AIMS Mathematics, 6(4): 3606-3623.
ATIMS Mathematics DOI:10.3934/math. 2021215
% , Received: 08 November 2020
o Accepted: 15 January 2021
http://www.aimspress.com/journal/Math Published: 22 January 2021

Research article

An active set quasi-Newton method with projection step for monotone
nonlinear equations

Zhensheng Yu*and Peixin Li
College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
* Correspondence: Email: zhsh-yu@163.com; Tel: +862155270430; Fax: +862155270430.

Abstract: In this paper, an active set quasi-Newton method for bound constrained nonlinear equation
is proposed. By using this active set technique, we only need to solve a reduced dimension linear
equation at each iteration to generate the search direction. The algorithm is a combination of the quasi-
Newton method and projection method. Firstly we use the quasi-Newton step as the trial step and then
use a projection technique to generate the next iteration point. Our key observation is that the algorithm
generates a bounded iteration sequence automatically even if the bounds are equal to infinity and the
global convergence is obtained in the sense that the whole sequence converges to the stationary point.
The numerical tests show the efficiency of the algorithm.

Keywords: constrained nonlinear equations; active set; quasi-Newton; global convergence;
projection
Mathematics Subject Classification: 65K05, 90C30

1. Introduction

In this paper, we consider the following bound constrained nonlinear systems of equations:
F(x) =0, s.t. x € Q, (1.1)

where F(x) = (Fi(x), F2(x),- -, F,(x))T, and F; : R" — R is a nonlinear continuously differentiable

function whose gradient is available. We denote by F'(x) = (VF,(x),VF(x), - ,VF,(x))T the

Jacobian matrix of F at a given point x. The set Q C R” is defined as
Q={xeR;<x;<u,¥Yi=12,---,n}

for some given lower and upper bounds satisfying —co < [; < u; < +ooforalli=1,2,--- ,n.

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2021215

3607

The bound constrained nonlinear equation of the type (1.1) is an important problem in the practical
problems. There are a couple of different mathematical programming problems like Karush-Kuhn-
Tucker systems and complementarity problems can be reformulated as the problem (1.1), see [1-9].
On the other hand, in many cases, the function F;(x) is not always defined on the whole space R", and
one usually puts some suitable bounds on some or all of the variables.

The Newton type method is one of the most important numerical methods for problem (1.1) and
many researchers are interested in this method [7, 10~14]. Given a current iterate x* € Q, the Newton
method considers the least-squares solutions d* of the following nonlinear constrained equation:

1
mm?wuh+PumWsL%+deQ (1.2)

We set the next iterate to be x**! = x* + d* and call (1.2) the constrained Gauss-Newton method.
Another natural possibility is to consider solving the basic unconstrained Newton equation:

F(XM + F'(xX5d = 0. (1.3)

Denote the solution of (1.3) by d% if it exists and then define x**' as the projection of x* + d% onto Q.
This scheme can be called the projected Newton method.

On the other hand, there are many versions of the Newton type method, such as the constrained
Levenberg-Marquardt method [6, 15, 16] usually used to solve the following subproblems:

1
mm?W@5+F@WW+UMWst+dEQ (1.4)

where o is a positive constant.

Along with constrained versions of the methods in question, one can also consider their projected
variants. The projected Levenberg-Marquardt method has been proposed in [15] and its iteration
consists of finding the solution d¥,, of the unconstrained subproblem

1
min EIIF(XI‘) + F' (Nl + olldlP, (1.5)

and then defines the next iterate x**! as the projection of x* + d¥, onto Q.

The Newton iteration can be costly, since partial derivatives must be computed and the linear system
(1.3) must be solved at every iteration. This fact motivates the development of quasi-Newton methods
[10, 14, 17] which are defined as the generalizations of (1.3) given by

F(x*) + Bid = 0. (1.6)

In quasi-Newton methods, the matrices By are intended to be approximations of F’(x;) and be updated
by some quasi-Newton formulas. Another well known algorithm is the trust region type algorithm, for
example, [3,4,9, 18-21].

Whether Newton method or quasi-Newton, one has to solve a linear system with full dimension,
which will be expensive for large scale problems. To overcome this drawback, the active set methods
are developed by many authors [7,12,13,22]. Since only a reduced dimension linear system to be dealt
with at each iteration, the active set Newton methods are more efficient than the full Newton method
especially for large scale problems.

AIMS Mathematics Volume 6, Issue 4, 3606-3623.

3608

To prove global convergence of the method outlined above, one often assumes that the iteration
sequence is contained in a bounded set. If /; and u; are bounded and the algorithm generates a feasible
sequence, the assumption holds naturally. Otherwise, one often makes an assumption that the level
set is bounded. For unconstrained nonlinear equations system, M.Solodov designed a Newton method
with projection technique, the method can generate a bounded iteration sequence without additional
assumption and the global convergence is obtained. Motivated by the idea of M.Solodov [23], in this
paper, we extend the method to constrained equations (1.1). By using this active set strategy, we only
need to solve a linear system with reduced dimension at each iteration. The algorithm generates a
bounded sequence automatically even if /; and u; are infinite. We obtain the global convergence and
give numerical tests to show the efficiency of the proposed algorithm.

The paper is organized as follows: In section 2, we describe our algorithm in detail. In section 3, we
prove the global convergence of the proposed algorithm. Some numerical tests are shown in Section 4
and a conclusion is given in section 5. Throughout this paper, we use || - || to denote the 2—norm and £
denotes the identity matrix.

2. Algorithm

We now describe our active set quasi-Newton method with projection technique in detail. To
describe our algorithm, we introduce the definition of projection operator which is defined as a mapping
form R" to a nonempty closed convex subset Q2 :

Pq(x) = argmin{|ly — x|| | y € Q}, ¥ x e R". 2.1
A well-known property of the operator is that it is nonexpensive, namely,
IPa(x) = PaOIl < llx = yll, Yx,y € R". (2.2)

Given a current iterate x*, let
8 := min {6, ¢ IFGHI},

where ¢ and ¢ are positive constants such that

0 < min |l/t[- lil,

i=1,2,n

| =

and define the index sets
Ay =i € {12, onllxf — L < Sporu — X <6},

I = {1,2, om) \ Ay = il + 6 < X < u; — &)

The precise statement of our algorithm is as follows:
Algorithm 2.1: (Active Set-type Quasi-Newton Method)
(S.0) Choose a positive definite matrix By, x° € [I, u], choose parameters 3 € (0,1), A € (0,1), § > 0,

c>0,e>0,u >0,and p, € [0, 1), and set k := 0.

