Mathematics

Research article

(2n-3)-fault-tolerant Hamiltonian connectivity of augmented cubes $A Q_{n}$

Huifeng Zhang, Xirong Xu*, Ziming Wang, Qiang Zhang and Yuansheng Yang
School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China

* Correspondence: Email: xirongxu@dlut.edu.cn.

Abstract

The augmented cube $A Q_{n}$ is an outstanding variation of the hypercube Q_{n}. It possesses many of the favorable properties of Q_{n} as well as some embedded properties not found in Q_{n}. This paper focuses on the fault-tolerant Hamiltonian connectivity of $A Q_{n}$. Under the assumption that $F \subset$ $V\left(A Q_{n}\right) \cup E\left(A Q_{n}\right)$ with $|F| \leq 2 n-3$, we proved that for any two different correct vertices u and v in $A Q_{n}$, there exists a fault-free Hamiltonian path that joins vertices u and v with the exception of (u, v), which is a weak vertex-pair in $A Q_{n}-F(n \geq 4)$. It is worth noting that in this paper we also proved that if there is a weak vertex-pair in $A Q_{n}-F$, there is at most one pair. This paper improved the current result that $A Q_{n}$ is $2 n-4$ fault-tolerant Hamiltonian connected. Our result is optimal and sharp under the condition of no restriction to each vertex.

Keywords: network topological structure; graph theory; augmented cube $A Q_{n}$; computer network reliability; fault tolerance; Hamiltonian connectivity
Mathematics Subject Classification: 05C38, 68M15

1. Introduction

Interconnection networks are of particular interest in the study of parallel computing systems. An interconnection network can be modeled as a graph $G=(V, E)$, where V expresses the vertex set and E expresses the edge set. Exploring the structures of G is essential for designing a suitable topology for such an interconnection network. Topology structure has a crucial impact on the overall performance of the network. It determines the physical distribution of network nodes/links and the connection relationship between them. It also determines the number of hops in message transmission and the length of links per hop. Therefore, the topology has a great influence on the delay and power consumption. In addition, because the topology determines the number of available transmission paths between nodes, it also affects the distribution of network traffic, network bandwidth and transmission performance.

The hypercube Q_{n} is one of the most prevalent interconnection networks among all the popular parallel network topologies that possess properties such as logarithmic diameter, high symmetry, linear bisection width. The n-dimensional augmented cube $A Q_{n}$ is an outstanding variation of the hypercube Q_{n}. It possesses many of the favorable properties of Q_{n} as well as some embedded properties not found in Q_{n}. Much research has been conducted on this type of augmented cube, and it appears frequently in the literatures [1,3,4, 12-14, 16, 20, 22].

In the last several years, the path embedding problem has become one of the most-studied graph embedding problems, appearing prolifically in the literatures [5, 6, 10, 14]. The fault-tolerant path embedding problem has also been the subject of frequent investigation, as is evident in the literatures [3, 4, 7, 10, 11, 22-24].

A path (or cycle) is considered a Hamiltonian path (or Hamiltonian cycle) if it passes through every vertex of graph G once and only once. A graph is said to be Hamiltonian if it contains at least one Hamiltonian cycle. One of the most challenging contemporary problems in graph theory is identifying a necessary and sufficient condition for a graph to be considered Hamiltonian. A graph G is regarded as Hamiltonian connected if for any pair of distinct vertices u and v, a Hamiltonian path $P_{u v}$ exists. Hamiltonian paths and cycles have applicability for practical problems such as online optimization of complex, flexible manufacturing systems [25], wormhole routing [26], deadlock-free routing and broadcasting algorithms [27]. Applicability for such problems have been a driving force for the study of networks embedded with Hamiltonian paths.

In large interconnection networks, vertices(or edges) show a propensity for faultiness. This faultiness demands attention, as fault-tolerance serves as an important index of a network's stability. A graph G can be said to be k-fault-tolerant Hamiltonian connected if $G-F$ remains Hamiltonian connected for any $F \subset V(G) \cup E(G)$ with $|F| \leq k$.

Hsu et al. [3] proved that $A Q_{n}(n \geq 1)$ is Hamiltonian-connected. They also showed that $A Q_{n}$ is ($2 n-3$)-fault-tolerant Hamiltonian and ($2 n-4$)-fault-tolerant Hamiltonian connected for $n \geq 4$ even when faulty elements occur. Soon after, Wang et al. [4] proved that $A Q_{n}$ is ($2 n-5$)-fault-tolerant Panconnected for $n \geq 3$. We improved this result and showed that if $F \subset V\left(A Q_{n}\right) \cup E\left(A Q_{n}\right)$ with $|F| \leq 2 n-4$, then for any two distinct error-free vertices u and v with distance d, there exists an error-free path $P_{u v}$ of length l with $\max \{d+2,4\} \leqslant l \leqslant 2^{n}-f_{v}-1$ in $A Q_{n}-F(n \geq 4)$ [22].

In this paper, we show that for any two distinct error-free vertices u and v, there exists a fault-free Hamiltonian path $P_{u v}$ that joins vertices u and v with the exception of (u, v), which is a weak vertex-pair in $A Q_{n}-F(n \geq 4)$ under the assumption that $F \subset V\left(A Q_{n}\right) \cup E\left(A Q_{n}\right)$ with $|F| \leq 2 n-3$.

The rest of this paper is outlined as follows. Section 2 introduces the definitions and properties of the augmented cubes $A Q_{n}$. In Section 3, we investigate some lemmas of $A Q_{n}$ to be used in our proofs. Section 4 proves the main theorem. Finally, Section 5 concludes the paper.

2. The definition and properties of $A Q_{n}$

In this section, we will introduce the definition of $A Q_{n}$ and basic properties used in this paper.
Definition 2.1. The n-dimensional augmented cube $A Q_{n}$, proposed by Choudum and Sunitha [16], can be defined recursively as follows.
$A Q_{1}$ is a complete graph K_{2} with vertex set $\{0,1\}$. For $n \geq 2, A Q_{n}$ is obtained by taking two copies of the augmented cube $A Q_{n-1}$ denoted by ${ }^{0} A Q_{n-1}$ and ${ }^{1} A Q_{n-1}$, and adding $2 \times 2^{n-1}$ edges between the
two copies as follows.
Let $V\left({ }^{0} A Q_{n-1}\right)=\left\{0 x_{n-1} \ldots x_{2} x_{1} \mid x_{i} \in\{0,1\}\right\}$ and $V\left({ }^{1} A Q_{n-1}\right)=\left\{1 x_{n-1} \ldots x_{2} x_{1} \mid x_{i} \in\{0,1\}\right\}$. A vertex $x \in V\left({ }^{0} A Q_{n-1}\right)$ is adjacent to a vertex $y \in V\left({ }^{1} A Q_{n-1}\right)$ if and only if either:
(1) $x_{i}=y_{i}$ for $1 \leq i \leq n-1$; in this case, $x y$ is called a hypercube edge and we set $x=y^{h_{n}}$ or $y=x^{h_{n}}$, or
(2) $x_{i}=\overline{y_{i}}$ for $1 \leq i \leq n-1$; in this case, $x y$ is called a complement edge and we set $x=y^{c_{n}}$ or $y=x^{c_{n}}$.

And an edge between $x=x_{n} x_{n-1} \ldots x_{i} \ldots x_{2} x_{1}$ and $y=x_{n} x_{n-1} \ldots \overline{x_{i}} \ldots x_{2} x_{1}\left(x_{i} \in\{0,1\}, 2 \leq i \leq n\right)$ is called an i-dimensional hypercube edge, setting $x=y^{h_{i}}$ or $y=x^{h_{i}}$, an edge between $x=x_{n} x_{n-1} \ldots x_{i} \ldots x_{2} x_{1}$ and $y=x_{n} x_{n-1} \ldots \overline{x_{i}} \ldots \overline{x_{2} x_{1}}\left(x_{i} \in\{0,1\}, 1 \leq i \leq n\right)$ is called an i-dimensional complement edge, setting $x=y^{c_{i}}$ or $y=x^{c_{i}}$. For any vertex u in $A Q_{n}$, we use u^{h} to denote $u^{h_{n}}$ and use u^{c} to denote $u^{c_{n}}$. Examples of the augmented cubes $A Q_{1}, A Q_{2}$ and $A Q_{3}$ are shown in Figure 1(a)-(c), respectively.

Figure 1. $A Q_{1}, A Q_{2}$ and $A Q_{3}$.
$A Q_{n}$ is (2n-1)-regular that has, naturally, 2^{n} vertices. For the sake of simplicity, we write this as $L={ }^{0} A Q_{n-1}$ and $R={ }^{1} A Q_{n-1}$. Let $N_{A Q_{n}}(x)$ express the set of vertices which are incident to vertex x and $E_{A Q_{n}}(x)$ express the set of edges which are incident to vertex x. For each vertex $x \in V(L)($ or $V(R))$, let $N_{L}(x)\left(\right.$ or $\left.N_{R}(x)\right)$ express the set of vertices adjacent to x in $V(L)($ or $V(R)), E^{C}$ signify the set of edges joining L to R and $E_{L}(x)$ (or $\left.E_{R}(x)\right)$ serve as the set of edges which are incident to vertex x in $L($ or $R)$.

