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Sivas Cumhuriyet University, Department of Mathematics Sivas, Turkey

* Correspondence: Email: yguldu@cumhuriyet.edu.tr; Tel: +903462191010;
Fax: +903462191186.

Abstract: In this paper, an inverse problem is considered for Dirac equations with boundary and
transmission conditions eigenvalue depending as rational function of Herglotz-Nevanlinna. We give
some spectral properties of the problem and also it is shown that the coefficients of the problem are
uniquely determined by Weyl function and by classical spectral data made up of eigenvalues and
norming constants.

Keywords: Dirac equations; transmission condition; Herglotz-Nevanlinna type function; inverse
problem
Mathematics Subject Classification: 34A55, 34B24, 34L05

1. Introduction

We consider the system of Dirac equations

`y(x) := By′(x) + Q(x)y(x) = λy(x), x ∈ [a, b] , (1)

where B =

(
0 1
−1 0

)
, Q(x) =

(
p(x) q(x)
q(x) −p (x)

)
, y(x) =

(
y1(x)
y2(x)

)
, p(x), q(x) are real valued functions

in L2 (a, b) and λ is a spectral parameter, with boundary conditions

U (y) := y2(a) + f1(λ)y1(a) = 0 (2)

V (y) := y2(b) + f2(λ)y1(b) = 0 (3)

and with transmission conditions{
y1(wi + 0) = αiy1(wi − 0)
y2(wi + 0) = α−1

i y2(wi − 0) + hi (λ) y1(wi − 0)
(i = 1, 2) (4)
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where fi (λ), hi (λ) (i = 1, 2) are rational functions of Herglotz-Nevanlinna type such that

fi (λ) = aiλ + bi −

Ni∑
k=1

fik

λ − gik

(5)

hi (λ) = miλ + ni −

Pi∑
k=1

uik

λ − tik
(i = 1, 2) (6)

ai, bi, fik, gik,mi, ni, uik and tik are real numbers, a1 < 0, f1k < 0, a2 > 0, f2k > 0,mi > 0, uik > 0 and
gi1 < gi2 < ... < giNi, ti1 < ti2 < ... < tiPi, αi > 0 and a < w1 < w2 < b. In special case, when fi(λ) = ∞,
conditions (2) and (3) turn to Dirichlet conditions y1(a) = y1(b) = 0 respectively. Moreover, when
hi (λ) = ∞, conditions (4) turn to y1(w2 +0) = α2y1(w2−0) , y2(w2 +0) = α−1

2 y2(w2−0)+h2 (λ) y1(w2−0)
and y1(w1 +0) = α1y1(w1−0) , y2(w1 +0) = α−1

1 y2(w1−0)+h1 (λ) y1(w1−0) according to order i = 1, 2.
Inverse problems of spectral analysis compose of recovering operators from their spectral data. Such

problems arise in mathematics, physics, geophysics, mechanics, electronics, meteorology and other
branches of natural sciences. Inverse problems also play important role in solving many equations in
mathematical physics.

R1 (λ) y1 (a) + R2 (λ) y2 (a) = 0 is a boundary condition depending spectral parameter where R1 (λ)
and R2 (λ) are polynomials. When deg R1 (λ) = deg R2 (λ) = 1, this equality depends on spectral
parameter as linearly. On the other hand, it is more difficult to search for higher orders of polynomials

R1 (λ) and R2 (λ). When
R1 (λ)
R2 (λ)

is rational function of Herglotz-Nevanlinna type such that f (λ) = aλ+

b −
N∑

k=1

fk

λ − gk

in boundary conditions, direct and inverse problems for Sturm-Liouville operator have

been studied [1–11]. In this paper, direct and inverse spectral problem is studied for the system of Dirac
equations with rational function of Herglotz-Nevanlinna in boundary and transmission conditions.

On the other hand, inverse problem firstly was studied by Ambarzumian in 1929 [12]. After that,
G. Borg was proved the most important uniqueness theorem in 1946 [13]. In the light of these studies,
we note that for the classical Sturm-Liouville operator and Dirac operator, the inverse problem has
been studied fairly (see [14–20], where further references and links to applications can be found).
Then, results in these studies have been extended to other inverse problems with boundary conditions
depending spectral parameter and with transmission conditions. Therefore, spectral problems for
differential operator with transmission conditions inside an interval and with eigenvalue dependent
boundary and transmission conditions as linearly and non-linearly have been studied in so many
problems of mathematics as well as in applications (see [21–43] and other works, and see [44–54] and
other works cited therein respectively).

The aim of this article is to get some uniqueness theorems for mentioned above Dirac problem
with eigenvalue dependent as rational function of Herglotz-Nevanlinna type in both of the boundary
conditions and also transmission conditions at two different points. We take into account inverse
problem for reconstruction of considered boundary value problem by Weyl function and by spectral
data {λn, ρn}n∈Z and {λn, µn}n∈Z. Although the boundary and transmission conditions of the problem are
not linearly dependent on the spectral parameter, this allows the eigenvalues to be real and to define
normalizing numbers.
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2. Preliminaries

Consider the space H := L2(a, b)⊕L2(a, b)⊕CN1+1⊕CN2+1⊕CP1+1⊕CP2+1 and element Y in H is in the
form of Y = (y1(x), y2(x), τ, η, β, γ), such that τ =

(
Y1,Y2, . . . ,YN1 ,YN1+1

)
, η =

(
L1, L2, . . . , LN2 , LN2+1

)
,

β =
(
R1,R2, . . . ,RP1 ,RP1+1

)
, γ =

(
V1,V2, . . . ,VP2 ,VP2+1

)
. H is a Hilbert space with the inner product

defined by

< Y,Z >:=

b∫
a

(y1(x)z1(x) + y2(x)z2(x)) dx

−
YN1+1Y ′N1+1

a1
+

LN2+1L′N2+1

a2
+
α1

m1
RP1+1R′P1+1 (7)