AIMS Mathematics Volume 6, Issue 4, 3606-3623.

3609

(S.1) If [|F(x})|| < &, stop.

(S.2) Try to compute a vector d* € R" in the following way:
For i € A, set
df = =Fi(x")/(1 = ppu. (2.3)

For i € I}, set solve the linear system
(B + iEr)dl = —Fi(x") + ey, (2.4)

where
llexll < poelldyll-

(S.3) Find z* = x* + a;d*, where a; = " with m; being the smallest nonnegative integer m such that
—(F(x* + p"d"), d"y > A1 - pulld"|I. (2.5)

(S.4) Compute
(F(Z), x* = 24

FeoE @ (2-6)

xk“ = PQ[Xk —

(S.5) Update By, setk := k+ 1, go to (S.1).

Just as mentioned in [13], throughout this paper, we assume that the parameter 6 > 0 is chosen
sufficiently small such that

1
0<— min |u; -1
2i:1’2’...’n|1 il

This implies that we cannot have xf? —1; <6y and u; — xf.‘ < O, for the same index i € Aj.

Our algorithm is somewhat different from the traditional active set Newton method as described
in [13], where the search step d* in (S.2) is computed in the following formulas:

For i € A, set

Li—x* if x*-1<6
k — L 1 i l ks
di B { u; — Xf lf u; — Xi-c < 5k~ (27)
For i € I, solve the linear system
F/(xk)]k]kdfk = _F(-xk)[k - F/(xk)]kﬂkdﬂk' (28)

As described in [13], in order to understand the formula for the computation of the components dff
for i € I, note that, after a possible permutation of the rows and columns, [13] rewrite the standard
(unconstrained) Newton equation F’(x*)d = —F(x*) as

F'(Mrr, F(Ora)(dr,) __ (F(xXY)z,)

2.
Fmr Fam)\ da F()n, 29)

Here we replace (2.7) by (2.3) and (2.8) by (2.4), the main proposal is to guarantee that the inequality
(2.5) holds. On the other hand, we compute d;, by (2.4) instead of (2.8) which can be seen as an
inexact Newton method.

AIMS Mathematics Volume 6, Issue 4, 3606-3623.

3610

The matrix By is updated by the well known rank two secant type formula updated by the well

known BFGS formula
Bisis{ Bx yoyf (2.10)

Bk+1 = Bk - T T B
S, Bisk Vi Sk

where y; = F(x*!) — F(x*) and 5, = x**! — &%,
3. Convergence

In the section, we prove the global convergence of Algorithm 2.1, we make the following
assumption.

Assumption:

(A1) The function F(x) is Lipschitz continuous and monotone, i.e., there exists a positive constant L
such that
IF(x) = FO)II < Lllx = yll (3.1

and
(F(x) - F),(x—y)) >0, Yx,yeQ. (3.2)

(A2) The sequence of matrices {By} is positive definite and bounded, i.e., there exists a positive
constant k such that ||By|| < « for all £.

We first show that the algorithm is feasible, i.e., there exists a positive m such that (2.5) holds.
Lemma 3.1. The Algorithm 2.1 is well defined.

Proof. We prove that the inequality (2.5) will hold with a nonnegative integer m. Suppose that for some
index k this is not the case, which means, for all integer m, we have

— (F(xX* + p"d"), d"y < A(1 = powelld'|. (3.3)
We further get
— lim (F(x* + g"d"), d"y = —(F(x"), d%)

= ~(Fa.da) - (Fr,.dr)

= |IFallP/(1 = ppe + (B + iEr)dr, — er, dr,) (3.4)
> (1 - ppllda P + plldz, I = llexlllidz, |

> (1 = pullda P + (1 = pulldz, P

> (1 — poplla|.

Now we take the limit of both sides of (3.4) as m — oo, when (3.4) holds which implies that 1 > 1,
which contradicts the choice of A € (0, 1). Hence we have that the inequality holds for some integer m,
and the whole algorithm is well defined. O

AIMS Mathematics Volume 6, Issue 4, 3606-3623.

3611

In what follows, we assume that the algorithm generates an infinite iteration sequence. The
following result shows that the algorithm generates a bounded sequence automatically and the proof is
similar to Lemma 3.2 in [24] and we omit it here.

Theorem 3.2. Suppose assumptions (Al) and (A2) hold, sequences {x*} and {Z*} are generated by
Algorithm 2.1, then {x*} and {z*} are both bounded. Furthermore, for any % such that F(x) = 0, it holds
that

R | R | R | (3.5)
lym Ix* = 2| = 0. (3.6)

and
I}im I — ¥4 = 0. (3.7)

Now we give the global convergence result of the Algorithm 2.1.

Lemma 3.3. Let {x*} be generated by Algorithm 2.1, assume Assumption (Al) and (A2) hold, and there
exists constants 0 < p < p <1, and pt < pi such that p < py < p, and p < py < 1. Then {x*} converges
to some x* such that F(x*) = 0.

Proof. By the inequality (2.5), we have
(F(2), %" =2 = —a(F(2"), d") = A1 = poalld|. (3.8)
By the definition of d*, we have that
lda |l = [1Fa,/(1 = pdpuell < I |l/ (1 = p)p. (3.9)
and

WFz |l = (B + teEr)dr |l = llexll
> (1 = poulldrl (3.10)
> (1 = p)plldz,]l.

Combining (3.9) and (3.10), we can assume that there exists a positive constant ¢, such that
IFG = eylld]. (3.11)
On the other hand, the definition of d* also gives that
IFal = (1 = pprdal < (1 = p)ullda, . (3.12)
From (2.4) and Assumption (A2), we have

IF 7l < 1Bk + peEr)dr || + llexll
< (& + e + piuid)lldz, | (3.13)
< [k + (1 +pullidz,l.

AIMS Mathematics Volume 6, Issue 4, 3606-3623.