For two distinct vertices u and v in G, a path $P_{u v}$ from vertex u to vertex v of length k is a sequence of different vertices $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$, where $x_{0}=u, x_{k}=v, x_{i-1} x_{i} \in E(G)$ for each $i=1,2, \ldots, k$, and k is the number of edges in $P_{u v}$, called the length of $P_{u v}$. The distance between vertices u and v, denoted by $d_{u v}$, is the length of a shortest path from vertex u to vertex v in G.

Let $P_{u v}=\left(u, u_{1}, u_{2}, \cdots, u_{k-1}, v\right)$ be a path from vertex u to vertex v. A subsequence $\left(u_{i}, u_{i+1}, \cdots, u_{j}\right)$ of $P_{u v}$ is called a subpath of $P_{u v}$, denoted by $P_{u v}\left(u_{i}, u_{j}\right)$. We can write $P_{u v}=\left(u, u_{1}, \cdots, u_{i}, P_{u v}\left(u_{i}, u_{j}\right), u_{j}, \cdots u_{k-1}, v\right)$. A cycle is a path $P_{u v}$ with $u=v$. We use $C=\left(u, u_{1}, u_{2}, \cdots, u_{k-1}, u\right)$ to denote a cycle containing vertex u.

We first give the useful definitions and properties about $A Q_{n}$ as follows.
Proposition 2.1. Let $u v$ be an edge in $A Q_{n}(n \geq 2)$ [4]. If $u v$ is not an ($n-1$)-dimensional complement edge, then u^{h}, u^{c}, v^{h} and v^{c} are all distinct. Otherwise, $u^{h}=v^{c}, u^{c}=v^{h}$.

Proposition 2.2. For any two distinct vertices u and v of $A Q_{n}$, we have $\mid\left(N_{A Q_{n}}(u) \cup E_{A Q_{n}}(u)\right) \cap\left(N_{A Q_{n}}(v) \cup\right.$ $\left.E_{A Q_{n}}(v)\right) \mid \leq 5$.
Proof. Let m be the adjacent vertex of vertex u. Then

$$
m=\left\{\begin{array}{lll}
u^{c_{j}}=u_{n} u_{n-1} \cdots u_{j+1} \bar{u}_{j} \bar{u}_{j-1} \cdots \bar{u}_{2} \bar{u}_{1}, & 1 \leq j \leq n . \\
u^{h_{j}}=u_{n} u_{n-1} \cdots u_{j+1} \bar{u}_{j} u_{j-1} \cdots u_{2} u_{1}, & 2 \leq j \leq n .
\end{array}\right.
$$

If there exists at least one common adjacent vertex between any two distinct vertices u and v of $A Q_{n}$, then $d_{u v} \leq 2$. We divided to the following two cases to prove.

Case 1. $d_{u v}=1$.
Case 1.1. $v=u^{c_{i}}(1 \leq i \leq n)$. Then $v=u_{n} u_{n-1} \cdots u_{i+1} \bar{u}_{i} \bar{u}_{i-1} \cdots \bar{u}_{2} \bar{u}_{1}$. $m \in N(v)$ if and only if

$$
m=\left\{\begin{array}{lll}
u^{c_{i+1}}=u_{n} u_{n-1} \cdots \bar{u}_{i+1} \bar{u}_{i} \bar{u}_{i-1} \cdots \bar{u}_{2} \bar{u}_{1}, & 1 \leq i \leq n-1 . \\
u^{c_{i-1}}=u_{n} u_{n-1} \cdots u_{i+1} u_{i} \bar{u}_{i-1} \cdots \bar{u}_{2} \bar{u}_{1}, & 2 \leq i \leq n . \\
u^{h_{i}}=u_{n} u_{n-1} \cdots u_{i+1} \bar{u}_{i} u_{i-1} \cdots u_{2} u_{1}, & 2 \leq i \leq n . \\
u^{k_{i+1}}=u_{n} u_{n-1} \cdots \bar{u}_{i+1} u_{i} u_{i-1} \cdots u_{2} u_{1}, & 1 \leq i \leq n-1 .
\end{array}\right.
$$

Then $N_{A Q_{n}}(u) \cap N_{A Q_{n}}(v)=\left\{u^{c_{i+1}}, u^{c_{i-1}}, u^{h_{i}}, u^{h_{i+1}}\right\}$ for $2 \leq i \leq n-1, N_{A Q_{n}}(u) \cap N_{A Q_{n}}(v)=\left\{u^{c_{i+1}}, u^{h_{i+1}}\right\}$ for $i=1, N_{A Q_{n}}(u) \cap N_{A Q_{n}}(v)=\left\{u^{c_{i-1}}, u^{h_{i}}\right\}$ for $i=n$.

Case 1.2. $v=u^{h_{i}}(2 \leq i \leq n)$. Then $v=u_{n} u_{n-1} \cdots u_{i+1} \bar{u}_{i} u_{i-1} \cdots u_{2} u_{1}$. $m \in N(v)$ if and only if

$$
m= \begin{cases}u^{c_{i-1}}=u_{n} u_{n-1} \cdots u_{i+1} u_{i} \bar{u}_{i-1} \cdots \bar{u}_{2} \bar{u}_{1}, & 2 \leq i \leq n . \\ u^{c_{i}}=u_{n} u_{n-1} \cdots u_{i+1} \bar{u}_{i} \bar{u}_{i-1} \cdots \bar{u}_{2} \bar{u}_{1}, & 2 \leq i \leq n .\end{cases}
$$

Then $N_{A Q_{n}}(u) \cap N_{A Q_{n}}(v)=\left\{u^{c_{i-1}}, u^{c_{i}}\right\}$ for $2 \leq i \leq n$.
Case 2. $d_{u v}=2$.
Case 2.1. $v=u^{c_{i} c_{k}}(1 \leq i<k \leq n, k \neq i+1)$. Then $v=u_{n} u_{n-1} \cdots u_{k+1} \bar{u}_{k} \bar{u}_{k-1} \cdots$ $\bar{u}_{i+1} u_{i} u_{i-1} \cdots u_{2} u_{1} . m \in N(v)$ if and only if

$$
m= \begin{cases}u^{c_{i}}=u_{n} u_{n-1} \cdots u_{k+1} u_{k} u_{k-1} \cdots u_{i+1} \bar{u}_{i} \bar{u}_{i-1} \cdots \bar{u}_{2} \bar{u}_{1}, & \\ u^{c_{k}}=u_{n} u_{n-1} \cdots u_{k+1} \bar{u}_{k} \bar{u}_{k-1} \cdots \bar{u}_{i+1} \bar{u}_{i} \bar{u}_{i-1} \cdots \bar{u}_{2} \bar{u}_{1}, & \\ u_{k}^{h_{k}}=u_{n} u_{n-1} \cdots u_{k+1} \bar{u}_{k} u_{i+1} u_{i} u_{i-1} \cdots u_{2} u_{1}, & k=i+2 . \\ u^{k_{i+1}=u_{n} u_{n-1} \cdots u_{k+1} u_{k} \bar{u}_{i+1} u_{i} u_{i-1} \cdots u_{2} u_{1},} \quad, \quad k=i+2 .\end{cases}
$$

Then $N_{A Q_{n}}(u) \cap N_{A Q_{n}}(v)=\left\{u^{c_{i}}, u^{c_{k}}, u^{h_{k}}, u^{h_{i+1}}\right\}$ for $k=i+2$ and $N_{A Q_{n}}(u) \cap N_{A Q_{n}}(v)=\left\{u^{c_{i}}, u^{c_{k}}\right\}$ for $k \neq i+2$.

Case 2.2. $v=u^{c_{i} h_{k}}(1 \leq i<k \leq n, k \neq i+1)$. Then $v=u_{n} u_{n-1} \cdots u_{k+1} \bar{u}_{k} u_{k-1} \cdots$ $u_{i+1} \bar{u}_{i} \bar{u}_{i-1} \cdots \bar{u}_{2} \bar{u}_{1}, m \in N(v)$ if and only if

$$
m= \begin{cases}u^{c_{i}}=u_{n} u_{n-1} \cdots u_{k+1} u_{k} u_{k-1} \cdots u_{i+1} \bar{u}_{i} \bar{u}_{i-1} \cdots \bar{u}_{2} \bar{u}_{1}, & \\ u^{h_{k}}=u_{n} u_{n-1} \cdots u_{k+1} \bar{u}_{k} u_{k-1} \cdots u_{i+1} u_{i} u_{i-1} \cdots u_{2} u_{1}, & \\ u_{k}^{c_{k}}=u_{n} u_{n-1} \cdots u_{k+1} \bar{u}_{k} \bar{u}_{i+1} \bar{u}_{\bar{u}_{i-1}} \cdots \bar{u}_{2} \bar{u}_{1}, & k=i+2 . \\ u_{i+1}^{n_{i+1}=u_{n} u_{n-1} \cdots u_{k+1} u_{k} \bar{u}_{i+1} u_{i} u_{i-1} \cdots u_{2} u_{1},} \quad k=i+2 .\end{cases}
$$

Then $N_{A Q_{n}}(u) \cap N_{A Q_{n}}(v)=\left\{u^{c_{i}}, u^{h_{k}}, u^{c_{k}}, u^{h_{i+1}}\right\}$ for $k=i+2$ and $N_{A Q_{n}}(u) \cap N_{A Q_{n}}(v)=\left\{u^{c_{i}}, u^{h_{k}}\right\}$ for $k \neq i+2$.