+
α2

m2
VP2+1V ′P2+1 +

N1∑
k=1

YkY ′k

(
−

1
f1k

)

+

N2∑
k=1

LkL′k
f2k

+

P1∑
k=1

α1
RrR′r
u1k

+

P2∑
k=1

α2
VrV ′r
u2k

for Y = (y1(x), y2(x), τ, η, β, γ) ve Z = (z1(x), z2(x), τ′, η′, β′, γ′) in H. Define the operator T on the
domain

D(T ) = {Y ∈ H : y1(x), y2(x) ∈ AC (a, b) ,

ly ∈ L2 (a, b) , y1(w+
i ) = αiy1(w−i ), i = 1, 2

YN1+1 := −a1y1(a), LN2+1 := −a2y1(b),

RP1+1 := −m1y1(w−1 ),VP2+1 := −m2y1(w−2 )}

such that
TY := (ly,Tτ,Tη,Tβ,Tγ) (8)

where

Tτ = TYi =


g1iYi − f1iy1(a), i = 1,N1

y2(a) + b1y1(a) +

N1∑
k=1

Yk, i = N1 + 1
(9)

Tη = T Li =


g2iLi − f2iy1(b), i = 1,N2

y2(b) + b2y1(b) +

N2∑
k=1

Lk, i = N2 + 1
(10)

Tβ = TRi =


t1iRi − u1iy1(w−1 ), i = 1, P1

−y2(w+
1 ) + α−1

1 y2

(
w−1

)
+ n1y1

(
w−1

)
+

P1∑
k=1

Rk, i = P1 + 1
(11)
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Tγ = TVi =


t2iVi − u2iy1(w−2 ), i = 1, P2

−y2(w+
2 ) + α−1

2 y2

(
w−2

)
+ n2y1

(
w−2

)
+

P2∑
k=1

Vk, i = P2 + 1.
(12)

Accordingly, equality TY = λY corresponds to problem (1)–(4) under the domain D(T ) ⊂ H.
Theorem 1. The eigenvalues of the operator T and the problem (1)–(4) coincide.
Proof. Assume that λ is an eigenvalue of T and Y(x) = (y1(x), y2(x), τ, η, β, γ) ∈ H is the eigenvector
corresponding to λ. Since Y ∈ D(T ), it is obvious that the condition y1(wi + 0) − αiy1(wi − 0) = 0
and Eq (1) hold. On the other hand,boundary conditions (2)–(3) and the second condition of (4) are

satisfied by the following equalities;
Tτ = TYi = g1i − Yi − f1iy1(a) = λYi, i = 1,N1

TYN1+1 = y2(a) + b1y1(a) +

N1∑
k=1

Yk = −a1y1 (a) λ

Tη = T Li = g2iLi − f2iy1(b) = λLi, i = 1,N2

T LN2+1 = y2(b) + b2y1(b) +

N2∑
k=1

Lk = −a2y1 (b) λ

Tβ = TRi = t1iRi − u1iy1(w−1 ), i = 1, P1

TRP1+1 = −y2(w+
1 ) + α−1

1 y2

(
w−1

)
+ n1y1

(
w−1

)
+

P1∑
k=1

Rk = −m1y1

(
w−1

)
λ

Tγ = TVi = t2iVi − u2iy1(w−2 ), i = 1, P2

TVP2+1 = −y2(w+
2 ) + α−1

2 y2

(
w−2

)
+ n2y1

(
w−2

)
+

P2∑
k=1

Vk = −m2y1

(
w−2

)
λ.

If λ = gik (i = 1, 2 and k = {1, 2, . . .Ni}) are eigenvalues of operator T , then, from above equalities
and the domain of T , equalities (1), y1(a, g1k) = 0, y1(b, g2k) = 0 and (4) are satisfied.

Moreover, If λ = tik (i = 1, 2 and k = {1, 2, . . . Pi}) are eigenvalues of operator T , from above
equalities and the domain of T , Eqs (1)–(3) and y1(w−i , tik) = 0 = y1(w+

i , tik) are valid. In that case, λ is
also an eigenvalue of L.

Conversely, let λ be an eigenvalue of L and
(

y1(x)
y2(x)

)
be an eigenfunction corresponding to λ.

If λ , gik (i = 1, 2 , k = {1, 2, . . .Ni}) and λ , tik (i = 1, 2 , k = {1, 2, . . . Pi}) then, it is clear that λ is an
eigenvalue of T and the vector

Y =

(
y1(x), y2(x), f11

g11−λ
y1(a), f12

g12−λ
y1(a), . . . , f1N1

g1N1−λ
y1(a),−a1y1 (a) ,

f21
g21−λ

y1(b), f22
g22−λ

y1(b), . . . , f2N2
g2N2−λ

y1(b),−a2y1 (b) ,

u11
t11−λ

y1(w−1 ), u12
t12−λ

y1(w−1 ), . . . , u1P1
t1P1−λ

y1(w−1 ),−m1y1(w−1 ),

u21
t21−λ

y1(w−2 ), u22
t22−λ

y1(w−2 ), . . . , u2P2
t2P2−λ

y1(w−2 ),−m2y1(w−2 )
)

is the eigenvector corresponding to λ.

If λ = g1k (k = {1, 2, . . .N1}), then,
Y =

(
y1(x), y2(x),Y1,Y2, . . . ,YN1 , 0, L1, L2, . . . , LN2 , LN2+1,R1,R2, . . . ,RP1 ,RP1+1, V1,V2, . . . ,VP2 ,VP2+1

)
,
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Yi =

{
0, i , k
−y2 (a) , i = k

, i = 1, 2, . . . ,N1 is the eigenvector of T corresponding to g1k.