3612

Combining (3.12) and (3.13), we can assume that there exists a positive constant ¢, such that
IFOON < ealld . (3.14)
Now by (3.8), we obtain
IFEOINI = 240 = (F(), = 2 = 20 - pualld"|. (3.15)
By the continuity of F(x), the bound of sequence {z*} and (3.6), we have
lim alld|l* = 0. (3.16)
We consider the two possible cases:

likminfllF(xk)ll =0 and likminfllF(x")ll > 0. (3.17)

In the first case, the continuity of F and the boundness of {x*} imply that the sequence {x*} has some
accumulation point x* such that F(x*) = 0. Since X was an arbitrary solution, we can choose x = x* in
(3.5). The sequence {||x* — x*||} converges and since x* is an accumulation point of {x*}, it must be the
case that {x*} converges to x*.

Now consider the second case. From (3.14), we have

liininflldkll > 0.

Hence by (3.16), we have
liminf a; = 0.

k— o0

(The following proof is very similar to the last part in Theorem 2.1 [23], for complement, we list it
here.) By the step rule, we have the inequality (2.5) is not valid for the value g™, i.e.,

— (F(* + g™ 1dh), d") < A1 = polld‘|? (3.18)

Let k — oo, we get
—(F(x"),d"y < A1 = p") lld° 1%, (3.19)

Here x*, d*, p*, u* denote the limits of the corresponding sequence respectively. On the other hand, by
(3.4), we get
—(F(x"),d"y = (1 = p")" lld"|I, (3.20)

that contradicts the choice for A € (0, 1). Hence the case liminf,_,., ||F(x*)|| is impossible.
This completes the proof. O

4. Numerical experiments
In this section, we demonstrate the numerical performance of Algorithm 2.1 (AQN) and its
computational advantage by comparing with the modified Kanzow [13] ACTN method (denoted as

AKP) and the classical Quasi-Newton method with project (denoted as CQN). All presented codes

AIMS Mathematics Volume 6, Issue 4, 3606-3623.

3613

are written in MATLAB2019 and run on a PC with 3.30GHz CPU processor, 4.0GB memory and
Windows 8 operation system.

We consider ten problems with dimension n=1000,5000,10000. We use six different starting points,
that is:

x; = (0.1,0.1, ...,0.1)7,

BPLEN B
x2— 2’22""7 211 ’
x3=(2,2,...2),
1 1

=1, =, 0,

Xq (,2 n)
1 1

=(1,1-=,..,1-2)

X5 (’ 2’ s l’l) s

xe = rand(0, 1).

After several parameter selection experiments, we select the initial parameters that can make the three
algorithms have better performance :

=05 1=06, 6=0.001, c=1, g =05, e =107, p; = 0.3.

Set the terminating criterion for the iteration process as ||[F(x;)|| < 107°. The problems are listed as
follows.
Problem 1. [25]

Fix)=¢"-1, i=1,2,...,n, 4.1
where Q = R’.

Problem 2. [25]
Fi(x)=¢e" -1,
1(x) | | 42)
Fi(x)y=e"+xi_,—-1, i=2,..,n,
where Q = R’

Problem 3. [25]
Fi(x)=2x1—x,+e"" =1,

Fi(x)=—xi1+2x;—xjpy+e =1, i=2,...,n—1, 4.3)
F.(x)=—x,_1 +2x,+ e — 1,

where Q = R.

Problem 4. [25]

5
Fi(x) = 7% +x -1,

5
Fl(x) = Xi—p + X+ Xy — 1’ [= 27 S (e 15 (4'4)

where Q = R’.

AIMS Mathematics Volume 6, Issue 4, 3606-3623.

3614

Problem 5. [25]
3
Fi(x)=¢e"+ 5sin(2x,~) -1, i=12,..,n, 4.5)

where Q = R’
Problem 6. [25]

Fl(X) = x — ecos(h(x1+x2))

Fi(x) = x; — eCOS(h(Xi—l+xi+xi+l)), i=2,..n—1, (4.6)

Fl’l(-x) =X, — e"US(h(xn-1+x,,))

| — Rn
where h = — and Q = R].

Problem 7. [25]

Fi(x) =2x; — sin|lx;|, i=1,2,...,n, 4.7)

where Q = R/,

Problem 8. [26]
Fix)=2V2x;,— 1, i=1,2,...n, (4.8)

where Q = R’.

Problem 9. [26]
Fi(x) = e+ 3sinx;cosx;— 1, i=1,2,...,n, 4.9)

where Q = R}.

Problem 10. [24]

Fi(x)=x;—sin(|x;, = 1), i=1,2,...n, (4.10)

where Q = R’.

Comprehensive results of our numerical experiment are presented in Tables 1-10. The columns of
the presented tables have the following definitions:

IP: the initial points.

DIM: the dimension of the problem.

NI: the iterative number.

NF: the iterative number of function evaluation.

CPU: the CPU time in seconds when the algorithm terminate.
NORM: the final norm equation.

We denote result by ‘—’ whenever the number of iterations exceeds 500 or the terminating criterion
has not been satisfied. Among these results, none of the three methods were able to solve Problem 9
when initial point is x3 = (2,2, ...,2)7. Therefore, Table 9 does not include the case when the initial
point is x3. Meanwhile, in the drawing process, when the result was denoted by ‘—’, its NI, NF, CPU
and NORM are counted as oo.

The performance of the three methods was evaluated using the performance profile which is
presented by Dolan and Moré [27]. We comparing three methods with the same problem, dimension
and initial point in an experiment, and recoding information of interest such as NI, NF, CPU and
NORM.

AIMS Mathematics Volume 6, Issue 4, 3606-3623.

3615

We denote the set of problems as # and the set of methods as M. For example, for each problem p
and method m, we define

t,m = CPU time required to solve problem p by method m. (4.11)

Compare the performance on problem p by method m with the best performance by any method on
this problem, that is, we use the performance ratio

tp m
= :) 4.12
min{ty,, : m € M} ()

Tpm

We assume that a parameter R > r,, for all p, m is chosen, and r,,, = R if and only if method m does
not solve problem p. If method m can solve problem p successfully, we obtain an overall assessment
of the performance between these methods. It can be described as follows:

1
pm(7) = —sizelp € P : 1y < T}
np

where n, represents the number of elements in set #, then p,,(7) is the probability for method m € M
that a performance ratio r,,,, is within a factor 7 € R of the best possible ratio. The function p,, is the
(cumulative) distribution function for the performance ratio.