Case 2.3. $v=u^{h_{i} h_{k}}(2 \leq i<k \leq n)$. Then $v=u_{n} u_{n-1} \cdots u_{k+1} \bar{u}_{k} u_{k-1} \cdots u_{i+1} \bar{u}_{i} u_{i-1}$ $\cdots u_{2} u_{1} . m \in N(v)$ if and only if

$$
m= \begin{cases}u^{h_{i}}=u_{n} u_{n-1} \cdots u_{k+1} u_{k} u_{k-1} \cdots u_{i+1} \bar{u}_{i} u_{i-1} \cdots u_{2} u_{1}, & \\ u^{k_{k}}=u_{n} u_{n-1} \cdots u_{k+1} \bar{u}_{k} u_{k-1} \cdots u_{i+1} u_{i} u_{i-1} \cdots u_{2} u_{1}, & \\ u^{c_{i-1}}=u_{n} u_{n-1} \cdots u_{k+1} u_{k} u_{i} \bar{u}_{i-1} \cdots \bar{u}_{2} \bar{u}_{1}, & k=i+1 . \\ u^{c_{k}=u_{n} u_{n-1} \cdots u_{k+1} \bar{u}_{k} \bar{u}_{i} \bar{u}_{i-1} \cdots \bar{u}_{2} \bar{u}_{1},} \quad k=i+1 .\end{cases}
$$

Then $N_{A Q_{n}}(u) \cap N_{A Q_{n}}(v)=\left\{u^{h_{i}}, u^{h_{k}}, u^{c_{i-1}}, u^{c_{k}}\right\}$ for $k=i+1$ and $N_{A Q_{n}}(u) \cap N_{A Q_{n}}(v)=\left\{u^{h_{i}}, u^{h_{k}}\right\}$ for $k \neq i+1$.

Case 2.4. $v=u^{h_{i} c_{k}}(2 \leq i<k \leq n)$. Then $v=u_{n} u_{n-1} \cdots u_{k+1} \bar{u}_{k} \bar{u}_{k-1} \cdots \bar{u}_{i+1} u_{i} \bar{u}_{i-1}$ $\cdots \bar{u}_{2} \bar{u}_{1} . m \in N(v)$ if and only if

$$
m= \begin{cases}u^{k_{i}}=u_{n} u_{n-1} \cdots u_{k+1} u_{k} u_{k-1} \cdots u_{i+1} \bar{u}_{i} u_{i-1} \cdots u_{2} u_{1}, & \\ u^{c_{k}}=u_{n} u_{n-1} \cdots u_{k+1} \bar{u}_{k} \overline{\bar{u}}_{k-1} \cdots \bar{u}_{i+1} \overline{\bar{u}}_{i} \bar{u}_{i-1} \cdots \bar{u}_{2} \bar{u}_{1}, & \\ u_{i-1}^{c_{i-1}}=u_{n} u_{n-1} \cdots u_{k+1} u_{k} u_{i} \bar{u}_{i-1} \cdots \bar{u}_{2} \bar{u}_{1}, & k=i+1 . \\ u^{b_{k}}=u_{n} u_{n-1} \cdots u_{k+1} \bar{u}_{k} u_{i} u_{i-1} \cdots u_{2} u_{1}, & k=i+1\end{cases}
$$

Then $N_{A Q_{n}}(u) \cap N_{A Q_{n}}(v)=\left\{u^{h_{i}}, u^{c_{k}}, u^{c_{i-1}}, u^{h_{k}}\right\}$ for $k=i+1$ and $N_{A Q_{n}}(u) \cap N_{A Q_{n}}(v)=\left\{u^{h_{i}}, u^{c_{k}}\right\}$ for $k \neq i+1$.

Combining the above cases, we have that $\left|N_{A Q_{n}}(u) \cap N_{A Q_{n}}(v)\right| \leq 4$. If $u v \in E\left(A Q_{n}\right)$, then $\mid\left(N_{A Q_{n}}(u) \cup\right.$ $\left.E_{A Q_{n}}(u)\right) \cap\left(N_{A Q_{n}}(v) \cup E_{A Q_{n}}(v)\right) \mid \leq 5$. If $u v \notin E\left(A Q_{n}\right)$, then $\left|\left(N_{A Q_{n}}(u) \cup E_{A Q_{n}}(u)\right) \cap\left(N_{A Q_{n}}(v) \cup E_{A Q_{n}}(v)\right)\right| \leq 4$. Hence, we have $\left|\left(N_{A Q_{n}}(u) \cup E_{A Q_{n}}(u)\right) \cap\left(N_{A Q_{n}}(v) \cup E_{A Q_{n}}(v)\right)\right| \leq 5$.

Definition 2.2. Let $F \subset V\left(A Q_{n}\right) \cup E\left(A Q_{n}\right)$ with $|F|=2 n-3$. If $A Q_{n}-F$ include a vertex w with $N_{A Q_{n}-F}(w)=\left\{w_{1}, w_{2}\right\}$, then w is considered a weak 2-degree vertex and $\left(w_{1}, w_{2}\right)$ is considered a w-weak vertex pair(or a weak vertex pair, for short).

Take $F=\{a, b\}$ for an example, we know that w is a weak 2-degree vertex and $\left(w_{1}, w_{2}\right)$ is a weak vertex-pair in $A Q_{3}-F$ (See Figure 2).

Figure 2. Illustration of weak vertex-pair.
Because it is impossible for any error-free path $P_{w_{1} w_{2}}$ of length l with $l \geq 3$ to contain the weak 2-degree vertex w, no error-free Hamiltonian path that joins vertices w_{1} and w_{2} exists in $A Q_{n}-F$. Fortunately, at most one weak 2-degree vertex w and at most one w-weak vertex-pair exist in $A Q_{n}$ $F(n \geq 5)$ for any $F \subset V\left(A Q_{n}\right) \cup E\left(A Q_{n}\right)$ with $|F|=2 n-3$. We shall provide proof of this fact in Proposition 2.3.

Definition 2.3. If (w_{1}, w_{2}) is not a weak vertex-pair for arbitrary vertex $w \in V\left(A Q_{n}-F\right)$, then $\left(w_{1}, w_{2}\right)$ is called a normal vertex pair.
Proposition 2.3. Let $F \subset V\left(A Q_{n}\right) \cup E\left(A Q_{n}\right)$ with $|F| \leq 2 n-1(n \geq 6)$. Then there exists at most one vertex $z \in V\left(A Q_{n}-F\right)$ such that $d_{A Q_{n}-F}(z) \leq 2$.
Proof. Assume that there exist two vertices z_{1}, z_{2} such that $d_{A Q_{n}-F}\left(z_{1}\right) \leq 2$ and $d_{A Q_{n}-F}\left(z_{2}\right) \leq 2$. Since $A Q_{n}$ is a $(2 n-1)$-regular graph, we have $\left|F \cap\left(N_{A Q_{n}}\left(z_{1}\right) \cup E_{A Q_{n}}\left(z_{1}\right)\right)\right| \geq 2 n-3$ and $\mid F \cap\left(N_{A Q_{n}}\left(z_{2}\right) \cup\right.$ $\left.E_{A Q_{n}}\left(z_{2}\right)\right) \mid \geq 2 n-3$.

By Proposition 2.2, $\left|\left(N_{A Q_{n}}\left(z_{1}\right) \cup E_{A Q_{n}}\left(z_{1}\right)\right) \cap\left(N_{A Q_{n}}\left(z_{2}\right) \cup E_{A Q_{n}}\left(z_{2}\right)\right)\right| \leq 5$. Then $\mid F \cap\left(N_{A Q_{n}}\left(z_{1}\right) \cup\right.$ $\left.E_{A Q_{n}}\left(z_{1}\right)\right)\left|+\left|F \cap\left(N_{A Q_{n}}\left(z_{2}\right) \cup E_{A Q_{n}}\left(z_{2}\right)\right)\right|-\left|F \cap\left(N_{A Q_{n}}\left(z_{1}\right) \cup E_{A Q_{n}}\left(z_{1}\right)\right) \cap\left(N_{A Q_{n}}\left(z_{2}\right) \cup E_{A Q_{n}}\left(z_{2}\right)\right)\right| \geq 2(2 n-3)-5=\right.$ $4 n-11>2 n-1(n \geq 6)$, a contradiction to $|F| \leq 2 n-1$.

Hence, at most one vertex $z \in V\left(A Q_{n}-F\right)$ exists in $A Q_{n}-F$ such that $d_{A Q_{n}-F}(z) \leq 2$ for any $F \subset V\left(A Q_{n}\right) \cup E\left(A Q_{n}\right)$ with $|F| \leq 2 n-1$.

By Proposition 2.3, we can obtain the Corollary 2.1 as follows.
Corollary 2.1. Let $F \subset V\left(A Q_{n}\right) \cup E\left(A Q_{n}\right)$ with $|F| \leq 2 n-3$. Then at most a weak 2-degree vertex w and at most a w-weak vertex-pair exist in $A Q_{n}-F(n \geq 6)$.

3. Some lemmas

Denote $F^{L}=F \cap L, F^{R}=F \cap R, F^{C}=F \cap E^{C}, F_{v}=F \cap V\left(A Q_{n}\right), F_{e}=F \cap E\left(A Q_{n}\right), F_{v}^{L}=V(L) \cap F^{L}$, $F_{v}^{R}=V(R) \cap F^{R}, f_{v}=\left|F_{v}\right|, f_{v}^{L}=\left|F_{v}^{L}\right|, f_{v}^{R}=\left|F_{v}^{R}\right|$.