If λ = g2k (k = {1, 2, . . .N2}), then,
Y =

(
y1(x), y2(x),Y1,Y2, . . . ,YN1 ,YN1+1, L1, L2, . . . , LN2 , 0,R1,R2, . . . ,RP1 ,RP1+1, V1,V2, . . . ,VP2 ,VP2+1

)
,

Li =

{
0, i , k
−y2 (b) , i = k

, i = 1, 2, . . . ,N2 is the eigenvector of T corresponding to g2k.

Furthermore, if λ = t1k (k = {1, 2, . . . P1}), then,
Y =

(
y1(x), y2(x),Y1,Y2, . . . ,YN1 ,YN1 , L1, L2, . . . , LN2 , LN2+1,R1,R2, . . . ,RP1 , 0, V1,V2, . . . ,VP2 ,VP2+1

)
,

Ri =

 0, i , k
y2

(
w+

1

)
− α−1

1 y2

(
w−1

)
, i = k

, i = 1, 2, . . . , P1 is the eigenvector corresponding to t1k.

If λ = t2k (k = {1, 2, . . . P2}), then,
Y =

(
y1(x), y2(x),Y1,Y2, . . . ,YN1 ,YN1 , L1, L2, . . . , LN2 , LN2+1,R1,R2, . . . ,RP1 ,RP1+1, V1,V2, . . . ,VP2 , 0

)
,

Vi =

 0, i , k
y2

(
w+

2

)
− α−1

2 y2

(
w−2

)
, i = k

, i = 1, 2, . . . , P2 is the eigenvector corresponding to

t2k. �

It is possible to write fi (λ) as follows:

fi (λ) =
ai(λ)
bi(λ)

, i = 1, 2

where

ai(λ) = (aiλ + bi)
Ni∏

k=1
(λ − gik) −

Ni∑
k=1

Ni∏
j=1( j,k)

fik

(
λ − gi j

)
bi(λ) =

Ni∏
k=1

(λ − gik).

Assume that a2(λ) and b2(λ) do not have common zeros.
Let functions ϕ(x, λ) and ψ(x, λ) be the solutions of (1) under the initial conditions

ϕ(a, λ) =

(
−b1(λ)
a1(λ)

)
, ψ(b, λ) =

(
−b2(λ)
a2(λ)

)
(13)

as well as the transmission conditions (4) respectively such that

ϕ(x, λ) =


ϕ1(x, λ), x < w1

ϕ2(x, λ), w1 < x < w2

ϕ3(x, λ), w2 < x < b
and ψ(x, λ) =


ψ3(x, λ), x < w1

ψ2(x, λ), w1 < x < w2

ψ1(x, λ), w2 < x < b
.

Then it can be easily proven that ϕi(x, λ) and ψi(x, λ), i = 1, 3 are the solutions of the following integral
equations;

ϕi+1,1(x, λ) = αiϕi1(wi, λ) cos λ (x − wi)

−
[
α−1

i ϕi2(wi, λ) + hi(λ)ϕi1(wi, λ)
]

sin λ (x − wi)

+
x∫

wi

[
p(t) sin λ(x − t) + q(t) cos λ(x − t)

]
ϕi+1,1(t, λ)dt

AIMS Mathematics Volume 6, Issue 4, 3686–3702.
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+
x∫

wi

[
q(t) sin λ(x − t) − p(t) cos λ(x − t)

]
ϕi+1,2(t, λ)dt,

ϕi+1,2(x, λ) = αiϕi1(wi, λ) sin λ (x − wi)

+
[
α−1

i ϕi2(wi, λ) + hi(λ)ϕi1(wi, λ)
]

cos λ (x − wi)

+
x∫

wi

[
−p(t) cos λ(x − t) + q(t) sin λ(x − t)

]
ϕi+1,1(t, λ)dt

+
x∫

wi

[
−q(t) cos λ(x − t) − p(t) sin λ(x − t)

]
ϕi+1,2(t, λ)dt, for i = 1, 2

and
ψi1 (x, λ) = α−1

i ψi+1,1 (wi, λ) cos λ (x − wi)

+
(
−αiψi+1,2 (wi, λ) + hi (λ)ψi+1,1 (wi, λ)

)
sin λ (x − wi)

−

wi∫
x

[
p(t) sin λ (x − t) + q(t) cos λ (x − t)

]
ψi1 (t, λ) dt

+
wi∫
x

[
−q(t) sin λ (x − t) + p(t) cos λ (x − t)

]
ψi2 (t, λ) dt

ψi2 (x, λ) = α−1
i ψi+1,1 (wi, λ) sin λ (x − wi)

+
(
αiψi+1,2 (wi, λ) − hi (λ)ψi+1,1 (wi, λ)

)
cos λ (x − wi)

+
wi∫
x

[
p(t) cos λ (x − t) − q(t) sin λ (x − t)

]
ψi1 (t, λ) dt

+
w2∫
x

[
q(t) cos λ (x − t) + p(t) sin λ (x − t)

]
ψi2 (t, λ) dt, for i = 2, 1.