The performance profile p,, : R +— [0, 1] for a method is a nondecreasing, piecewise constant
function, continuous from the right at each breakpoint. We are interested in methods with a high
probability of solve success, then we need only to compare the values of p,,(7) for all of the methods
and choose the method with the largest, there means that we need to find which method’s function p,,
first rearch the line p,,(7) = 1. In the same way, we can obtain the performance profile with respect to
NI, NF and NORM.

As can be seen from the information in the Table 1-10, AQN has more stable solving performance
and can solve more problems, such as what AKP cannot solve: x3 and x5 of Problem 3 when n =
10000; x, of Problem 3 when n = 5000, 10000; x, of Problem 5 when n = 1000, 5000, 10000; x; of
Problem 5 when n = 5000, 10000; x, of Problem 8 when n = 5000, 10000; x, of Problem 10 when
n = 5000, 10000. Compared with CQN, from Figure 1 and Figure 2, we can see that AQN reaches
the line that p,,(1) = 1 before CQN, which demonstrates AQN has a faster solution time(CPU) and the
solution results of the final norm equation(NORM) are more accurate. Although from Figure 3 and
Figure 4, there shows the iterative number of CQN is less than AQN, in practice, we pay more attention
to the advantage of solution time. To sum up, AQN has a more stable and faster solving performance.

AIMS Mathematics Volume 6, Issue 4, 3606-3623.

3616

Table 1. Numerical results for Problem 1.

P DIM AQN CQON AKP
NI NF CPU NORM NI NF CPU NORM NI NF CPU NORM
1000 30 61 3.656 8.63E-07 22 45 9419 6.82E-07 22 45 1365 7.86E-07
X1 5000 32 65 123.832 7.97E-07 23 47 252.343 7.62E-07 23 47 94233 8.78E-07
10000 33 67 707.123 7.25E-07 24 49 1204.500 5.39E-07 24 49 801.382 6.21E-07
1000 28 57 5.164 9.12E-07 19 39 8.252 7.03E-07 18 37 1.256 8.22E-07
X2 5000 28 57 143.052 9.12E-07 19 39 199.614 7.03E-07 18 37 83.818 8.22E-07
10000 28 57 779.363 9.12E-07 19 39 913.557 7.03E-07 18 37 609.232 8.22E-07
1000 34 69 5.087 7.49E-07 26 53 10.410 5.92E-07 27 55 2.115 5.01E-07
X3 5000 36 73 161.879 6.92E-07 27 55 288.600 6.62E-07 28 57 128.120 5.60E-07
10000 36 73 853.569 9.79E-07 27 55 1328.800 9.36E-07 28 57 920.577 7.92E-07
1000 34 69 7.029 8.51E-07 20 41 7.855 9.44E-07 22 45 2.102 5.97E-07
X4 5000 35 71 208.186 6.74E-07 20 41 210.414 9.44E-07 22 45 100.805 5.97E-07
10000 35 71 1078.500 9.74E-07 20 41 966.249 9.44E-07 22 45 721.224 597E-07
1000 34 69 5.434 9.47E-07 24 49 9.660 8.28E-07 25 51 1.683 8.35E-07
X5 5000 36 73 169.626 8.76E-07 25 51 264.494 9.26E-07 26 53 118.489 9.34E-07
10000 37 75 907.287 7.96E-07 26 53 1266.100 6.55E-07 27 55 910.632 6.61E-07
1000 34 69 5.624 932E-07 24 49 9475 807E-07 25 51 1.702 8.48E-07
X6 5000 36 73 169.128 8.70E-07 25 51 264.354 9.25E-07 26 53 119.666 9.25E-07
10000 37 75 912.983 7.91E-07 26 53 1283.200 6.54E-07 27 55 916.142 6.61E-07

Table 2. Numerical results for Problem 2.

P DIM AQN CON AKP
NI NF CPU NORM NI NF CPU NORM NI NF CPU NORM
1000 60 121 10.393 9.69E-07 40 81 16.089 9.12E-07 45 91 8.107 7.83E-07
X1 5000 59 119 304.457 9.61E-07 40 81 427.665 8.75E-07 44 89 198.837 9.90E-07
10000 59 119 1494.000 8.76E-07 40 81 2015.480 8.62E-07 44 89 1590.250 9.57E-07
1000 72 145 15.477 8.99E-07 46 93 18.481 9.61E-07 47 95 3.669 9.48E-07
X2 5000 72 145 439.560 8.99E-07 46 93 503471 9.61E-07 47 95 216.065 9.48E-07
10000 72 145 2181.400 8.99E-07 46 93 2308.030 9.61E-07 47 95 1613.963 9.48E-07
1000 76 153 16.627 8.33E-07 48 97 19.281 7.93E-07 40 81 2.786 8.10E-07
X3 5000 74 149 451.509 9.91E-07 48 97 519.860 7.65E-07 38 77 176.960 9.97E-07
10000 74 149 2251.200 9.34E-07 48 97 2434370 7.55E-07 38 77 1279.398 9.46E-07
1000 75 151 16.529 9.82E-07 48 97 19.329 8.67E-07 50 101 3.162 9.43E-07
X4 5000 75 151 472387 9.78E-07 48 97 519555 8.67E-07 50 101 229.550 9.43E-07
10000 75 151 2346.100 9.76E-07 48 97 2408.623 8.67E-07 50 101 1657.715 9.43E-07
1000 74 149 15728 9.03E-07 47 95 18880 8.61E-07 50 101 3.553 8.40E-07
X5 5000 73 147 448.860 9.98E-07 47 95 509.295 8.29E-07 48 97 218.293 7.60E-07
10000 73 147 2209.300 8.51E-07 47 95 2358.238 8.17E-07 48 97 1607.768 9.27E-07
1000 90 181 19.039 8.23E-07 56 113 22.527 8.90E-07 57 115 3.537 9.40E-07
X6 5000 94 189 563.484 8.70E-07 59 119 636.860 8.24E-07 62 125 285.941 7.93E-07
10000 95 191 2835.600 1.00E-06 60 121 3044.774 8.69E-07 62 125 2105.600 9.51E-07

AIMS Mathematics

Volume 6, Issue 4, 3606-3623.