We need the following lemmas.
Lemma 3.1. $A Q_{n}(n \geq 3)$ is $(2 n-4)$-fault-tolerant Hamiltonian connected and ($2 n-3$)-fault-tolerant Hamiltonian [3].

Lemma 3.2. If $\left|F^{L}\right|=2 n-3(n \geq 6)$, then for arbitrary vertex-pair (u, v) with $u, v \in V(L)$, there exist two faulty elements $x_{1}, x_{2} \in F^{L}$ such that (u, v) is a normal vertex-pair in $L-\left(F^{L}-\left\{x_{1}, x_{2}\right\}\right)$.

Proof. We use the following two cases to prove.
Case 1. (u, v) is a w-weak vertex pair in $L-F^{L}$. Then $d_{L-F^{L}}(w)=2$ and $\left|F^{L} \cap\left(N_{L}(w) \cup E_{L}(w)\right)\right|=$ $2 n-5$. By Proposition 2.3, w is the unique vertex in $L-F^{L}$ with $d_{L-F^{L}}(w) \leq 2$.

So, we can choose two elements $x_{1}, x_{2} \in F^{L} \cap\left(N_{L}(w) \cup E_{L}(w)\right)$. Let $F_{1}^{L}=F^{L}-\left\{x_{1}, x_{2}\right\}$, then $d_{L-F_{1}^{L}}(w)=4$. Hence, (u, v) is a normal vertex pair in $L-F_{1}^{L}$.

Case 2. (u, v) is a normal vertex pair in $L-F^{L}$. Let vertex $z \in L-F^{L}$ with the least degree.
Case 2.1. $\delta\left(L-F^{L}\right)=0$, then $F^{L} \subset N_{L}(z) \cup E_{L}(z), d_{L-F^{L}}(z)=0$.
Case 2.1.1. $z \in\{u, v\}$. Assume that $u=z$ (When $v=z$, the same proofs apply).
By Proposition 2.3, u is the unique vertex in $L-F^{L}$ with $d_{L-F^{L}}(u) \leq 2$. Then (u, v) is a normal vertex-pair in $L-\left(F^{L}-\left\{x_{1}, x_{2}\right\}\right)$ for arbitrary two elements x_{1}, x_{2} of F^{L}.

Case 2.1.2. $z \notin\{u, v\}$.
By Proposition 2.3, z is the unique vertex in $L-F^{L}$ with $d_{L-F^{L}}(z) \leq 2$. There exist two elements $x_{1}, x_{2} \in F^{L} \cap\left(N_{L}(z) \cup E_{L}(z)\right)$ with $x_{1}, x_{2} \notin\{u z, v z\}$. Let $F_{1}^{L}=F^{L}-\left\{x_{1}, x_{2}\right\}$, then $d_{L-F_{1}^{L}}(z)=2$ and $N_{L-F_{1}^{L}}(z) \neq\{u, v\}$. Hence, (u, v) is a normal vertex pair in $L-F_{1}^{L}$.

Case 2.2. $\delta\left(L-F^{L}\right)=1$. Then $\left|F^{L} \cap\left(N_{L}(z) \cup E_{L}(z)\right)\right|=2 n-4$ and $d_{L-F^{L}}(z)=1$.
By Proposition $2.3, z$ is the unique vertex in $L-F^{L}$ with $d_{L-F^{L}}(z) \leq 2$. There exist two elements $x_{1}, x_{2} \in F^{L} \cap\left(N_{L}(z) \cup E_{L}(z)\right)$. Let $F_{1}^{L}=F^{L}-\left\{x_{1}, x_{2}\right\}$, then $d_{L-F_{1}^{L}}(z)=3$. Then (u, v) is a normal vertex pair in $L-F_{1}^{L}$.

Case 2.3. $\delta\left(L-F^{L}\right) \geq 2$.
Then (u, v) is a normal vertex-pair in $L-\left(F^{L}-\left\{x_{1}, x_{2}\right\}\right)$ for arbitrary two elements x_{1}, x_{2} of F^{L}.
The Lemma holds.
By a similar argument to Lemma 3.2, we can get the following Lemma.
Lemma 3.3. If $\left|F^{L}\right|=2 n-4(n \geq 6)$, then for arbitrary vertex-pair (u, v) with $u, v \in V(L)$, there is a faulty element $x \in F^{L}$ such that (u, v) is a normal vertex-pair in $L-\left(F^{L}-\{x\}\right)$.

Lemma 3.4. Let $F \subset V\left(A Q_{n}\right) \cup E\left(A Q_{n}\right)$ with $|F| \leq 2$ and x, y, z, w be four distinct vertices in $A Q_{n}(n \geq$ 4). Then two disjoint paths $P_{x y}, P_{z w}$ such that $V\left(P_{x y}\right) \cup V\left(P_{z w}\right)=V\left(A Q_{n}-F\right)$ will exist.

Proof. We prove the lemma by induction on $n \geq 4$. The induction basis for $n=4$ holds by computer program. Suppose that the lemma holds for $n-1$ with $n \geq 5$, then we must show the lemma holds for n.

Case 1. $x, y, z, w \in V(L)$.
By induction hypothesis, two disjoint paths $P_{x y}, P_{z w}$ with $V\left(P_{x y}\right) \cup V\left(P_{z w}\right)=V\left(L-F^{L}\right)$ exist in $L-F^{L}$. Assume that $\left|V\left(P_{x y}\right)\right| \geq\left|V\left(P_{z w}\right)\right|$. Then $\frac{\mid V\left(P_{x y} \mid\right.}{2} \geq\left\lceil\frac{2^{n}-2}{2}\right\rceil / 2 \geq 7(n \geq 5)$. Since $|F| \leq 2$, we can choose an edge $x_{1} y_{1} \subset E\left(P_{x y}\right)$ such that $x_{1}^{h}, y_{1}^{h}, x_{1} x_{1}^{h}, y_{1} y_{1}^{h} \notin F$. By Lemma 3.1, a Hamiltonian path $P_{x_{1}^{h} y_{1}^{h}}$ will exist in $R-F^{R}$. Let $P_{x y}^{1}=\left(x, P_{x y}\left(x, x_{1}\right), x_{1}, x_{1}^{h}, P_{x_{1}^{h} y_{1}^{h}}, y_{1}^{h}, y_{1}, P_{x y}\left(y_{1}, y\right), y\right)$. Then $P_{x y}^{1}, P_{z w}$ are two desired paths in $A Q_{n}-F$ (see Figure 3(a)).

Case 2. $x, y, z \in V(L), w \in V(R)$.
Since $\left|E^{C}\right|-12=2^{n}-12 \geq 20(n \geq 5)$, an error-free edge $z_{1} z_{1}^{h}$ can be chosen form E^{C} such that $z_{1} \notin\{x, y, z\}, z_{1}^{h} \neq w$ and $z_{1}, z_{1}^{h} \notin F$. By induction hypothesis, two disjoint paths $P_{x y}, P_{z z_{1}}$ with $V\left(P_{x y}\right) \cup V\left(P_{z z_{1}}\right)=V\left(L-F^{L}\right)$ exist in $L-F^{L}$. By Lemma 3.1, we can find a Hamiltonian path $P_{z_{1}^{h} w}$ in $R-F^{R}$. Let $P_{z w}=\left(z, P_{z z_{1}}, z_{1}, z_{1}^{h}, P_{z_{1}^{h} w}, w\right)$. Then $P_{x y}, P_{z w}$ are two desired paths in $A Q_{n}-F$ (see Figure 3(b)).

Figure 3. Illustrations of Lemma 3.4.
Case 3. $x, y \in V(L), z, w \in V(R)$.
By Lemma 3.1, we can find a Hamiltonian path $P_{x y}$ in $L-F^{L}$ and a Hamiltonian path $P_{z w}$ in $R-F^{R}$. Then $P_{x y}, P_{z w}$ are two desired paths in $A Q_{n}-F$ (see Figure 4(a)).

Case 4. $x, z \in V(L), y, w \in V(R)$.
Since $\left|E^{C}\right|-12=2^{n}-12 \geq 20(n \geq 5)$, there are two error-free disjoint edges $x_{1} x_{1}^{h}, z_{1} z_{1}^{h}$ such that $x_{1}, z_{1} \notin\{x, z\}, x_{1}^{h}, z_{1}^{h} \notin\{y, w\}$ and $x_{1}, x_{1}^{h}, z_{1}, z_{1}^{h} \notin F$. By induction hypothesis, two disjoint paths $P_{x x_{1}}, P_{z z_{1}}$ with $V\left(P_{x x_{1}}\right) \cup V\left(P_{z z_{1}}\right)=V\left(L-F^{L}\right)$ exist in $L-F^{L}$ and two disjoint paths $P_{x_{1}^{h} y}, P_{z_{1}^{h} w}$ with $V\left(P_{x_{1}^{h} y}\right) \cup$ $V\left(P_{z_{1}^{h} w}\right)=V\left(R-F^{R}\right)$ exist in $R-F^{R}$. Let $P_{x y}=\left(x, P_{x x_{1}}, x_{1}, x_{1}^{h}, P_{x_{1}^{h} y}, y\right), P_{z w}=\left(z, P_{z z_{1}}, z_{1}, z_{1}^{h}, P_{z_{1}^{h} w}, w\right)$. Then $P_{x y}, P_{z w}$ are two desired paths in $A Q_{n}-F$ (see Figure 4(b)).