Lemma 1. For the solutions ϕi(x, λ) and ψi(x, λ), i = 1, 3 as |λ| → ∞, the following asymptotic
estimates hold;

ϕ11(x, λ) =
{
a1λ

N1+1 sin λ(x − a) + o
(
|λ|N1+1 exp |Im λ| [(x − a)]

)
,

ϕ12(x, λ) =
{
a1λ

N1+1 cos λ(x − a) + o
(
|λ|N1+1 exp |Im λ| [(x − a)]

)
,

ϕ21(x, λ) =

 a1m1λ
L1+N1+2 sin λ (w1 − a) sin λ (x − w1)

+o
(
|λ|L1+N1+2 exp |Im λ| [(w1 − a) + (x − w1)]

)
ϕ22(x, λ) =

 a1m1λ
L1+N1+2 sin λ (w1 − a) cos λ (x − w1)

+o
(
|λ|L1+N1+2 exp |Im λ| [(w1 − a) + (x − w1)]

)
ϕ31(x, λ) =

 −m2m1a1λ
L1+L2+N1+3 sin λ (w1 − a) sin λ (w2 − w1) sin λ (x − w2)

+o
(
|λ|L1+L2+N1+3 exp |Im λ| [(w1 − a) + (w2 − w1) + (x − w2)]

)
AIMS Mathematics Volume 6, Issue 4, 3686–3702.
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ϕ32(x, λ) =

 m2m1a1λ
L1+L2+N1+3 sin λ (w1 − a) sin λ (w2 − w1) cos λ (x − w2)

+o
(
|λ|L1+L2+N1+3 exp |Im λ| [(w1 − a) + (w2 − w1) + (x − w2)]

)
ψ11(x, λ) =

 −a2λ
N2+1 sin λ (x − b)

+o
(
|λ|

N2+1
exp |Im λ| [(x − b)]

)
ψ12(x, λ) =

 a2λ
N2+1 cos λ (x − b)

+o
(
|λ|

N2+1
exp |Im λ| [(x − b)]

)
ψ21(x, λ) =

 −m2a2λ
N2+L2+2 sin λ (w2 − b) sin λ (x − w2)

+o
(
|λ|N2+L2+2 exp |Im λ| [(w2 − b) + (x − w2)]

)
ψ22(x, λ) =

 m2a2λ
N2+L2+2 sin λ (w2 − b) cos λ (x − w2)

+o
(
|λ|N2+L2+2 exp |Im λ| [(w2 − b) + (x − w2)]

)

ψ31(x, λ) =


−m1m2a2λ

N2+L1+L2+3 sin λ (w2 − b) sin λ (w1 − w2) sin λ (x − w1)

+o
(
|λ|N2+L1+L2+3 exp |Im λ| [(w2 − b) + (w1 − w2) + (x − w2)]

)
ψ32(x, λ) =

 m1m2a2λ
N2+L1+L2+3 sin λ (w2 − b) sin λ (w1 − w2) cos λ (x − w1)

+o
(
|λ|N2+L1+L2+3 exp |Im λ| [(w2 − b) + (w1 − w2) + (x − w1)]

)
Theorem 2. The eigenvalues {λn}n∈Z of problem L are real numbers.
Proof. It is enough to prove that eigenvalues of operator T are real. By using inner product (7), for Y
in D (T ), we compute that

〈TY,Y〉 =

b∫
a

lyydx −
1
a1

TYN1+1YN1+1 +
1
a2

T LN2+1LN2+1

+
α1

m1
TRP1+1RP1+1 +

α2

m2
TVP2+1VP2+1

N1

−
∑

k=1

TYkYk

(
1
f1k

)
+

N2∑
k=1

T LkLk

(
1
f2k

)
+

P1∑
k=1

α1TRkRk

(
1

u1k

)
+

P2∑
k=1

α2TVkVk

(
1

u2k

)
.

If necessary arrangements are made, we get

〈TY,Y〉 =

b∫
a

p (x)
(
|y1|

2
− |y2|

2
)

dx +

b∫
a

q (x) 2 Re (y2y1) dx + b1 |y1 (a)| +
N1∑

k=1

2 Re (Yky1 (a))

−b2 |y1 (b)|2 −
N2∑

k=1

2 Re (Lky1 (b)) − a1n1

∣∣∣∣y1

(
w−1

)∣∣∣∣2 − P1∑
k=1

a12 Re
(
Rky1

(
w−1

))
−a2n2

∣∣∣∣y1

(
w−2

)∣∣∣∣2 − P2∑
k=1

a22 Re
(
Vky1

(
w−2

))
−

N1∑
k=1

g1k |Yk|
2 1

f1k
+

N2∑
k=1

g2k

f2k
|Lk|

2
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+

P1∑
k=1

a1
t1k

u1k
|Rk|

2 +

P2∑
k=1

a2
t2k

u2k
|Vk|

2
−

b∫
a

2 Re
(
y2y1

′
)

dx.

Accordingly, since 〈TY,Y〉 is real for each Y in D (T ), λ ∈ R is obtained. �

Lemma 2. The equality ‖Yn‖
2 = ρn is valid such that Yn is eigenvector corresponding to eigenvalue λn

of T .
Proof. Let λn , gik. When λn = gik, following proof is done with minor changes. By using the structure
of D (T ) and the Eqs (8)–(12), we get

‖Yn‖
2 =

b∫
a

(
ϕ2

1 (x, λn) + ϕ2
2 (x, λn)

)
dx

−

∣∣∣YN1+1

∣∣∣2
a1

+

∣∣∣LN2+1

∣∣∣2
a2

+
α1

m1

∣∣∣RP1+1

∣∣∣2 (14)

+
α2

m2

∣∣∣VP2+1

∣∣∣2 − N1∑
k=1

|Yk|
2

f1k

+

N2∑
k=1

|Lk|
2

f2k
+

P1∑
k=1

α1

u1k
|Rk|

2 +

P2∑
k=1

α2

u2k
|Vk|

2

=

b∫
a

(
ϕ2

1 (x, λn) + ϕ2
2 (x, λn)