3617

Table 3. Numerical results for Problem 3.

P DIM AQN CQN AKP
NI NF CPU NORM NI NF CPU NORM NI NF CPU NORM
1000 93 187 19.750 9.30E-07 81 163 33.507 8.00E-07 44 89 3.338 8.25E-07
X1 5000 92 185 562208 9.53E-07 84 169 918.799 8.97E-07 56 93 214.676 8.47E-07
10000 99 199 3150.498 9.36E-07 87 175 4584.800 7.85e-07 48 97 1611.711 9.30E-07
1000 76 153 16.189 9.89E-07 61 123 25.470 8.65E-07 36 73 2.281 8.46E-07
X2 5000 76 153 463.761 9.89E-07 61 123 667.653 8.65E-07 36 73 164.605 8.46E-07
10000 76 153 2325.900 9.89E-07 61 123 3055.546 8.65E-07 36 73 1190.508 8.46E-07
1000 121 243 31.734 9.47E-07 94 189 38.858 9.03E-07 57 115 3.676 6.93E-07
X3 5000 106 213 697.003 8.87E-07 100 201 1093.100 8.52E-07 63 127 288.233 6.82E-07
10000 112 225 3761.469 9.95E-07 101 203 5055.167 8.92E-07 - - - -
1000 87 175 19.633 9.94E-07 72 145 29.727 8.19E-07 41 83 3.892 7.88E-07
X4 5000 88 177 569.847 997E-07 72 145 791.423 820E-07 41 83 186.841 7.94E-07
10000 88 177 2817.300 9.81E-07 72 145 3597.463 8.20E-07 41 83 1368.882 7.94E-07
1000 109 219 25967 932E-07 89 179 37.222 830E-07 53 107 3.714 9.84E-07
X5 5000 116 233 788.855 8.80E-07 93 187 1035.100 8.54E-07 57 115 263.580 8.93E-07
10000 117 235 3934.500 9.97E-07 95 191 4746.173 7.82E-07 - - - -
1000 107 215 25975 997E-07 95 191 39.617 7.52E-07 53 107 3.527 9.08E-07
X6 5000 116 233 783.719 8.42E-07 98 197 1090.700 9.45E-07 55 111 255.271 9.85E-07
10000 120 241 4148.100 9.15E-07 101 203 5045.600 7.46E-07 58 117 1955.841 7.26E-07
Table 4. Numerical results for Problem 4.
P DIM AQN CON AKP
NI NF CPU NORM NI NF CPU NORM NI NF CPU NORM
1000 96 193 39.937 9.05E-07 96 193 43.074 9.05E-07 62 125 6.113 8.47E-07
X1 5000 97 195 1080.500 7.73E-07 97 195 1085.200 7.73E-07 64 129 292.586 8.46E-07
10000 96 193 4915.800 7.99E-07 96 193 4809.600 7.99E-07 66 133 2193.345 9.51E-07
1000 96 193 39.898 7.99E-07 94 189 38.846 8.52E-07 76 153 4.878 8.00E-07
X2 5000 94 189 1049.800 8.95E-07 93 187 1015.018 9.44E-07 - - - -
10000 94 189 4742.816 9.23E-07 92 185 4602.733 9.80E-07 - - - -
1000 75 151 31.182 8.40E-07 75 151 30.961 8.40E-07 66 133 4.018 9.87E-07
X3 5000 73 147 802.568 9.18E-07 73 147 796.533 9.18E-07 73 147 337.588 6.90E-07
10000 75 151 3808.900 7.44E-07 75 151 3748.947 7.44E-07 75 151 2478.365 8.36E-07
1000 90 181 37.247 9.77E-07 93 187 38.923 8.42E-07 66 133 4.171 9.87E-07
X4 5000 93 187 1025.700 8.81E-07 92 185 1005456 9.24E-07 76 153 348.842 9.56E-07
10000 93 187 4705.600 9.01E-07 92 185 4622.813 9.17E-07 79 159 2634.719 8.62E-07
1000 91 183 37.749 851E-07 93 187 38567 8.93E-07 70 141 4.794 9.67E-07
X5 5000 91 183 1002.900 8.29E-07 92 185 1004.607 9.91E-07 75 151 348.323 9.69E-07
10000 110 221 5628.200 7.64E-07 94 189 4710.946 7.83E-07 75 151 2492.402 9.22E-07
1000 142 285 58.851 8.81E-07 143 287 60.753 9.66E-07 79 159 7.068 9.92E-07
X6 5000 151 303 1669.800 8.98E-07 151 303 1653.700 8.47E-07 85 171 393.990 7.41E-07
10000 154 309 7856.500 9.98E-07 154 309 7653.971 9.64E-07 86 173 2869.170 8.31E-07

AIMS Mathematics

Volume 6, Issue 4, 3606-3623.

3618

Table 5. Numerical results for Problem 5.

