,y cut set A" =[a; (1),a (1)],

a

ZJ”:[a;(y),af(y)] and GTIFN Zz =((a2,b2,c2,d2);ua2,vaz) with A,y cut  set

'&2[1] :[az_(ﬂ),a; (ﬂ,)] 1 Az[}/] :[az—(}/)’a;' (}/)] , and /ual =lua2 =M, Va =Vaz :Va , and for any

1

X, %, X, € R, then we have

1) M(A+A)=M(A)+M(A,);

AIMS Mathematics Volume 6, Issue 4, 3720-3740.
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(2) M(XA) =xM (A), VxeR;

(3) MOGA +%A) = %M (A)+X,M(A,), ¥, %, €R.
Proof. (1) It follows from Definitions 4, 5 and Theorem 1 that
M, (A +A) =% [ Allay () +a, (1) + (& (2) +a] (A)]dA
=3 [" Al(a; (A)+a; (1) +(a; () +a; (A)]dA

ug

= L[ Aa; () +a (A)dA+ [ " Aa; (4)+a; ())dA]

uz

=M, (A)+M (A,);

M, (A +A)= o fl @ () +a, () + @ () +a; (n)ldy

fvla Iy () +a; (7)) +(a; (v) +a; (»)ldy

1
1-v2

=21, 7@ ) +a A+ [ 1@ () +a; ()i

=M, (A)+M,(A,).
Therefore, we have

M, (A +A)+M, (A +A,)
2

(2) By Definitions 4, 5 and Theorem 1, for any x>0 we easily get
M, OA) = ["[x(a (A)+& (A =X[& [ " Aay (1) +a ()dA] =xM, (A) ;

M(A +A)= =M(A)+M(A,).

M, OR) =2 [ D@ () +al Dy =X [ 7@ )+ ()dy] =M, (A).

For any x <0, we also get

M, OA) = ["[x(& (A)+a (A =X[& [ " Aa] (1) +a; ()dA] =xM, (A);

M. (XA) = 2= [[ [x(al () +a Oy =X [ #(a () +a ())dy] =M, (A).

So we have

M (xA) = M,,(xAl)ZMv(XAi) = XM”(A);XMV(AI) =xM (A,).

(3) From (1), (2) we easily conclude that, for any x;,X, € R,

M, (A +%A) =M, (xA)+ M, (%,A) =xM (A)+X%M (A);

AIMS Mathematics Volume 6, Issue 4, 3720-3740.



3728

M, (A +X,A,) = M, (xA)+M, (%,A,) = M, (A) +X,M,(A,).

Hence, M (x A, + x,A) = (A XzAZ); M AR MR+ 1M (Ry).

3. Some important notes on possibilistic variances of GTIFN

Theorem 3.1. Let A =((a,,b,c,,d,);u, ,v,) be a GTIFN with 4,y cut set A% =[a] (1), (A)],
A" =[a; (»). 3 (7)] and GTIFN A, =((a,.b,.c,.d,);u, v, ) with 4,y cut set A =[a, (1), 3] (A)],
A =[a; (7). 8 (M) and u, =, = p1,,V, =V, =V,,and let constant 6 € R . Then we have

(1) cov(A, A,) =cov(A,, A);

(2) var(A) =cov(A, A) =cov(A,~A);

(3) var(A +6) =var(A).

Proof. (1), (2) can be directly verified by Definition 8 of cov(A, A,) and Definition 7 of var(A).

(3) For anyd e R by Zadeh’s fuzzy extension principle we can know that (;\1 +0)(x) = A(X—é’) ,

and
A+ =AM+ 0=[a (1) +6, a;(A)+6];  (A+O)'=A"+0=[a (»)+6, & (r)+6].

So, var, (A +0) =4[ "[(a, () +0)—(& (A +O A2 =5 ["[a ()~ (IFAdA = var,(A);
var, (A +0) =3 [ @, (1)+0)~ (@' W+ rdy =] [a () -a (WP ndy =var,(A).

Hence, we have var(,&i +0) = var, (A +0);VarV(Al +9) = var, () Z var, (A) =var(§i).