)
dx − a1ϕ

2
1 (a, λn) + a2ϕ

2
1 (b, λn) + m1α1ϕ

2
1 (w1 − 0, λn)

+m2α2ϕ
2
1 (w2 − 0, λn) −

N1∑
k=1

f1kϕ
2
1 (a, λn)

(λn − g1k)2 +

N2∑
k=1

f2kϕ
2
1 (b, λn)

(λn − g2k)2

+

P1∑
k=1

α1u1kϕ
2
1 (w1 − 0, λn)(
λn − t1k

)2 +

P2∑
k=1

α2u2kϕ
2
1 (w2 − 0, λn)(
λn − t2k

)2

=

b∫
a

(
ϕ2

1 (x, λn) + ϕ2
2 (x, λn)

)
dx − ϕ2

1 (a, λn)

a1 +

N1∑
k=1

f1k

(λn − g1k)2


+ϕ2

1 (b, λn)

a2 +

N2∑
k=1

f2k

(λn − g2k)2

 + α1ϕ
2
1 (w1 − 0, λn)

m1 +

P1∑
k=1

u1k(
λn − t1k

)2


+α2ϕ

2
1 (w2 − 0, λn)

m2 +

P2∑
k=1

u2k(
λn − t2k

)2


=

b∫
a

(
ϕ2

1 (x, λn) + ϕ2
2 (x, λn)

)
dx − ϕ2

1 (a, λn) f
′

1 (λn) + ϕ2
1 (b, λn) f

′

2 (λn)

+α1ϕ
2
1

(
w−1 , λn

)
h
′

1 (λn) + α2ϕ
2
1

(
w−2 , λn

)
h
′

2 (λn) = ρn. �

On the other hand, the expression

W (ϕ, ψ) = ϕ1(x, λ)ψ2(x, λ) − ϕ2(x, λ)ψ1(x, λ)
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is called characteristic function of problem (1)-(4). Moreover, since solutions ϕ (x, λ) and ψ (x, λ)
satisfy the problem L,
for ∀x ∈ [a, b]

∂

∂x
W (ϕ, ψ)

= ϕ′1 (x, λ)ψ2 (x, λ) + ψ′2 (x, λ)ϕ1 (x, λ) − ϕ′2 (x, λ)ψ1 (x, λ) − ψ′1 (x, λ)ϕ2 (x, λ)

=
[
q(x)ϕ1 (x, λ) − p(x)ϕ2 (x, λ) − λϕ2 (x, λ)

]
ψ2 (x, λ)

+
[
−p(x)ψ1 (x, λ) − q(x)ψ2 (x, λ) + λψ1 (x, λ)

]
ϕ1 (x, λ)

−
[
−p(x)ϕ1 (x, λ) − q(x)ϕ2 (x, λ) + λϕ1 (x, λ)

]
ψ1 (x, λ)

−
[
q(x)ψ1 (x, λ) − p(x)ψ2 (x, λ) − λψ2 (x, λ)

]
ϕ2 (x, λ) = 0

is obtained. Furthermore, since solutions ϕ(x, λ) and ψ(x, λ) also satisfy transmission conditions (4),
we get

W(wi + 0) = ϕ1 (wi + 0, λ)ψ2 (wi + 0, λ) − ϕ2 (wi + 0, λ)ψ1 (wi + 0, λ)

= αiϕ1 (wi − 0, λ)
[
α−1

i ψ2 (wi − 0, λ) + hi (λ)ψ1 (wi − 0, λ)
]

−
[
α−1

i ϕ2 (wi − 0, λ) + hi (λ)ϕ1 (wi − 0, λ)
]
αiψ1 (wi − 0, λ)

= ϕ1 (wi − 0, λ)ψ2 (wi − 0, λ) − ϕ2 (wi − 0, λ)ψ1 (wi − 0, λ)

= W(wi − 0).

Therefore, since characteristic function W (ϕ, ψ) is independent from x,

W{ϕ, ψ} := ∆(λ)
= ϕ1(x, λ)ψ2(x, λ) − ϕ2(x, λ)ψ1(x, λ)
= a2 (λ)ϕ1(b, λ) + b2 (λ)ϕ2(b, λ)
= −b1 (λ)ψ2(a, λ) − a1 (λ)ψ1(a, λ)

can be written.
It is clear that ∆(λ) is an entire function and its zeros namely {λn}n∈Zcoincide with the eigenvalues

of the problem L.

Accordingly, for each eigenvalue λn equality ψ (x, λn) = snϕ (x, λn) is valid where sn =
ψ1 (a, λn)
−b1 (λn)

=

ψ2 (a, λn)
a1 (λn)

.

On the other hand, since ai (gik) , 0 ve bi (gik) = 0 for ∀i ∈ {1, 2} and k = {1, 2, . . . ,Ni}, gik is an
eigenvalue if and only if ϕ1 (b, g2k) = 0, ϕ1 (a, g1k) = 0 i.e., ∆(gik) = 0.

At the same time, tik is an eigenvalue if and only if ϕ1(w−i , tik) = 0 = ϕ1(w+
i , tik) i.e., ∆(tik) = 0 such

that i = 1, 2 and k = {1, 2, . . . Pi}.