P DIM AQN CON AKP
NI NF CPU NORM NI NF CPU NORM NI NF CPU NORM
1000 11 23 2351 7.06E-07 11 23 5609 7.06E-07 30 61 7.252 7.27E-07
X1 5000 12 25 69.706 1.55E-07 12 25 67.909 1.55E-07 30 61 138.354 9.03E-07
10000 12 25 352.637 2.19E-07 12 25 348.586 2.19E-07 35 71 1172.793 6.11E-07
1000 12 25 20984 9.73E-07 12 25 2678 6.04E-07 61 123 4.507 7.65E-07
X2 5000 13 27 80.610 2.13E-07 13 27 79.346 1.33E-07 - - - -
10000 13 27 405.754 3.02E-07 13 27 398.015 1.88E-07 - - - -
1000 12 25 2.017 4.61E-07 12 25 1.936 4.61E-07 - - - -
X3 5000 13 27 61.161 1.82E-07 13 27 60.556 1.82E-07 - - - -
10000 13 27 323.124 2.58E-07 13 27 319935 2.58E-07 - - - -
1000 16 33 4417 1.21E-07 13 27 3.303 3.32E-07 49 99 3172 9.84E-07
X4 5000 14 29 93207 1.19E-07 13 27 88261 742E-07 65 131 298947 9.85E-07
10000 14 29 454.358 1.67E-07 13 27 397.148 1.87E-07 63 127 2097.393 7.91E-07
1000 17 35 4.812 2.09E-07 13 27 2720 1.52E-07 59 119 4.057 7.74E-07
X5 5000 17 35 133.735 4.68E-07 13 27 79.443 3.40E-07 60 121 277.731 9.35E-07
10000 17 35 659.338 6.62E-07 13 27 396.954 4.81E-07 62 125 2093.674 7.82E-07
1000 13 27 2.824 1.63E-07 13 27 2754 151E-07 59 119 4.104 8.52E-07
X6 5000 17 35 134.016 3.29E-07 13 27 79.329 3.39E-07 60 121 297.163 8.30E-07
10000 17 35 651.481 6.60E-07 13 27 396.469 4.82E-07 59 119 1976.682 8.91E-07
Table 6. Numerical results for Problem 6.
P DIM AQN CON AKP
NI NF CPU NORM NI NF CPU NORM NI NF CPU NORM
1000 49 99 20.419 7.13E-07 42 85 19.977 8.74E-07 28 57 7.443 9.06E-07
X1 5000 50 101 549.836 9.05E-07 43 87 484.930 9.65E-07 30 61 136.093 6.79E-07
10000 51 103 2623.200 8.85E-07 44 89 2252977 8.71E-07 30 61 1008.218 9.29E-07
1000 48 97 20.223 6.99E-07 42 85 17.454 9.11E-07 29 59 1.842 9.19E-07
X2 5000 51 103 560.601 7.23E-07 44 89 491.333 6.51E-07 32 65 149412 5.94E-07
10000 51 103 2607.600 8.64E-07 44 89 2251.287 9.07E-07 35 71 1172.464 5.23E-07
1000 39 79 16.445 7.27E-07 39 79 16.669 7.27E-07 27 55 1.868 7.22E-07
X3 5000 40 81 440412 7.64E-07 40 81 439550 7.64E-07 27 55 123.541 8.95E-07
10000 41 83 2082.900 7.31E-07 41 83 2039.955 7.31E-07 28 57 934.110 5.24E-07
1000 48 97 20.053 7.21E-07 42 85 17.886 9.11E-07 28 57 3.648 9.14E-07
X4 5000 49 99 540.145 7.74E-07 44 89 490.692 8.50E-07 31 63 148501 6.77E-07
10000 51 103 2582.600 7.23E-07 44 89 2264.235 6.61E-07 31 63 1213.002 7.78E-07
1000 43 87 18.038 7.87E-07 42 85 17.649 9.23E-07 28 57 3.153 5.72E-07
X5 5000 44 89 483.664 9.58E-07 43 87 489.753 9.44E-07 29 59 151.122 8.58E-07
10000 45 91 2279.000 9.44E-07 45 91 2273.992 5.95E-07 30 61 1025.754 5.67E-07
1000 44 89 18.394 9.10E-07 42 85 17.362 9.04E-07 28 57 2.144 9.01E-07
X6 5000 50 101 550.710 8.75E-07 43 87 491.334 9.04E-07 29 59 132.839 8.87E-07
10000 51 103 2599.800 8.75E-07 44 89 2265.719 9.95E-07 30 61 1022.843 7.92E-07

AIMS Mathematics

Volume 6, Issue 4, 3606-3623.

3619

Table 7. Numerical results for Problem 7.

P DIM AQN CON AKP
NI NF CPU NORM NI NF CPU NORM NI NF CPU NORM
1000 30 61 3.984 952E-07 22 45 9.309 752E-07 22 45 10.004 7.55E-07
X1 5000 32 65 124936 8.79E-07 23 47 257.722 8.41E-07 23 47 103.523 8.44E-07
10000 33 67 696.347 7.99E-07 24 49 1205.700 5.95E-07 24 49 850.861 5.97E-07
1000 30 61 8.726 8.29E-07 20 41 10.117 5.27E-07 20 41 4.586 5.67E-07
X2 5000 30 61 180.592 8.29E-07 20 41 225.843 5.27E-07 20 41 95.335 5.67E-07
10000 30 61 886.356 8.29E-07 20 41 1006.400 5.27E-07 20 41 663.478 5.67E-07
1000 35 71 5.263 6.87E-07 26 53 10435 8.45E-07 25 51 1.791 9.09E-07
X3 5000 36 73 160.033 9.88E-07 27 55 286.293 9.45E-07 27 55 123.108 5.08E-07
10000 37 75 862.174 8.98E-07 28 57 1366.000 6.68E-07 27 55 894.793 7.19E-07
1000 34 69 7.383 8.53E-07 21 43 8.777 5.35E-07 21 43 1.328 6.68E-07
X4 5000 36 73 224577 7.58E-07 21 43 230923 535B-07 21 43 96340 6.68E-07
10000 35 71 886.356 8.29E-07 21 43 1051.442 5.35E-07 21 43 693.062 6.68E-07
1000 35 71 5908 7.47E-07 24 49 10.020 9.58E-07 25 51 1524 5.81E-07
X5 5000 37 75 180.603 6.89E-07 26 53 284.448 5.36E-07 26 53 119.156 6.50E-07
10000 37 75 944.657 9.75E-07 26 53 1318.300 7.58E-07 26 53 861.209 9.19E-07
1000 35 71 5919 7.63E-07 24 49 10713 9.75E-07 25 51 6592 5.83E-07
X6 5000 37 75 180.124 6.98E-07 26 53 284553 540E-07 26 53 119.424 6.50E-07
10000 37 75 934.966 9.82E-07 26 53 1310.800 7.60E-07 26 53 913455 9.17E-07
Table 8. Numerical results for Problem 8.
P DIM AQN CQON AKP
NI NF CPU NORM NI NF CPU NORM NI NF CPU NORM
1000 14 29 5.802 7.75E-07 14 29 5.782 7.75E-07 24 49 1915 7.92E-07
X1 5000 15 31 165.321 5.08E-07 15 31 164.148 5.08E-07 27 55 124.365 8.29E-07
10000 15 31 756.748 7.18E-07 15 31 751.927 7.18E-07 28 57 933.741 6.67E-07
1000 15 31 7.203 8.97E-07 15 31 6.145 3.16E-07 40 81 2.560 7.75E-07
X2 5000 16 33 176.418 5.87E-07 15 31 164.099 7.08E-07 - - - -
10000 16 33 816.974 8.31E-07 16 33 802254 293E-07 - - - -
1000 16 33 6.622 4.32E-07 16 33 6.548 4.32E-07 27 55 1.773 8.73E-07
X3 5000 16 33 177.685 9.66E-07 16 33 174.795 9.66E-07 31 63 143.292 6.08E-07
10000 17 35 862.303 4.00E-07 17 35 851.777 4.00E-07 31 63 1043.391 8.67E-07
1000 18 37 7.461 3.10E-07 15 31 6472 3.12E-07 28 57 1.923 8.04E-07
X4 5000 16 33 178.233 6.05E-07 15 31 163.715 7.05E-07 41 83 189.831 9.66E-07
10000 16 33 814.770 8.43E-07 15 31 750.481 9.99E-07 42 85 1412.292 7.38E-07
1000 18 37 7470 2.97E-07 14 29 5710 9.89E-07 28 57 2.999 7.11E-07
X5 5000 18 37 197.939 6.65E-07 15 31 163.855 6.48E-07 29 59 132.820 7.97E-07
10000 18 37 913455 9.40E-07 15 31 751.494 9.17E-07 30 61 1030916 5.65E-07
1000 18 37 7.583 2.97E-07 15 31 6.453 2.96E-07 28 57 1.812 7.13E-07
X6 5000 18 37 199.224 4.30E-07 15 31 163.758 6.42E-07 29 59 132.158 8.65E-07
10000 19 39 962.107 2.93E-07 15 31 756.324 9.11E-07 29 59 966.698 6.08E-07