Theorem 3.2. Let A =((a,b,c,d));u, v, )be a GTIFN with 2,y cut set A™ =[a, (1), 3, (A)],

Z&[”z[a{(y),af(y)] and GTIFN Zz =((a2,b2,c2,d2);ua2,vaz) with A,y cut set

A =la, ()2, (], A =, ()., (], and g, =, =1,V =V,, =V, , and for any

constant @ € R, we also obtain

(1) cov'(A, A,)=cov'(A, A);

AIMS Mathematics Volume 6, Issue 4, 3720-3740.



3729

(2) var'(A) =cov'(A, A);
(3) var'(A +06) = var'(A).
Proof. (1), (2) can be directly proved by Definition 10 of cov'(A,, A,) and Definition 9 of var'(A,) .
(3) Since (A, +6)(x) = A (x—6) , we know that
A+ =N +0=[a;(1)+6, a/(D+6];  (A+O) =A"+0=[a,())+6, & (y)+4].

So, var, (A +6) = ["[(M,, (A +0)~(a (1) +0) +(M,, (A +6) - (&, (1) +0))°1idA

="M, (A)+6-a (1) -0) + (M, (A) +0-3 (1) -6)*]dA

= ["IM,(A)-a, ()" +(M,(A)-a, (1)*]2d2 =var'(A);
var/ (A +6) = [ [(M,(A +6)~(a, (1) +0)* +(M,(A+0)~ (3" (") +O) Iy

= [ 1M, (A) = (1)) +(M,(A)~a, () Ddy =varl(A);

So, we get var'(A +6) = var'(A).

Theorem 3.1-3.2 show that possibilistic covariances have symmetry, the covariance between
GTIFN itself reduces to the possibilistic variance of GTIFN. And if a GTIFN shifts a constant, the
possibilistic variance is not altered.

Theorem 3.3. Let A =((a,,b;,c,,d,);u, ,v, ) be a GTIFN with 2,y cut set A" =[a, (2),a," (2],

A =[a,().a"(»)] and  GTIFN A, =((a,b,.c,d,)u, v, )  with 2,7 cut  set

A =[a, ()., (W], A =[a, (7)., ()], and g, =4, = 4,,V, =V, =V,, for any x,x, R,
then
var( A +x,A,) = X var(A ) +x,” var(A,) + 2x.x,|cov(A,, A,)

Proof. We only verify that the above formula holds in the case (1) if x, <0, x, >0.

By employing Theorem 1 we can easily know that

OuA + XA =[xa; (A) +X,3; (A), %87 (2) + %285 (]

(A + XA =Dxa) (1) + %8, (7). %8 () + %35 ()]
So, by Definitions 7, 8 we easily get

var, (x A +X,A,)

AIMS Mathematics Volume 6, Issue 4, 3720-3740.
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=1 [" A (A) + %3, (A) — (8, (4) +x,8; ()] dA

=1 [" A& (A -3, () - %, (a5 (1) -8, ()P dA

=4[ ¢ () (1) - () da+ [" ¢ (3 (A)—a; (1))°dA - [ 22, (3] (1) —a; (A))(3; (A) -~ (A))dA}
=% var, (&) + %" var, (A,) - 2xx, cov,, (A, A,)

=x varﬂ(,&i) + 2|x1x2|cov#(5&, A)+ X, varﬂ(;&z) :
and

var, (%A +,A,)
=3[ A0 () + %85 ()= (%3 (7)+ X33 (I
= %{Lla (@ () —a, () dy + fl (3, (1) =3, (7)) dy - fl 2%, (ar () —a (1)@, (1) —a, (7))dr}
= %7 var, (A) +,” var, (A,) - 2x,x, cov, (A, A,)
=% var, (A) +2Jxx;| cov, (A, A,) +%,” var, (A,) .

var, (A +X,A,) +var, (A +X,A,)
2

So, we get var(xlﬂ1 + xzf&z) =

= %" var(A) +2|x%,| cov(A, A)) + X, var(A,) .
Similar reasoning holds for the other cases (2) x, >0, x,>0, (3)x,>0,x,<0 and (4) x, <0,
X, <0.

It follows that var(x,A +X,A,) = X var(A) + x,” var(A,) + 2x%,|cov(A, A,) for anyx, X, €R.