Theorem 3. Eigenvalues of problem L are simple.
Proof. Let λn , gik and ϕ (x, λn) be eigenfunction corresponds to the eigenvalue λn. In that case, the
Eq (1) can be written for ψ (x, λ) and ϕ (x, λn) as follows;

Bψ′ (x, λ) + Q(x)ψ (x, λ) = λψ (x, λ)
Bϕ′ (x, λn) + Q(x)ϕ (x, λn) = λnϕ (x, λn).
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If we multiply these equations by ϕ (x, λn) and ψ (x, λ) respectively and add side by side, we get the
following equality;

(ψ2 (x, λ)ϕ1 (x, λn) − ψ1 (x, λ)ϕ2 (x, λn))
′

= (λ − λn) (ψ1 (x, λ)ϕ1 (x, λn) + ψ2 (x, λ)ϕ2 (x, λn)) .
Then if last equality is integrated over the interval [a, b] and the initial conditions (13) and transmission
conditions (4) are used to get

b∫
a

(ψ1 (x, λ)ϕ1 (x, λn) + ψ2 (x, λ)ϕ2 (x, λn)) dx

+α2ϕ1

(
w−2 , λn

)
ψ1

(
w−2 , λ

) h2 (λ) − h2 (λn)
λ − λn

+α1ψ1

(
w−1 , λ

)
ϕ1

(
w−1 , λn

) h1 (λ) − h1 (λn)
λ − λn

+ψ1(b, λn)ϕ1(b, λn)
f2 (λ) − f2 (λn)

λ − λn

−ϕ1 (a, λn)ψ1 (a, λ)
f1 (λ) − f1 (λn)

λ − λn

= −

(
∆(λ) − ∆(λn)

(λ − λn)

)
.

Then, considering that ψ (x, λn) = snϕ (x, λn)
if the limit is passed when λ→ λn, snρn = −∆̇(λn) is obtained.

If g1k and g2k are non-simple eigenvalues then ϕ1 (a, g1k) = 0, ϕ1 (b, g2k) = 0 and so
b∫

a

(
ϕ2

1 (x, λn) + ϕ2
2 (x, λn)

)
dx = −

[
α1ϕ

2
1

(
w−1 , λn

)
h
′

1 (λn) + α2ϕ
2
1

(
w−2 , λn

)
h
′

2 (λn)
]

is obtained. Since α1,

α2 and for all λn, h
′

1 (λn), h
′

2 (λn) are positive, we have a contradiction. Therefore, eigenvalues gik are
also simple. �

3. Inverse problem

Using expressions a2 (λ), b2 (λ) and asymptotic behaviour of solution ϕ (x, λ), we obtain the
following asymptotic of characteristic function ∆(λ) as |λ| → ∞;∆(λ) =

−a1a2m1m2λ
N1+N2+L1+L2+4 sin λ (w1 − a) sin λ (w2 − w1) sin λ (b − w2)+o

(
|λ|N1+N2+L1+L2+4 e|Im λ|(b−a)

)
.

Let Φ (x, λ) :=
(

Φ1 (x, λ)
Φ2 (x, λ)

)
be the solution of Eq (1) under the conditions U (Φ) = 1, V(Φ) = 0 as

well as the transmission conditions (4).
Since V(Φ) = 0 = V(ψ), it can be supposed that Φ (x, λ) = kψ (x, λ) (k , 0) where k is a constant.

W(ϕ,Φ) = ϕ1 (x, λ) Φ2 (x, λ) − ϕ2 (x, λ) Φ1 (x, λ)|x=a

= −b1 (λ) Φ2 (a, λ) − a1 (λ) Φ1 (a, λ)

= −U (Φ) = −1.

By the relation U (Φ) = 1, we get k
[
b1 (λ)ψ2 (a, λ) + a1 (λ)ψ1 (a, λ)

]
= 1. Since U (ψ) = −∆(λ), we

obtain Φ (x, λ) = kψ (x, λ) = −
ψ (x, λ)
∆ (λ)

for λ , λn.
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Let S (x, λ) =

(
S 1 (x, λ)
S 2 (x, λ)

)
and C (x, λ) =

(
C1 (x, λ)
C2 (x, λ)

)
be solutions of (1) satify the conditions

S (a, λ) =

(
0
1

)
, C (a, λ) =

(
1
0

)
and transmission conditions (4).

Accordingly,the following equalities are obtained:

ϕ1(x, λ) = −b1 (λ) C (x, λ) + a1 (λ) S (x, λ) (15)

Φ (x, λ) =
1

b1 (λ)
(S (x, λ) − Φ1 (a, λ)ϕ (x, λ)) . (16)

The function Φ (x, λ) is called Weyl solution and the function M (λ) = −Φ1 (a, λ) is called Weyl

function of problem L. Therefore, since Φ (x, λ) = −
ψ (x, λ)
∆ (λ)

, we set M (λ) :=
ψ1 (a, λ)

∆ (λ)
.

Consider the boundary value problem L̃ in the same form with L but different coefficients. Here,
the expressions related to the L problem are shown with s and the ones related to L̃ are shown with s̃.
According to this statement, we set the problem L̃ as follows:

˜̀ [y(x)
]

:= By′(x) + Q̃(x)y(x) = λy(x), x ∈ [a, b]

Ũ (y) := y2(a) + f̃1(λ)y1(a) = 0
Ṽ (y) := y2(b) + f̃2(λ)y1(b) = 0

y1(wi + 0) = α̃iy1(wi − 0)
y2(wi + 0) = −α̃−1

i y2(wi − 0) + h̃i (λ) y1(wi − 0)

where Q̃(x) =

(
p̃(x) q (x)
q (x) −p̃ (x)

)
.

Theorem 4. If M (λ) = M̃ (λ), f1 (λ) = f̃1 (λ), then Q (x) = Q̃ (x) almost everywhere in (a, b), f2 (λ) =

f̃2 (λ), hi (λ) = h̃i (λ) ,and αi (λ) = α̃i (λ) (i = 1, 2).
Proof. Introduce a matrix P(x, λ) =

[
Pi j(x, λ)

]
i, j=1,2

by the equality as follows;(
P11 P12

P21 P22

) (
ϕ̃1 Φ̃1

ϕ̃2 Φ̃2

)
=

(
ϕ1 Φ1

ϕ2 Φ2

)
.