AIMS Mathematics

Volume 6, Issue 4, 3606-3623.

3620

Table 9. Numerical results for Problem 9.

P DIM AQN CON AKP
NI NF CPU NORM NI NF CPU NORM NI NF CPU NORM
1000 38 77 3.055 8.24E-07 12 25 4.959 5.05B-07 23 47 3.828 5.40E-07
X1 5000 40 81 113.409 9.88E-07 13 27 143.222 2.82E-07 24 49 109.381 6.04E-07
10000 42 85 712.896 7.49E-07 13 27 651.289 3.99E-07 24 49 802.195 8.54E-07
1000 37 75 4.855 8.16E-07 11 23 4.708 3.37E-07 21 43 1.338 7.99E-07
X2 5000 37 75 153.719 8.16E-07 11 23 120945 3.37E-07 21 43 94.816 7.99E-07
10000 37 75 835.797 8.16E-07 11 23 555333 3.37E-07 21 43 699.885 7.99E-07
1000 44 89 6.384 8.49E-07 12 25 6.552 5.24E-07 25 51 1.755 5.99E-07
X4 5000 45 91 187.263 9.32E-07 12 25 132.641 5.24E-07 25 51 114.659 6.45E-07
10000 47 95 1195.000 9.22E-07 12 25 607.4983 524E-07 25 51 834238 6.56E-07
1000 43 87 5.098 9.20E-07 14 29 6.816 3.27E-07 31 63 3.127 6.74E-07
X5 5000 46 93 171.163 8.08E-07 14 29 156394 732E-07 32 65 146.725 7.64E-07
10000 47 95 967.804 8.34E-07 15 31 764984 2.59E-07 33 67 1127.503 5.43E-07
1000 43 87 5.095 9.54E-07 14 29 7.562 3.29E-07 31 63 2.035 6.66E-07
X6 5000 46 93 170.719 8.49E-07 14 29 157.247 7.28E-07 32 65 152282 7.68E-07
10000 47 95 924.105 8.18E-07 15 31 763.091 2.57E-06 33 67 1103.404 5.36E-07
Table 10. Numerical results for Problem 10.
P DIM AQN CON AKP
NI NF CPU NORM NI NF CPU NORM NI NF CPU NORM
1000 28 57 11.625 5.43E-07 28 57 11.710 5.43E-07 25 51 2226 6.68E-07
X1 5000 29 59 323.043 6.46E-07 29 59 316952 6.46E-07 26 53 118.148 7.47E-07
10000 29 59 1476.900 9.13E-07 29 59 1452.863 9.13E-07 27 55 895.844 5.28E-07
1000 25 51 10.099 8.50E-07 25 51 10.236 8.50E-07 30 61 1.998 5.30E-07
X2 5000 27 55 290.044 5.38E-07 27 55 285.598 5.38E-07 - - - -
10000 27 55 1328900 7.61E-07 27 55 1312.528 7.61E-07 - - - -
1000 28 57 11.242 7.69E-07 28 57 11411 7.69E-07 26 53 1.740 9.50E-07
X3 5000 29 59 311.758 9.14E-07 29 59 310210 9.14E-07 28 57 126392 5.31E-07
10000 30 61 1482.600 6.88E-07 30 61 1469.212 6.88E-07 28 57 931480 7.51E-07
1000 25 51 10.069 8.57E-07 25 51 10.064 8.57E-07 28 57 1.864 5.98E-07
X4 5000 27 55 290.624 5.38E-07 27 55 287511 538E-07 29 59 131.109 7.84E-07
10000 27 55 1331.600 7.61E-07 27 55 1316.705 7.61E-07 30 61 999476 6.92E-07
1000 27 55 11246 6.81E-07 27 55 11420 6.81E-07 27 55 1.838 9.05E-07
X5 5000 28 57 309.842 8.10E-07 28 57 309.207 8.10E-07 29 59 135.589 8.78E-07
10000 29 59 1472.000 6.10E-07 29 59 1471.858 6.10E-07 30 61 1043.962 6.19E-07
1000 27 55 11.266 6.71E-07 27 55 11.374 6.79E-07 27 55 2818 6.93E-07
X6 5000 28 57 310428 8.08E-07 28 57 308.040 8.07E-07 29 59 147.317 8.16E-07
10000 29 59 1460.100 6.10E-07 29 59 1459.546 6.08E-07 30 61 1177.273 5.73E-07

AIMS Mathematics

Volume 6, Issue 4, 3606-3623.