Theorem 3.3 show that the possibilistic variance of linear combinations of generalized trapezoidal
intuitionistic fuzzy numbers can be computed like in probability theory, which reserves the same
property of crisp variance.

Theorem 3.4. Let A = ((ay, b, ¢, d;);u, v, ) be a GTIFN with 2,y cut set A™ =[a,"(2),a," ()],

E&[y]z[ai‘(y),af(y)] and GTIFN Zz =((a2,b2,c2,d2);uaz,vaz) with A4,y cut set

AP =[a, ()3, (W] . A =[a, (&, (], and p, =u, =u,V, =V, =V, , for any

X, X, X, € R, then

AIMS Mathematics Volume 6, Issue 4, 3720-3740.
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var' (%A + %, A,) = 7 var'(A) + %, var'(A,) + 2x,| cov' ($(x) A 4(x,)A,),
where ¢(x) is a signal function of xe R.

Proof. We only need to prove it in the case (1) whenx, >0, x, <0.

By using Theorem 1 we easily have

OuA + %A =[xa; (4) +X,a; (A), %8 (A) +X%,8; ()] ;

(A + XA =Dxa; (1) + %85 (7). %3] (7) + X3, ()]
With Definitions 9, 10 and Theorem 2 we get

var, (x A + X, A,)

= ["IM, (A +3R,) — (43, (2) + %3, (A A2 +IM,, (4 A +%,A) - (xa," (A) +x,8, ()] AdA

= [{1M,, (A) + M, (A) = %3 (1) = %2, (AT +IXM,(A)+ XM, (&) -xa (1)~ xa, () }dA
= [ (M, (A) -3 () + %M, (A) -2, NI +[4 (M, (A) -3 (1)) + %M, (A,) -a, (1)) }1d
= %7 var, (&) +2x, [ " M (&) —a (M, (A) -3, () + (M, (A) —a ()M, (A,) -3, (A)]d2
+; var, (A,)

= %" var, (&) = 2x, [ AIM (&) —a, (M, (~A) +3,"(4) + (M, (A) ~& ()M, (-A,) +a, (1))]d2
+% var, (A,)

= %7 var; (A) = 2x%, COV/, (A,—~Ay) +%,” var, (A,)

= % var, (&) +2x,| oV, (4(x) A, B0, Ay) + %7 var, (A, ;

By Definitions 9, 10 and Theorem 2 we also get

var, (% A + %, A,)

= [ ML O0A %R = (58, ()33, () sy +IM O6A +%,2) = (%3, () + .8, ()T 7y

= [} DAML(R)+ M, (A) =xa, () =%a, (T +D6M, (A)+ 1M, (B) %@, ()= xa, () by

-[ ML (A)~a, () + (M, (A) =3, (DT +[x(M (A) -3 (7)) + %, (M, (A) ~3, () by

AIMS Mathematics Volume 6, Issue 4, 3720-3740.
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= %" var,(R)~2x) [ 7IM,(A) =8, (M, (-A)+a, ()+(M,(A)=a (MM, (-A)+a, (/)]dy
+x2 var)(A,)
=% var,(A) - 2% X, Cov, (A,~A,) +X,” var,(A,)
= % var, (A) +2/%.%;| cov, ($(x ) A, #(X,) A,) + X, var,(A,) .
Hence, we verify that
var'(x A +X%,A,) = L[var, (x A +X,A,) +var, (X A + X, A,)]
= % var'(A) + 2%.%,| cov'($(x ) A, (%) A,) + x,” var'(A,)

Similar reasoning holds for the other cases (2) x, >0, x,>0; (3) x, <0, x,>0 and (4) x, <0,

X, <0, which ends the proof.

Theorem 3.4. shows that the new possibilistic variance of linear combinations of generalized
trapezoidal intuitionistic fuzzy numbers can also be computed like in probability theory, which
reserves the similar property of crisp variance in traditional probability space.

Theorem 3.5. Let A =((a,b,c,,d,);u,,v,) be a GTIFN with 4,y cut set A" =[a, (2),a" (2],
A'l=[a,().a"(»)] and GTIFN A, =((a,b,.c,d,)u, v, ) with Ay cut set
A =[a, (1.3, (D], A =[a, ().a, ()], 4, =4, =ty Vy =V, =V,, and A cA,. Then

we have

1) var(,&i) < var(,&z) , (2) var'(,&i) < var’(;&z) :
Proof.