Figure 4. Illustrations of Lemma 3.4.

The lemma holds.
Lemma 3.5. Let x, y, z, w, a, b be six distinct vertices in $A Q_{n}(n \geq 4)$. Then there exist three disjoint paths $P_{x y}, P_{z w}$, and $P_{a b}$ such that $V\left(P_{x y}\right) \cup V\left(P_{z w}\right) \cup V\left(P_{a b}\right)=V\left(A Q_{n}\right)$.

Proof. We prove the lemma by induction on $n \geq 4$. The induction basis for $n=4$ holds by computer program. Suppose the lemma holds for $n-1$ with $n \geq 5$, then we must show the lemma holds for n.

Case 1. $x, y, z, w, a, b \in V(L)$.
By induction hypothesis, three disjoint paths $P_{x y}, P_{z w}$ and $P_{a b}$ with $V\left(P_{x y}\right) \cup V\left(P_{z w}\right) \cup V\left(P_{a b}\right)=V(L)$ will exist in L. Let $x_{1} y_{1} \in E\left(P_{x y}\right)$. By Lemma 3.1, a Hamiltonian path $P_{x_{1}^{h} y_{1}^{h}}$ can be found in R. Let $P_{x y}^{1}=\left(x, P_{x y}\left(x, x_{1}\right), x_{1}, x_{1}^{h}, P_{x_{1}^{h} h_{1}^{h}}, y_{1}^{h}, y_{1}, P_{x y}\left(y_{1}, y\right), y\right)$. Then $P_{x y}^{1}, P_{z w}, P_{a b}$ are three desired paths in $A Q_{n}$ (see Figure 5(a)).

Case 2. $x, y, z, w, a \in V(L), b \in V(R)$.
Choose a vertex a_{1} from $V(L)-\{x, y, z, w, a\}$ such that there exists a vertex $a_{1}^{g} \in\left\{a_{1}^{h}, a_{1}^{c}\right\}$ with $a_{1}^{g} \quad \neq b$. By induction hypothesis, three disjoint paths $P_{x y}, \quad P_{z w}$ and $P_{a a_{1}}$ with $V\left(P_{x y}\right) \cup V\left(P_{z w}\right) \cup V\left(P_{a a_{1}}\right)=V(L)$ will exist in L. By Lemma 3.1, a Hamiltonian path $P_{a_{1}^{g} b}$ can be found in R. Let $P_{a b}=\left(a, P_{a a_{1}}, a_{1}, a_{1}^{g}, P_{a_{1}^{g} b}, b\right)$. Then $P_{x y}, P_{z w}, P_{a b}$ are three desired paths in $A Q_{n}$ (see Figure 5(b)).

Case 3. $x, y, z, w \in V(L), a, b \in V(R)$.
By Lemma 3.4, two disjoint paths $P_{x y}, P_{z w}$ with $V\left(P_{x y}\right) \cup V\left(P_{z w}\right)=V(L)$ exist in L. By Lemma 3.1, we can find a Hamiltonian path $P_{a b}$ in R. Then $P_{x y}, P_{z w}, P_{a b}$ are three desired paths in $A Q_{n}$ (see Figure 5(c)).

Figure 5. Illustrations of Lemma 3.5.

Case 4. $x, y, z, a \in V(L), w, b \in V(R)$.
Since $\left|E^{C}\right|-12=2^{n}-12 \geq 20$, there are two disjoint edges $z_{1} z_{1}^{h}, a_{1} a_{1}^{h}$ such that $z_{1}, a_{1} \notin\{x, y, z, a\}$ and $z_{1}^{h}, a_{1}^{h} \notin\{w, b\}$. By induction hypothesis, three disjoint paths $P_{x y}, P_{z z 1}$ and $P_{a a_{1}}$ with $V\left(P_{x y}\right) \cup V\left(P_{z z 1}\right) \cup$ $V\left(P_{a a_{1}}\right)=V(L)$ will exist in L. And by Lemma 3.4, two disjoint paths $P_{z_{1}^{h} w}, P_{a_{1}^{h b} b}$ with $V\left(P_{z_{1}^{h} w}\right) \cup$ $V\left(P_{a_{1}^{h b}}\right)=V(R)$ will exist in R. Let $P_{z w}=\left(z, P_{z z_{1}}, z_{1}, z_{1}^{h}, P_{z_{1}^{h} w}, w\right)$ and $P_{a b}=\left(a, P_{a a_{1}}, a_{1}, a_{1}^{h}, P_{a_{1}^{h b}}, b\right)$. Then $P_{x y}, P_{z w}, P_{a b}$ are three desired paths in $A Q_{n}$ (see Figure 6(a)).

Case 5. $x, z, a \in V(L), y, w, b \in V(R)$.
Since $\left|E^{C}\right|-12=2^{n}-12 \geq 20$, there are three disjoint edges $x_{1} x_{1}^{h}, z_{1} z_{1}^{h}, a_{1} a_{1}^{h}$ such that $x_{1}, z_{1}, a_{1} \notin$ $\{x, z, a\}$ and $x_{1}^{h}, z_{1}^{h}, a_{1}^{h} \notin\{y, w, b\}$. By induction hypothesis, three disjoint paths $P_{x x_{1}}, P_{z z_{1}}$ and $P_{a a_{1}}$ with $V\left(P_{x x_{1}}\right) \cup V\left(P_{z z_{1}}\right) \cup V\left(P_{a a_{1}}\right)=V(L)$ will exist in L and three disjoint paths $P_{x_{1}^{h} y}, P_{z_{1}^{h}}, P_{a_{1}^{h} b}$ with $V\left(P_{x_{1}^{h} y}\right) \cup$ $V\left(P_{z_{1}^{h} w}\right) \cup V\left(P_{a_{1}^{h} b}\right)=V(R)$ will exist in R. Let $P_{x y}=\left(x, P_{x x_{1}}, x_{1}, x_{1}^{h}, P_{x_{1}^{h} y}, y\right), P_{z w}=\left(z, P_{z z 1}, z_{1}, z_{1}^{h}, P_{z_{1}^{h} w}, w\right)$ and $P_{a b}=\left(a, P_{a a_{1}}, a_{1}, a_{1}^{h}, P_{a_{1}^{h} b}, b\right)$. Then $P_{x y}, P_{z w}, P_{a b}$ are three desired paths in $A Q_{n}($ see Figure 6(b)).

Case 6. $x, y, a \in V(L), z, w, b \in V(R)$.
Since $\left|E^{C}\right|-12=2^{n}-12 \geq 20$, there is an edge $a_{1} a_{1}^{h}$ such that $a_{1} \notin\{x, y, a\}$ and $a_{1}^{h} \notin\{z, w, b\}$. By Lemma 3.4, two disjoint paths $P_{x y}$ and $P_{a a_{1}}$ with $V\left(P_{x y}\right) \cup V\left(P_{a a_{1}}\right)=V(L)$ will exist in L and two disjoint paths $P_{z w}$ and $P_{a_{1}^{h} b}$ with $V\left(P_{z w}\right) \cup V\left(P_{a_{1}^{h} b}\right)=V(R)$ will exist in R. Let $P_{a b}=\left(a, P_{a a_{1}}, a_{1}, a_{1}^{h}, P_{a_{1}^{b} b}, b\right)$. Then $P_{x y}, P_{z w}, P_{a b}$ are three desired paths in $A Q_{n}($ see Figure 6(c)).

The lemma holds.

Figure 6. Illustrations of Lemma 3.5.

4. Main results

Theorem 4.1. Let $F \subset V\left(A Q_{n}\right) \cup E\left(A Q_{n}\right)$ with $|F| \leq 2 n-3(n \geq 4)$. Then for arbitrary two different vertices u and v in $A Q_{n}-F$, there exists an error-free Hamiltonian path $P_{u v}$ except (u, v) is a weak vertex-pair in $A Q_{n}-F$.

Proof. For $|F| \leq 2 n-4$, the theorem holds by Lemma 3.1. We only need to consider $|F|=2 n-3$.
Now, we prove the theorem by induction on $n \geq 4$. The induction basis for $n=4,5$ holds by computer program (https://github.com/ZhangHeidi/Hypercubes/blob/master/ven02.c). Supposing that the theorem holds for $n-1$ with $n \geq 6$, we must show the theorem holds for n.

We may assume $\left|F^{R}\right| \leq\left|F^{L}\right|$ (When $\left|F^{R}\right| \geq\left|F^{L}\right|$, the same proofs apply). Then $\left|F^{R}\right| \leq\left\lfloor\frac{2 n-3}{2}\right\rfloor \leq n-1$. Notice that $\left|N_{R}(x)\right|=2 n-3$ for any vertex $x \in R$, we have $\left|N_{R-F^{R}}(x)\right| \geq n-2 \geq 4$. Thus $R-F^{R}$ does not contain weak vertex-pairs.