3621

- = =CQN
AQN
AKP

0811

Py

- = =CQN
AQN
AKP

0.2

10

- = =CQN
AQN
AKP

= = =CQN
AQN
AKP

02r

Figure 4. Performance profiles based on number of function evaluation.
Volume 6, Issue 4, 3606-3623.

AIMS Mathematics

3622

5. Conclusions

In this paper, we propose an active set quasi-Newton method for the solution of optimization
problem with bound constraints. The implementation of the method uses the quasi-Newton step as
a trial step and the project step as the correction step. By using active set technique, we only need
to solve a reduced dimension linear equation at each iteration to generate the search direction. We
prove that the generated sequence is bounded automatically and obtain the global convergence of the
proposed algorithm. Meanwhile, compared with other algorithms, our method has the most stable
performance. There are some questions that need studying in the near future. Firstly, it is possible to
get the global convergence of the proposed algorithm without the assumption of the positive definite of
the matrix B;. Secondly, how to get the local convergence of the proposed algorithm especially under
some weak condition such as the local error bound condition needs further studying.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. R. Andreani, A. Friedlander, Bound constrained smooth optimization for solving variational
inequalities and related problems, Ann. Oper. Res., 116 (2002), 179-198.

2. D. P. Bertsekas, Projected Newton methods for optimization problems with simple constraints,
SIAM J. Control. Optim., 20 (1982), 221-246.

3. S. Bellavia, M. Macconi, B. Morini, An affine scaling trust-region approach to bound-constrained
nonlinear systems, Appl. Numer. Math., 44 (2003), 257-280.

4. S. Bellavia, M. Macconi, B. Morini, STRSCNE: A scaled trust-region solver for constrained
nonlinear equations, Comput. Optim. Appl., 28 (2004), 31-50.

5. S. Bellavia, B. Morini, S. Pieraccini, Constrained dogleg methods for nonlinear systems with
simple bounds, Comput. Optim. Appl., 53 (2012), 771-794.

6. F. Facchinei, A. Fischer, C. Kanzow, J. M. Peng, A simply constrained optimization reformulation
of KKT systems arising from variational inequalities, Appl. Math. Optim., 40 (1999), 19-37.

7. C. Kanzow, H. D. Qi, A QP-free constrained Newton-type method for variational inequality
problems, Math. Program., 85 (1997), 81-106.

8. C. Kanzow, Some equation-based methods for the nonlinear complementarity problem, Optim.
Methods Softw., 3 (2007), 327-340.

9. M. Ulbrich, Nonmonotone trust-region methods for bound-constrained semismooth equations with
applications to nonlinear mixed complementarity problems, SIAM J. Optim., 11 (2001), 889-917.

10. E. G. Birgina, N. Kreji¢, J. M. Martinez, Globally convergent inexact quasi-Newton methods for
solving nonlinear systems, Numer. Algorithms, 32 (2003), 249-260.

11. A. Fischer, A. F. Izmailov, M. V. Solodov, Local attractors of Newton-type methods for constrained
equations and complementarity problems with nonisolated solutions, J. Optim. Theory. Appl., 180
(2019), 140-169.

AIMS Mathematics Volume 6, Issue 4, 3606-3623.

3623

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

@ AIMS Press

F. Facchinei, J. Judice, J. Soares, An active set Newton algorithm for large-scale nonlinear
programs with box constraints, SIAM J. Optim., 8 (1998), 158-186.

C. Kanzow, An active set-type Newton method for constrained nonlinear systems, M.C. Ferris, O.L.
Mangasarian, (Eds.), Boston: Springer, 2001.

L. K. Schubert, Modification of a quasi-Newton method for nonlinear equations with a sparse
Jacobian, Math. Comp., 24 (1970), 27-30.

C. Kanzow, N. Yamashita, M. Fukushima, Levenberg-Marquardt methods with strong local
convergence properties for solving nonlinear equations with convex constraints, J. Comput. Appl.
Math., 172 (2004), 375-397.

J. L. Zhang, On the convergence properties of the Levenberg-Marquardt method, Optimization, 52
(2003), 739-756.

J. M. Martifiez, Practical quasi-Newton methods for solving nonlinear systems, J. Comput. Appl.
Math., 124 (2000), 97-122.

S. Bellavia, S. Pieraccini, On affine-scaling inexact dogleg methods for bound-constrained
nonlinear systems, Optim. Methods Softw., 30 (2015), 276-300.

C. J. Lin, J. Moré, Newton’s method for large bound-constrained optimization problems, SIAM J.
Optim., 9 (1999), 1100-1127.

R. H. Byrd, J. Nocedal, R. B. Schnabel, Representation of quasi-Newton matrices and their use in
limited memory methods, Math. Program., 63 (1994), 129-156.

L. Marini, B. Morini, M. Porcelli, Quasi-Newton methods for constrained nonlinear systems:
complexity analysis and applications, Comput. Optim. Appl., 71 (2018), 147-170.

H.D. Qi, L. Q. Qi, D. F. Sun, Solving KKT systems via the trust region and the conjugate gradient
methods, SIAM J. Optim., 14 (2004), 439-463.

M. V. Solodov, B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone
equations, M. Fukushima, L. Qi (Eds.), Boston: Springer, 1998.

Z.S.Yu, J. Lin, J. Sun, et.al. Spectral gradient projection method for mononote nonlinear equations
with convex constraints, Appl. Numer. Math., 59 (2009), 2416-2423.

A. M. Awwal, L. Wang, P. Kumam, H. Mohammad, W. Watthayu, A projection Hestenes-Stiefel
method with spectral parameter for nonlinear monotone equations and signal processing, Math.
Comput. Appl., 25 (2020), 27.

A. H. Ibrahim, P. Kumam, A. B. Abubakar, W. Jirakitpuwapat, J. Abubakar, A hybrid conjugate
gradient algorithm for constrained monotone equations with application in compressive sensing,
Heliyon, 6 (2020), e03466.

E. D. Dolan, J. J.Moré, Benchmarking optimization software with performance profiles, Math.
Program., 91 (2002), 201-213.

©2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 4, 3606-3623.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Algorithm
	Convergence
	Numerical experiments
	Conclusions