According to this, we get

P11(x, λ) = −ϕ1 (x, λ) Φ̃2 (x, λ) + Φ1 (x, λ) ϕ̃2 (x, λ)

P12(x, λ) = −ϕ̃1 (x, λ) Φ1 (x, λ) + ϕ1 (x, λ) Φ̃1 (x, λ) (17)
P21(x, λ) = −ϕ2 (x, λ) Φ̃2 (x, λ) + Φ2 (x, λ) ϕ̃2 (x, λ)

P22(x, λ) = −ϕ̃1 (x, λ) Φ2 (x, λ) + ϕ2 (x, λ) Φ̃1 (x, λ)

or by using the relation Φ (x, λ) = −
ψ (x, λ)
∆ (λ)

,

we obtain

P11(x, λ) = ϕ1(x, λ)
ψ̃2(x, λ)
∆̃ (λ)

− ψ̃2(x, λ)
ψ1(x, λ)
∆ (λ)
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P12(x, λ) = −ϕ1(x, λ)
ψ̃1(x, λ)
∆̃ (λ)

+ ϕ̃1(x, λ)
ψ1(x, λ)

∆(λ)
(18)

P21(x, λ) = ϕ2(x, λ)
ψ̃2(x, λ)
∆̃ (λ)

− ϕ̃2(x, λ)
ψ2(x, λ)
∆ (λ)

P22(x, λ) = ϕ̃1(x, λ)
ψ2(x, λ)
∆ (λ)

− ϕ2(x, λ)
ψ̃1(x, λ)
∆̃ (λ)

.

Taking into account the Eqs (15) and (16) and M (λ) = M̃ (λ), we can easily get

P11(x, λ) = C1 (x, λ) S̃ 2 (x, λ) − S 1 (x, λ) C̃2 (x, λ)
P12(x, λ) = C̃1 (x, λ) S 1 (x, λ) −C1 (x, λ) S̃ 1 (x, λ)
P21(x, λ) = C2 (x, λ) S̃ 2 (x, λ) − S 2 (x, λ) C̃2 (x, λ)
P22(x, λ) = C̃1(x, λ)S 2(x, λ) −C2(x, λ)S̃ 1(x, λ).

Hence, the functions Pi j(x, λ) are entire in λ.
Denote

Gδ := {λ : |λ − λn| ≥ δ, n = 0,±1,±2, . . .} , δ > 0 and

G̃δ :=
{
λ :

∣∣∣λ − λ̃n

∣∣∣ ≥ δ, n = 0,±1,±2, . . .
}

where δ > 0 is sufficiently small and fixed.
Clearly, for λ ∈ Gδ ∩ G̃δ, |sin λx| ≥ Cδe|Im λ|x, |λ| → ∞.
Therefore, |∆(λ)| ≥ Cδλ

N1+N2+L1+L2+4e|Im λ|(b−a), λ ∈ Gδ ∩ G̃δ, |λ| ≥ λ
∗ for sufficiently large λ∗ = λ∗ (δ)

and from (18) we see that Pi j(x, λ) are bounded with respect to λ where λ ∈ Gδ ∩ G̃δ and |λ| sufficiently
large. From Liouville’s theorem, it is obtained that these functions do not depend on λ.

On the other hand, from (18)

P11(x, λ) − 1 = ϕ1(x, λ)
(
ψ̃2(x, λ)
∆̃ (λ)

−
ψ2(x, λ)
∆ (λ)

)
−
ψ1(x, λ)
∆ (λ)

(ϕ̃2(x, λ) − ϕ2(x, λ))

P12(x, λ) = ϕ̃1(x, λ)
(
ψ1(x, λ)

∆(λ)
−
ψ̃1(x, λ)
∆̃ (λ)

)
−
ψ̃1(x, λ)
∆̃ (λ)

(ϕ1(x, λ) − ϕ̃1(x, λ))

P21(x, λ) = ϕ2(x, λ)
(
ψ̃2(x, λ)
∆̃ (λ)

−
ψ2(x, λ)
∆ (λ)

)
−
ψ2(x, λ)
∆ (λ)

(ϕ̃2(x, λ) − ϕ2(x, λ))

P22(x, λ) − 1 =
ψ2(x, λ)
∆ (λ)

(ϕ̃1(x, λ) − ϕ1(x, λ)) − ϕ2(x, λ)
(
ψ̃1(x, λ)
∆̃ (λ)

−
ψ1(x, λ)
∆ (λ)

)
.

If it is considered that Pi j(x, λ) do not depend on λ and asymptotic formulas of solutions ϕ(x, λ) and
ψ(x, λ), we obtain

lim
λ→−∞

ϕ1(x, λ)
(
ψ̃2(x, λ)
∆̃ (λ)

−
ψ2(x, λ)
∆ (λ)

)
= 0,

lim
λ→−∞

ψ1(x, λ)
∆(λ)

(ϕ̃2(x, λ) − ϕ2(x, λ)) = 0

for all x in [a, b]. Hence, lim
λ→−∞

[P11(x, λ) − 1] = 0.
Thus, P11(x, λ) = 1 and similarly, P22(x, λ) = 1 and P12(x, λ) = P21(x, λ) = 0.

AIMS Mathematics Volume 6, Issue 4, 3686–3702.



3698

Substitute these relations in (17), to obtain

ϕ1(x, λ) = ϕ̃1(x, λ),
ψ1(x, λ)

∆(λ)
=
ψ̃1(x, λ)
∆̃ (λ)

ϕ2(x, λ) = ϕ̃2(x, λ),
ψ2(x, λ)

∆(λ)
=
ψ̃2(x, λ)
∆̃ (λ)

for all x and λ.