(1) From A < A, it follows that a; (1) <a; (1) <a (1) <a; (1) and a, (y) <a, () <a (y)<a;(y).
Forall 2c(0,u,), € (v, 1). Thatis tosay, M;(A,) <M (A)<M:(A)<M;(A,).
Hence, var, (A) =4 [*[a] (1) -a; () A2 <4 [*[a; (2) - a; ()] AdA =var, (A,),

var, (A) =4 [/ (& (1) ~a; ()P sy < £ [, [ () —a; ()1 s = var, (A).

So, we have

(i) = var, (A) er var, (A) var, (A) er var, (A;) _ var(A,).

(2) From Definition 9, we know that
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var; (A,) - var; (A)
= ["{IM, (A) -2, (AT +IM,,(A)) —a, (A }dA
— [, (A)—a, (T +IM,, (&) —a," ()] }AdA
="M, (A) M, (A)+a (1) -2, (W]IM,, (A)+M,(A)-a (1)-a, ())AdA
1M, (A) =M, (A)+a" () -a," (D]IM,, (&) + M, (A) -3 () -a,” (1)}AdA
By Definition 4 and Tchebycheff inequalities we infer that

var, (A,) —var, (A)
> [*[M,,(A)~M,(A)+a (1) -3, (AAdAx["[M,(A)+M,(A)-a (1)-a, (A)]4dA
+[1IM, (A) - M, (A)+a" () -a," (WA ["[M,(A) + M, (A)-a (1) -a,” ())AdA
=(5)’IM,,(A) =M, (A)+ M, (R) =M (A)]x M, (A) +M,(A) -M(A) - M (A,)]
+($)IM,, (A) =M, (A)+ M (A) =M (A)]x [M, (A,)+ M, (A) - M (A)-M; (A,)]

N [(M;(&)—M;(Z\Z))z _(M;(Al)—M;(Al))z] >0
5 >

2 2

Similarly we can verify that varv’(;&z) —varv’(,&l) >0.

So, we have var'(ﬂz) = var;,(Az);Lvarv’(Az) > varL(Ai);Lvarv’(Al) = var'(,z\l).

The above Theorem 3.5 in fact indicates that the subsethood of generalized trapezoidal intuitionistic
fuzzy number does entail smaller variance.

Theorem 3.6. Let E:((a,b,c,d);ua,va) be a generalized trapezoidal intuitionistic fuzzy number
with 4,7 cut set A¥ =[a"(4),a"(1)], A”' =[a (»),a"(»)] of the corresponding membership and

nonmembership of A, respectively, and 0<u, +v, <1, then we obtain var(ﬂ) < var’(,&) .
Proof. From Definitions 7, 9, 4 we easily know that

var, (A) =1 jo [(@"(1))? +(a (1))?]AdA - jo a*(1)a (1)AdA

var, (A) = [*{IM,,(A)—a (AT +[M,,(A) -a" () }dA
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= ["I@* () + @ () Vidi- [ 2, (Al () +a* (A)]ad2+2[" (M, (A))* 4dA

= ["@" () + (@ ()°JAdA-2(M,, (R)*2 + (M, (R)u? .

From the Jensen inequality and joua %d/i =1, we get
ua

[ —(a (A)+a’ (A)dAP < [" —(a (A)+a’(4)*dA.
That is,

i4[ ["A@ (1) +a* (2)daT < 32 [" 2@ ) +a"(2))da.
u, 0 u, 0

ie., é[_[:ai(a‘(/iha*(ﬂ))dﬂ]z <1 .[Ouaﬂ(a‘(/l)+a*(/1))2d/1 .
So, var,(A)—var/ (A)
=5 ["[@ (W) + (@ (A)°1dA-["a" (a ()2 +2(M,, (A))’uZ - (M, (A)*u
=—3["[@ (W) + (@ (A)’1AdA-["a"(Da (1)AdA + (M, (A)*u;
=-1 jo [a"(2) +a (D 2dA + &1 jo @ (A)+a*(A))dA) <0.
Similarly, by Definitions 7, 9, 5 we can prove
var, (A) =4 [ [(@* ()" + (& () by~ a* () ey
var, (A) = [ {IM, (A)-a” ()T +[M, (A)-a" () }dy
= [ 1@ () + @ () Idy [ 2, (Al () +a" (ldy +2[ (M, (R)* 70
= [ 1@ () + (@ () Iy —2(M, (R @-v2) + (M, (A)°A-V) .