Case 1. $\left|F^{L}\right| \leq 2 n-5$.
Case 1.1. $u, v \in V\left(L-F^{L}\right)$ or $u, v \in V\left(R-F^{R}\right)$. Suppose that $u, v \in V\left(L-F^{L}\right)$.
Case 1.1.1. (u, v) is a w-weak vertex-pair in $L-F^{L}$, i.e., $N_{L-F^{L}}(w)=\{u, v\}$. Since $\left|N_{L}(w)\right|=2 n-3$, we have $\left|F^{L}\right|=2 n-5$ and $\left|F^{R}\right|+\left|F^{C}\right|=2$. Note that (u, v) is a normal vertex-pair in $A Q_{n}-F$, we can choose a vertex w^{g} from $\left\{w^{h}, w^{c}\right\}$ such that $w^{g}, w w^{g} \notin F$.

Because $\left|V(L)-F^{L}-\{u, w, v\}\right| \geq 2^{n-1}-(2 n-5)-3 \geq 22(n \geq 6)$ and $\left|F^{R}\right|+\left|F^{C}\right|=2$, there is a vertex $y \in V(L)-F^{L}-\{u, w, v\}$ such that $y^{h}, y y^{h} \notin F$ and $y^{h} \neq w^{g}$. By Corollary 2.1, (u, y) is a normal vertex-pair in $L-F^{L}$. By induction hypothesis, a Hamiltonian path $P_{u y}$ exists in $L-F^{L}$. Notice that $N_{L-F^{L}}(w)=\{u, v\}$, then $N_{P_{u y}}(w)=\{u, v\}$. Since $\left|F^{R}\right| \leq 2 \leq 2 n-6$, by Lemma 3.1, a Hamiltonian path $P_{w^{g} y^{h}}$ exists in $R-F^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, w, w^{g}, P_{w^{g} y^{h}}, y^{h}, y, P_{u y}(y, v), v\right)$ can therefore be found(see Figure 7(a)).

Case 1.1.2. (u, v) is a normal vertex-pair in $L-F^{L}$.
Since $\left|F^{L}\right| \leq 2 n-5$, by induction hypothesis, a Hamiltonian path $P_{u v}$ exists in $L-F^{L}$. By $\left\lfloor\frac{l_{v}+1}{2}\right\rfloor-$ $(2 n-3)=\left\lfloor\frac{2^{n-1}-f_{v}^{L}}{2}\right\rfloor-(2 n-3) \geq 3$, we can choose an edge $a b \in E\left(P_{u v}\right)$ such that $a^{h}, b^{h}, a a^{h}, b b^{h} \notin F$.

By induction hypothesis, a Hamiltonian path $P_{a^{h} b^{h}}$ exists in $R-F^{R}$. An error-free Hamiltonian path $P_{u v}^{1}=\left(u, P_{u v}(u, a), a, a^{h}, P_{a^{h} b^{h}}, b^{h}, b, P_{u v}(b, v), v\right)$ can therefore be found(see Figure 7(b)).

Case 1.2. $u \in V\left(L-F^{L}\right)$ and $v \in V\left(R-F^{R}\right)$.
According to the definition of $A Q_{n},\left|E^{C}\right|=2^{n}$. Since $\left|E^{C}\right|-2|F|=2^{n}-2(2 n-3) \geq 46(n \geq 6)$, there is an error-free edge $a b \in E^{C}$ such that $a, b \notin\{u, v\}, a, b \notin F$ and (u, a) is a normal vertex-pair in $L-F^{L}$. By induction hypothesis, a Hamiltonian path $P_{u a}$ in $L-F^{L}$ and a Hamiltonian path $P_{b v}$ in $R-F^{R}$ exist. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u a}, a, b, P_{b v}, v\right)$ can therefore be found(see Figure 7(c)).

Figure 7. Illustrations of Case 1.1 and Case 1.2 of Theorem 4.1.

Case 2. $\left|F^{L}\right|=2 n-4$. Then $\left|F^{R}\right|+\left|F^{C}\right|=1$.
Case 2.1. $u, v \in V\left(L-F^{L}\right)$.
By Lemma 3.3, we can choose an element $f \in F^{L}$ such that (u, v) is a normal vertex-pair in L -$\left(F^{L}-\{f\}\right)$. Let $F_{1}^{L}=F^{L}-\{f\}$. Then $\left|F_{1}^{L}\right|=2 n-5$. By induction hypothesis, a Hamiltonian path $P_{u v}$ exists in $L-F_{1}^{L}$.

Case 2.1.1. $f \in V\left(P_{u v}\right) \cup E\left(P_{u v}\right)$.
If $f \in E(L) \cap F^{L}$, say $f=a b$; if $f \in V(L) \cap F^{L}$, say $N_{P_{u v}}(f)=\{a, b\}$; let $P_{u v}=\left(u, P_{u v}(u, a), a, f, b, P_{u v}(b, v), v\right)$. Suppose that $\left|\left\{a^{h}, b^{h}, a a^{h}, b b^{h}\right\} \cap F\right| \leq\left|\left\{a^{c}, b^{c}, a a^{c}, b b^{c}\right\} \cap F\right|$.

Case 2.1.1.1. $\left|\left\{a^{h}, b^{h}, a a^{h}, b b^{h}\right\} \cap F\right|=0$.
Since $\left|F^{R}\right| \leq 1 \leq 2 n-6$, by Lemma 3.1, a Hamiltonian path $P_{a^{h} b^{h}}$ exists in $R-F^{R}$. An error-free Hamiltonian path $P_{u v}^{1}=\left(u, P_{u v}(u, a), a, a^{h}, P_{a^{h} b^{h}}, b^{h}, b, P_{u v}(b, v), v\right)$ can therefore be found(see Figure 8(a)).

Case 2.1.1.2. $\left|\left\{a^{h}, b^{h}, a a^{h}, b b^{h}\right\} \cap F\right|=1$. Then $\left|\left\{a^{c}, b^{c}, a a^{c}, b b^{c}\right\} \cap F\right|=1$.
Notice that $\left|F^{R}\right|+\left|F^{C}\right|=1$, we have $\left\{a^{h}, b^{h}, a a^{h}, b b^{h}\right\} \cap F=\left\{a^{c}, b^{c}, a a^{c}, b b^{c}\right\} \cap F$, i.e., $\left\{a^{h}, b^{h}, a a^{h}, b b^{h}\right\}=\left\{a^{c}, b^{c}, a a^{c}, b b^{c}\right\}$. Then by Proposition 2.1, $a=b^{c_{n-1}}, a^{h}=b^{c}$ and $a^{c}=b^{h}$. Suppose that $a^{h} \in F$, then $b^{h} \notin F$. Let $a_{1} b_{1} \in E\left(P_{u v}\right)$ with $a_{1}, b_{1} \notin\{a, b\}$ and $F_{1}^{R}=F^{R}+\left\{b^{h}\right\}$. Then $\left|F_{1}^{R}\right| \leq 2 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{a_{1}^{h} b_{1}^{h}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}^{1}=\left(u, P_{u v}(u, a), a, b^{h}, b, P_{u v}\left(b, a_{1}\right), a_{1}, a_{1}^{h}, P_{a_{1}^{h} b_{1}^{h}}, b_{1}^{h}, b_{1}, P_{u v}\left(b_{1}, v\right), v\right)$ can therefore be found(see Figure 8(b)).

Case 2.1.2. $f \notin V\left(P_{u v}\right) \cup E\left(P_{u v}\right)$.
Then an edge $a_{2} b_{2}$ can be chosen from $P_{u v}$ with $a_{2}^{h}, b_{2}^{h}, a_{2} a_{2}^{h}, b_{2} b_{2}^{h} \notin F$. Since $\left|F^{R}\right| \leq 1 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{a_{2}^{h} b_{2}}$ exists in $R-F^{R}$. An error-free Hamiltonian path $P_{u v}^{1}=$ ($\left.u, P_{u v}\left(u, a_{2}\right), a_{2}, a_{2}^{h}, P_{a_{2}^{h} b_{2}^{h}}, b_{2}^{h}, b_{2}, P_{u v}\left(b_{2}, v\right), v\right)$ can therefore be found(see Figure 8(c)).

Figure 8. Illustrations of Case 2.1 of Theorem 4.1.

Case 2.2. $u \in V\left(L-F^{L}\right)$ and $v \in V\left(R-F^{R}\right)$.
Case 2.2.1. $\left|F_{v}^{L}\right| \geq 1$. There is a vertex $x \in F_{v}^{L}$. Let $F_{1}^{L}=F^{L}-\{x\}$, then $\left|F_{1}^{L}\right|=\left|F^{L}\right|-1=2 n-5$.
Case 2.2.1.1. (u, x) is a normal vertex-pair in $L-F_{1}^{L}$.
By induction hypothesis, a Hamiltonian path $P_{u x}$ exists in $L-F_{1}^{L}$. Let $N_{P_{u x}}(x)=x_{1}$. Since $\left|F^{R}\right|+$ $\left|F^{C}\right|=1$, there is a vertex $x_{1}^{g} \in\left\{x_{1}^{h}, x_{1}^{c}\right\}$ such that $x_{1}^{g}, x_{1} x_{1}^{g} \notin F$.
(1) $x_{1}^{g}=v$. Choose an edge $a b \in E\left(P_{u x}\right)$ such that $a^{h}, b^{h}, a a^{h}, b b^{h} \notin F$ and $a, b \notin\left\{x, x_{1}\right\}$. Let $F_{1}^{R}=F^{R}+\{v\}$. Then $\left|F_{1}^{R}\right| \leq 2 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{a^{h} b^{h}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian $P_{u v}=\left(u, P_{u x}(u, a), a, a^{h}, P_{a^{h} b^{h}}, b^{h}, b, P_{u x}\left(b, x_{1}\right), x_{1}, v\right)$ can therefore be found(see Figure 9(a)).
(2) $x_{1}^{g} \neq v$. Since $\left|F^{R}\right| \leq 1 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{x_{1}^{g} v}$ exists in $R-F^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u x}\left(u, x_{1}\right), x_{1}, x_{1}^{g}, P_{x_{1}^{g}}, v\right)$ can therefore be found(see Figure $\left.9(\mathrm{~b})\right)$.