Taking into account these results and Eq (1), we have(
Q(x) − Q̃(x)

)
ϕ(x, λ) = 0.

Therefore, Q(x) = Q̃(x) i.e., p(x) = p̃(x). Moreover, it is considered that
ψ1(x, λ)

∆(λ)
=
ψ̃1(x, λ)
∆̃ (λ)

,
ψ2(x, λ)

∆(λ)
=
ψ̃2(x, λ)
∆̃ (λ)

and
b2 (λ)ψ2(x, λ) + a2 (λ)ψ1(x, λ) = 0
b̃2 (λ) ψ̃2(x, λ) + ã2 (λ) ψ̃1(x, λ) = 0

we get a2 (λ) b̃2 (λ) − b2 (λ) ã2 (λ) = 0. As we have said above, a2 (λ) , b2 (λ) as well as ã2 (λ) , b̃2 (λ)
do not have common zeros. Hence, a2 (λ) = ã2 (λ) , b2 (λ) = b̃2 (λ), i.e., f2 (λ) = f̃2 (λ).

On the other hand, substituting ϕ1 and ϕ2 into transmission conditions (4), we get
ϕ1(w+

i , λ) = αiϕ1(w−i , λ), ϕ̃1(w+
i , λ) = ãiϕ̃1(w−i , λ)

ϕ2(w+
i , λ) = α−1

i ϕ2(w−1 , λ) + hi (λ)ϕ1(w−i , λ),
ϕ̃2(w+

i , λ) = α̃−1
i ϕ̃2(w−i , λ) + h̃i (λ) ϕ̃1(w−i , λ), i = 1, 2.

Therefore, since ϕ1(x, λ) = ϕ̃1(x, λ), ϕ2(x, λ) = ϕ̃2(x, λ), these yield that α1 = α̃1, α2 = α̃2 and

h1 (λ) = h̃1 (λ), h2 (λ) = h̃2 (λ). �

Theorem 5. If {λn, ρn}n∈Z =
{
λ̃n, ρ̃n

}
n∈Z

, f1 (λ) = f̃1 (λ) then Q (x) = Q̃ (x) almost everywhere in (a, b),
f2 (λ) = f̃2 (λ), hi (λ) = h̃i (λ) ,and αi (λ) = α̃i (λ) (i = 1, 2).
Proof. Since λn = λ̃n, ∆ (λ) = c∆̃ (λ). On the other hand, also since snρn = −∆̇(λn) and ρn = ρ̃n, we get
that sn = cs̃n. Therefore, ψ1 (a, λn) = cψ̃1 (a, λn) is obtained.

Denote H (λ) :=
ψ1 (a, λ) − cψ̃1 (a, λ)

∆ (λ)
which is an entire function in λ. Since lim

|λ|→∞
H (λ) = 0,

H (λ) ≡ 0 and so ψ1 (a, λ) = cψ̃1 (a, λ). Hence, M (λ) = M̃ (λ). As a result, the proof of theorem is
finished by Theorem 4. �

We examine the boundary value problem L1 with the condition y1(a) = 0 instead of (2) in problem
L. Let {µn}n∈Z be eigenvalues of the problem L1. It is clear that {µn}n∈Z are zeros of ∆1(µ) := −ψ1(a, µ).

Theorem 6. If {λn, µn}n∈Z =
{
λ̃n, µ̃n

}
n∈Z

, f1 (λ) = f̃1 (λ) and K = K̃ such that K = a2m1m2, K̃ = ã2m̃1m̃2

then Q (x) = Q̃ (x) almost everywhere in (a, b), f2 (λ) = f̃2 (λ), hi (λ) = h̃i (λ) ,and αi (λ) = α̃i (λ)
(i = 1, 2).

Proof. Since for all n ∈ Z, λn = λ̃n and µn = µ̃n,
∆ (λ)

∆̃ (λ)
and

∆1 (µ)

∆̃1 (µ)
are entire functions in λ and in

µ respectively. On the other hand, taking into account the asymptotic behaviours of ∆(λ) , ∆1(µ) and

K = K̃, we obtain lim
λ→−∞

∆(λ)
∆̃ (λ)

= 1 and lim
µ→−∞

∆1(µ)
∆̃1 (µ)

= 1. Therefore, since λn = λ̃n and µn = µ̃n, we

get ∆(λ) = ∆̃(λ) and ∆1(µ) = ∆̃1(µ). If we consider the case ∆1(µ) = ∆̃1(µ), then ψ1(a, µ) = ψ̃1(a, µ)
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is obtained. Furthermore, since M(λ) =
ψ1(a, λ)

∆(λ)
, M (λ) = M̃ (λ). Hence, the proof is completed by

Theorem 4. �

4. Conclusions

The purpose of this paper is to state and prove some uniqueness theorems for Dirac equations with
boundary and transmission conditions depending rational function of Herglotz-Nevanlinna.
Accordingly, it has been proved that while f1(λ) in condition (2) is known, the coefficients of the
boundary value problem (1)-(4) can be determined uniquely by each of the following;

i) The Weyl function M (λ)
ii) Spectral data {λn, ρn} forming eigenvalues and normalizing constants respectively
iii) Two given spectra {λn, µn}

These results are the application of the classical uniqueness theorems of Marchenko, Gelfand,
Levitan and Borg to such Dirac equations. Considering this study, similar studies can be made for
classical Sturm-Liouville operators, the system of Dirac equations and diffusion operators with finite
number of transmission conditions depending spectral parameter as Herglotz-Nevanlinna function.
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