[jjal_z

Thatis, = [j r@ (ra (T < s e a2y

(1-
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e ol 7@ @ T < s oy,

So, varv(,&)—varv’(,&)
=3[ [@ () +@ )Ty - [ & (Da )y +2(M, (A @-v2) (M, (A)*L-V7)

5[ @ () + @ (W 1da [ @' (Da ()adz + (M, (R @)

=—i[ [a" W +a P02 + [y ()+a (i <0.

var,,(A) +var, (A) 3 var! (A) +var, (A)

—var'(A).
5 5 (A)

Therefore, we get var(A) =

The above Theorem 3.6 indicates that the new presented possibilistic variance var’(ﬂ) of

generalized trapezoidal intuitionistic fuzzy number is greater than the existing variance var(,&)
because it considers all the weighted deviation squares between the lower bound, upper bound of

level cut interval of membership of A and possibilistic mean.

Remark 2. If ,&:((a,b,c,d);ua ,V, ) is a symmetric generalized trapezoidal intuitionistic fuzzy
number, u,,v, are two constants satisfying 0 <u, +v, <1, then we have var(,&) = var'(,&) :
Proof. Since A= ((a,b,c,d);u, ,v, ) isasymmetric TIFN, we know a+d =b+c and d-c=b-a.

For any A €[0,u,], y €[v,,1], the 1 -level cut set and y -cut set of TIFN A can be expressed as

follows.
Al ={x/ uz(x) > }=[a" (1),a"(A)] =[a+(b-a)A/u,, d—(d-c)A/u,)]

=[b-s(1), c+s(A)];

A ={x/v; () < r¥=[a" (), 2" (N1 =[(b-av, — y(b—a) [1-V,),(c ~dv, + 7(d —c)) /(1-,)].

=[b-a(»), c+a(»]

where s(1)=b-a—-(b—-a)i/u,, a(») =[(@-b)v, +y(b—-a)]/(1-v,).

According to Definitions 4, 5 of possibilistic mean of TIFN A, one easily get
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M, (A) :u—12 jo Afa (1) +a (A)]dA :uiz jo Alb—s(A)+c+s(A)]dA = L(b+c),

M(R) = [l )+ ()Idy == [ b= +e+a()ldy = 4(bc).

Hence,

var, (A) =4 [ “[a" (1) ~a' ()P 4dA =3 [*[(b—s(A)) — (c+S(A) A2 = [ b -c-2s(A) dA;
var, (A) =4[ [a” () -a" (N sy =3[ [0-a0) - (c+aNTF sy =3 ], b-c—2q()F a7
And var,(A) = [*[(M,(A)-a (1)) +(M,, (A)-a" (2))*]ad2
= [} A~ (- SNT +%° - e+ s(A)T)dA
-[ AR+ ST +[5E - s())dA
= [} 225 ~s()F)dA =3[ Ab~c-2s(A)PdA = var, (A);
var, (R) = [[ [(M,(B) -2~ (1)* +(M, (&) -a" ()"
= [, 7(IM,(R)~ (b—a())T +[M,(A) - (c+a(IT)dy
= || 75— (0—dO)T +I25—(c+a(NT)dy
= [ A2+ QUIF + 50Ty =4, yb-c—2a()dy =var, (A).

var, (;&) +var, (Z\) _ var, (,&) +var’ (Z\)

—var'(A).
2 > (A)

Thus, var(,&) =

4. Discussion on application advantage of possibilistic mean and variance of GTIFN

Recently, some arithmetic operations of generalized trapezoidal intuitionistic fuzzy numbers
have been utilized in analyzing fuzzy system reliability [26,27]. Also, many multi-attribute decision
making and programming methods based on generalized trapezoidal intuitionistic fuzzy number have
been studied in [28-30]. Although GTIFNs have been applied in dealing with uncertain problem,
there is few study on the possibilistic mean and variance of GTIFN. In this section we will discuss
some advantages of the proposed possibilistic mean and variance of GTIFN below.