Figure 9. Illustrations of Case 2.2.1.1 of Theorem 4.1.

Case 2.2.1.2. (u, x) is a w-weak vertex-pair in $L-F_{1}^{L}$. Then $N_{L-F_{1}^{L}}(w)=\{u, x\}$, i.e., $N_{L-F^{L}}(w)=u$.
By Corollary 2.1., (u, w) is a normal vertex-pair in $L-F_{1}^{L}$. Since $\left|F_{1}^{L}\right|=2 n-5$, by induction hypothesis, a Hamiltonian path $P_{u w}$ exists in $L-F_{1}^{L}$. By $N_{L-F_{1}^{L}}(w)=\{u, x\}$, we have $N_{P_{u v}}(w)=\{x\}$. Let $N_{P_{\text {uv }}}(x)=\left\{x_{1}\right\}$ with $x_{1} \neq w$.
(1) $\left|\left\{w^{h}, w^{c}\right\} \cap F\right|=0$.
(1.1) $v \in\left\{w^{h}, w^{c}\right\}$, assume that $v=w^{h}$. If $x_{1}=w^{c_{n-1}}$, then by Proposition 2.1, $x_{1}^{h}=w^{c}, x_{1}^{c}=w^{h}$. We can choose an edge $a b \in E\left(P_{u w}\right)$ such that $a^{h}, b^{h}, a a^{h}, b b^{h} \notin F$ and $a, b \notin\left\{w, x, x_{1}\right\}$, then $v, w^{c} \notin\left\{a^{h}, b^{h}\right\}$. Let $F_{1}^{R}=F^{R}+\left\{v, w^{c}\right\}$. Then $\left|F_{1}^{R}\right| \leq 3 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{a^{h} b^{h}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u w}(u, a), a, a^{h}, P_{a^{h} b^{h}}, b^{h}, b, P_{u w}\left(b, x_{1}\right), x_{1}, w^{c}, w, v\right)$ can therefore be found(see Figure 10(a)). If $x_{1} \neq w^{c_{n-1}}$, then by Proposition 2.1, $x_{1}^{h} \neq w^{c}, x_{1}^{c} \neq w^{h}$. There exists an error-free vertex $x_{1}^{g} \in\left\{x_{1}^{c}, x_{1}^{h}\right\}$ such that $x_{1}^{g}, x_{1} x_{1}^{g} \notin F$. We have $x_{1}^{g} \notin\left\{w^{c}, v\right\}$. Let $F_{1}^{R}=F^{R}+\{v\}$. Then $\left|F_{1}^{R}\right| \leq 2 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{x_{1}^{g} w^{c}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u w}\left(u, x_{1}\right), x_{1}, x_{1}^{g}, P_{x_{1}^{g} w^{c}}, w^{c}, w, v\right)$ can therefore be found(see Figure 10(b)).

Figure 10. Illustrations of Case 2.2.1.2 of Theorem 4.1.
(1.2) $v \notin\left\{w^{h}, w^{c}\right\}$.

For $x_{1}=w^{c_{n-1}}$. By Proposition 2.1, $x_{1}^{h}=w^{c}, x_{1}^{c}=w^{h}$, i.e., $v \notin\left\{x_{1}^{h}, x_{1}^{c}\right\}$. Let $F_{1}^{R}=F^{R}+\left\{w^{c}\right\}$. Then $\left|F_{1}^{R}\right| \leq 2 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{w^{h} v}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u v}\left(u, x_{1}\right), x_{1}, w^{c}, w, w^{h}, P_{w^{h} v}, v\right)$ connecting vertices u and v can therefore be found (see Figure 11(a)).

For $x_{1} \neq w^{c_{n-1}}$. By Proposition 2.1, $x_{1}^{h} \neq w^{c}, x_{1}^{c} \neq w^{h}$. There exists a correct vertex $x_{1}^{g} \in\left\{x_{1}^{c}, x_{1}^{h}\right\}$ such that $x_{1}^{g}, x_{1} x_{1}^{g} \notin F$. If $x_{1}^{g}=v$, we can choose an edge $a b \in E\left(P_{u w}\right)$ with $a, b \notin\left\{w, x, x_{1}\right\}$, $a^{h}, a a^{h}, b^{h}, b b^{h} \notin F$ and $a \neq w^{c_{n-1}}, b \neq w^{c_{n-1}}$. Let $F_{1}^{R}=F^{R}+\{v\}$. Then $\left|F_{1}^{R}\right| \leq 2$. By Lemma 3.4, two disjoint paths $P_{a^{h} w^{h}}, P_{w^{c} b^{h}}$ with $V\left(P_{a^{h} w^{h}}\right) \cup V\left(P_{w^{c} b^{h}}\right)=V\left(R-F_{1}^{R}\right)$ exist in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u v}(u, a), a, a^{h}, P_{a^{h} w^{h}}, w^{h}, w, w^{c}, P_{w^{c} b^{h}}, b^{h}, b, P_{u w}\left(b, x_{1}\right), x_{1}, v\right)$ can therefore be found(see Figure 11(b)). If $x_{1}^{g} \neq v$. Since $\left|F^{R}\right| \leq 1$, by Lemma 3.4, two disjoint paths $P_{x_{1}^{g} w^{h}}, P_{w^{c} v}$ with $V\left(P_{x_{1}^{g} w^{k}}\right) \cup V\left(P_{w^{c} v}\right)=V\left(R-F^{R}\right)$ exist in $R-F^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u w}\left(u, x_{1}\right), x_{1}, x_{1}^{g}, P_{x_{1}^{g} w^{h}}, w^{h}, w, w^{c}, P_{w^{c} v}, v\right)$ can therefore be found(see Figure 11(c)).

Figure 11. Illustrations of Case 2.2.1.2 of Theorem 4.1.
(2) $\left|\left\{w^{h}, w^{c}\right\} \cap F\right|=1$. Assume that $w^{c} \in F$. Let $N_{P_{u v w}}(u)=\left\{u_{1}\right\}$.

For $x_{1}=w^{c_{n-1}}$ or $u_{1}=w^{c_{n-1}}$. Assume that $x_{1}=w^{c_{n-1}}$, then by Proposition 2.1, $x_{1}^{h}=w^{c}, x_{1}^{c}=w^{h}$ i.e., $x_{1}^{h} \in F$. Since $\left|F^{C}\right|+\left|F^{R}\right|=1$, there exists a correct vertex $u_{1}^{g} \in\left\{u_{1}^{c}, u_{1}^{h}\right\}$ such that $u_{1}^{g}, u_{1} u_{1}^{g} \notin F$ and $u_{1}^{g} \neq v$. Let $F_{1}^{R}=F^{R}+\left\{w^{h}\right\}$. Then $\left|F_{1}^{R}\right| \leq 2 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{u_{1}^{g} v}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, w, w^{h}, x_{1}, P_{u v}\left(x_{1}, u_{1}\right), u_{1}, u_{1}^{g}, P_{u_{1}^{g}}, v\right)$ can therefore be found(see Figure 12(a)).

For $x_{1} \neq w^{c_{n-1}}$ and $u_{1} \neq w^{c_{n-1}}$. By Proposition 2.1, $x_{1}^{h} \neq w^{c}, x_{1}^{c} \neq w^{h}, u_{1}^{h} \neq w^{c}, u_{1}^{c} \neq w^{h}$. If $v \in\left\{x_{1}^{h}, u_{1}^{h}\right\}$, assume that $v=x_{1}^{h}$. Let $F_{1}^{R}=F^{R}+\{v\}$. Then $\left|F_{1}^{R}\right| \leq 2 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{w^{h} u_{1}^{h}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, w, w^{h}, P_{w^{h} u_{1}^{h}}, u_{1}^{h}, u_{1}, P_{u w}\left(u_{1}, x_{1}\right), x_{1}, v\right)$ can therefore be found(see Figure 12(b)). If $v \notin\left\{x_{1}^{h}, u_{1}^{h}\right\}$, since $\left|F^{R}\right| \leq 1$, by Lemma 3.4, two disjoint paths $P_{w^{h} x_{1}^{h}}, P_{u_{1}^{h} v}$ with $V\left(P_{w^{h} x_{1}^{h}}\right) \cup V\left(P_{u_{1}^{h} v}\right)=V\left(R-F^{R}\right)$ exist in $R-F^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, w, w^{h}, P_{w^{h} x_{1}^{h}}, x_{1}^{h}, x_{1}, P_{u w}\left(x_{1}, u_{1}\right), u_{1}, u_{1}^{h}, P_{u_{1}^{h} v}, v\right)$ can therefore be found(see Figure 12(c)).

Figure 12. Illustrations of Case 2.2.1.2 of Theorem 4.1.

Case 2.2.2. $\left|F_{v}^{L}\right|=0$. A faulty edge f can be chosen from F^{L} such that $f \notin E_{L}\left(v^{h}\right) \cup E_{L}\left(v^{c}\right)$. Otherwise, $F^{L} \subset E_{L}\left(v^{h}\right) \cup E_{L}\left(v^{c}\right)$. Consider the following two cases.