4.1. A new ranking method for GTIFN considering the risk attitude of decision-maker
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In fact, for any GTIFN E:((a,b,c,d);ua,va) , the possibilistic mean M(A) may be
respectively viewed as the central value of GTIFN A, and the possibilistic variance Var(A) may be

regarded as the global spreads of GTIFN A. Thus, from the membership function point of view, the

larger the possibilistic mean, the greater the GTIFN; the smaller the possibilistic variance, the greater
the GTIFN.

Hence, we can define the rank index of generalized trapezoidal intuitionistic fuzzy number as

Rank(A) = M (A) — pVar (A),
where p represents the risk attitude of decision-maker(DM). If 0< p <0.5, it shows that DM is risk-

like; If p=0.5, it shows that DM is risk-neutral; If 0.5< p <1, it shows that DM is risk-averse.

The new ranking method of GTIFNs {A} can be obtained according to the ascending order of

rank index as following:

(1) If Rank(A) < Rank(A,)then A <A, ;
(2) If Rank(A)=Rank(A,)then A = A;;

(3) If Rank(A) > Rank(A,)then A > A, .

4.2. Intuitionistic fuzzy portfolio model based on the new possibilistic mean and variance of GTIFNS
In this part, we discuss the portfolio decision problem with generalized trapezoidal intuitionistic

fuzzy number returns. Let us consider a fuzzy portfolio selection problem. Suppose investor has
initial wealth 1 and may buy m assets in the capital investment. The investor intends to allocate

his/her wealth among the m risky assets for making accounting investment plan. X = (%, X,,--+,X.,)
is the investor portfolio vector representing the capital allocation vector among m securities, x; is
the investment capital proportion of risky asset i; I.,u, are the lower bound and upper bound of the
capital invested in risky asset i(L<i<m), respectively. Suppose the future return rates of the

alternative m assets are easily assessed by GTIFN A =((a,,b,,c,,d.);u, ,v, ), Vi =12,---,m. In order

to construct the intuitionistic fuzzy portfolio decision model, we first introduce two important
concepts which will be used in the proposed inutitionistic fuzzy portfolio decision model.
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By using the previous Theorem 2 and Definition 6 we can compute the expected mean of fuzzy
return of portfolio X =(x,, X,,--+,X,) as E(X) =ZT=lxiM (5,) . By using the above-mentioned
Theorem 3.4 and Definition 9 we can evaluate the possibilistic variance of intuitionistic fuzzy return

of portfolio X = (X, X,,*-*,X,,) as

Var(X) :Var(ZleiR) =>" var(A) T2 XX cov(A, A).

Assume that the whole investment process is self-financing, that is, the investor does not invest
the additional capital during the portfolio selection. Inspired by the classic Markovitz portfolio
theory, we establish the following intuitionistic fuzzy portfolio model by maximizing the expected
mean of portfolio return and minimizing the possibilistic variance risk of portfolio as below.

max E(X) :ZLXiM(A)

var(3" xA) <k
m
stoqY %=1 ,
0<I <x <u, <1
where « is the selected parameters by investor reflecting the risk attitude of investor. It means the
upper bound of risk tolerance of the portfolio movement.
By applying Lingo or Matlab Optimization Toolbox we can easily solve the above

programming models. Finally, we can obtain the optimal portfolio strategy X =(x,,%,-:-,X.),
which is the optimal solver corresponding to the maximum objective function value, x; is the

optimal investment wealth proportion in risky asset i (1<i<m) under the risk constraints.

5. Conclusions

In this article, we introduce some notes of possibilistic variance of generalized trapezoidal
intuitionistic fuzzy number and then discuss some important properties about possibilistic mean and
variance of GTIFN based on possibility theory. The presented possibilistic mean and variance of
GTIFN can be used to measure the expected return and risk of portfolio with GTIFN return. In the
future, we will investigate the intuitionistic fuzzy portfolio decision-making and selection problem
by maximizing possibilistic mean and minimizing possibilistic variance of portfolio.
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