Case 2.2.2.1. There is a faulty edge $f \in F^{L}$ such that $f \notin E\left(v^{h}\right) \cup E\left(v^{c}\right)$. Let $F_{1}^{L}=F^{L}-f$. Then $\left|F_{1}^{L}\right|=2 n-5$. By Lemma 3.1, a Hamiltonian cycle C containing vertex u exists in $L-F_{1}^{L}$.
(1) $f \notin E(C)$. Let $a \in N_{C}(u)$ with $a, a a^{h} \notin F$ and $C=\left(u, P_{u a}, a, u\right)$.

For $a^{h} \neq v$, since $\left|F^{R}\right| \leq 1$, by Lemma 3.1, a Hamiltonian path $P_{a^{h} v}$ exists in $R-F^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u a}, a, a^{h}, P_{a^{h} v}, v\right)$ can therefore be found(see Figure 13(a)).

For $a^{h}=v$, let $F_{1}^{R}=F^{R}+\{v\}$. Then $\left|F_{1}^{R}\right| \leq 2 \leq 2 n-6$. Choose an edge $a_{1} b_{1} \in E(C)$ such that $a_{1}^{h}, b_{1}^{h}, a_{1} a_{1}^{h} \cdot b_{1} b_{1}^{h} \notin F$ and $a_{1}, b_{1} \notin\{u, a\}$. By Lemma 3.1, a Hamiltonian path $P_{a_{1}^{h} b_{1}^{h}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u a}\left(u, a_{1}\right), a_{1}, a_{1}^{h}, P_{a_{1}^{h} b_{1}^{h}}, b_{1}^{h}, b_{1}, P_{u a}\left(b_{1}, a\right), a, v\right)$ can therefore be found(see Figure 13(b)).
(2) $f \in E(C)$. Let $f=a b$. Consider the following two cases.
(2.1) $f \in E_{C}(u)$. Let $f=u b$ and $C=\left(u, P_{u b}, b, u\right)$. Since $\left|F^{R}\right|+\left|F^{C}\right|=1$, there is a correct vertex $b^{g} \in\left\{b^{h}, b^{c}\right\}$ such that $b b^{g} \notin F$. Since $f \notin E\left(v^{h}\right) \cup E\left(v^{c}\right), b^{g} \neq v$. Then by $\left|F^{R}\right| \leq 1$ and Lemma 3.1, a Hamiltonian path $P_{b^{g} v}$ exists in $R-F^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u b}, b, b^{g}, P_{b^{g} v}, v\right)$ can therefore be found(see Figure 13(c)).

Figure 13. Illustrations of Case 2.2.2.1 of Theorem 4.1.
(2.2) $f \notin E_{C}(u)$. Let $f=a b$ and $C=\left(u, P_{u a}, a, b, P_{b u_{1}}, u_{1}, u\right)$. Suppose that $\left|\left\{u_{1}^{h}, u_{1} u_{1}^{h}, a^{h}, a a^{h}, b^{h}, b b^{h}\right\} \cap F\right| \leq\left|\left\{u_{1}^{c}, u_{1} u_{1}^{c}, a^{c}, a a^{c}, b^{c}, b b^{c}\right\} \cap F\right|$.
(2.2.1) $\left|\left\{u_{1}^{h}, u_{1} u_{1}^{h}, a^{h}, a a^{h}, b^{h}, b b^{h}\right\} \cap F\right|=0$.

For $u_{1}^{h} \neq v$, by Lemma 3.4, two disjoint paths $P_{u_{1}^{h} v}, P_{a^{h} b^{h}}$ with $V\left(P_{u_{1}^{h} v}\right) \cup V\left(P_{a^{h} b^{h}}\right)=V\left(R-F^{R}\right)$ exist in $R-F^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u a}, a, a^{h}, P_{a^{h} b^{h}}, b^{h}, b\right.$, $\left.P_{b u_{1}}, u_{1}, u_{1}^{h}, P_{u_{1}^{h}}, v\right)$ can therefore be found(see Figure 14(a)).

For $u_{1}^{h}=v$, let $F_{1}^{R}=F^{R}+\{v\}$. Then $\left|F_{1}^{R}\right| \leq 2 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{a^{h} b^{h}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u a}, a, a^{h}, P_{a^{h} b^{h}}, b^{h}, b, P_{b u_{1}}, u_{1}, v\right)$ can therefore be found(see Figure 14(b)).

Figure 14. Illustrations of Case 2.2.2.1 of Theorem 4.1.
(2.2.2) $\left|\left\{u_{1}^{h}, u_{1} u_{1}^{h}, a^{h}, a a^{h}, b^{h}, b b^{h}\right\} \cap F\right|=1$. Then $\left|\left\{u_{1}^{c}, u_{1} u_{1}^{c}, a^{c}, a a^{c}, b^{c}, b b^{c}\right\} \cap F\right|=1$. Notice that $\left|F^{R}\right|+\left|F^{C}\right|=1$, we have $\left\{u_{1}^{h}, u_{1} u_{1}^{h}, a^{h}, a a^{h}, b^{h}, b b^{h}\right\} \cap F=\left\{u_{1}^{c}, u_{1} u_{1}^{c}, a^{c}, a a^{c}, b^{c}\right.$,
$\left.b b^{c}\right\} \cap F$. Then by Proposition 2.1, $a=b^{c_{n-1}}$ or $a=u_{1}^{c_{n-1}}$ or $b=u_{1}^{c_{n-1}}$.
For $a=b^{c_{n-1}}$, by Proposition 2.1, $a^{h}=b^{c}$ and $a^{c}=b^{h}$. Suppose that $a^{h} \in F$. Then $b^{h} \notin F$ and $\left|\left\{u_{1}^{h}, u_{1} u_{1}^{h}, u_{1}^{c}, u_{1} u_{1}^{c}\right\} \cap F\right|=0$. It follows that a vertex u_{1}^{g} can be chosen from $\left\{u_{1}^{h}, u_{1}^{c}\right\}$ such that $u_{1}^{g} \neq v$. Let $F_{1}^{R}=F^{R}+\left\{b^{h}\right\}$. Then $\left|F_{1}^{R}\right| \leq 2 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{u_{1}^{g} v}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u a}, a, b^{h}, b, P_{b u_{1}}, u_{1}, u_{1}^{g}, P_{u_{1}^{g}}, v\right)$ can therefore be found(see Figure 15(a)).

For $a=u_{1}^{c_{n-1}}$, by Proposition 2.1, $a^{h}=u_{1}^{c}$ and $a^{c}=u_{1}^{h}$. Suppose that $a^{h} \in F$. Then $u_{1}^{h} \notin F$ and $\left|\left\{b^{h}, b b^{h}, b^{c}, b b^{c}\right\} \cap F\right|=0$. Let $F_{1}^{R}=F^{R}+\left\{u_{1}^{h}\right\}$. Then $\left|F_{1}^{R}\right| \leq 2 \leq 2 n-6$. Notice that $f=a b \notin$ $E\left(v^{h}\right) \cup E\left(v^{c}\right)$, then $v \notin\left\{b^{h}, b^{c}\right\}$. By Lemma 3.1, a Hamiltonian path $P_{b^{h} v}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u a}, a, u_{1}^{h}, u_{1}, P_{u_{1} b}, b, b^{h}, P_{b^{h} v}, v\right)$ can therefore be found(see Figure 15(b)).

For $b=u_{1}^{c_{n-1}}$, by Proposition 2.1, $b^{h}=u_{1}^{c}$ and $b^{c}=u_{1}^{h}$. Assume that $u_{1}^{h} \in F$. Then $b^{h} \notin F$ and $\left|\left\{a^{h}, a a^{h}, a^{c}, a a^{c}\right\} \cap F\right|=0$. Let $u_{2}=N_{C}(u)$ with $u_{2} \neq u_{1}$. Then $u_{2}^{h}, u_{2} u_{2}^{h}, u_{2}^{c}, u_{2} u_{2}^{c} \notin F$. Notice that $f=a b \notin E\left(v^{h}\right) \cup E\left(v^{c}\right)$, then $v \notin\left\{a^{h}, a^{c}\right\}$. If $u_{2}=a^{c_{n-1}}$, since $v \notin\left\{a^{h}, a^{c}\right\}$, then for any vertex $u_{2}^{g} \in\left\{u_{2}^{h}, u_{2}^{c}\right\}$ with $u_{2}^{g} \neq v$. If $u_{2} \neq a^{c_{n-1}}$, then there is a vertex $u_{2}^{g} \in\left\{u_{2}^{h}, u_{2}^{c}\right\}$ such that $u_{2}^{g} \neq v$. Since $\left|F^{R}\right| \leq 1$, by Lemma 3.4, two disjoint paths $P_{a^{h} b^{h}}, P_{u_{2}^{g} \nu}$ with $V\left(P_{a^{h} b^{h}}\right) \cup V\left(P_{u_{2}^{g} v}\right)=V\left(R-F^{R}\right)$ exist in $R-F^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u b}, b, b^{h}, P_{b^{h} a^{h}}, a^{h}, a, P_{u a}\left(a, u_{2}\right), u_{2}, u_{2}^{g}, P_{u_{2}^{g} v}, v\right)$ can therefore be found(see Figure 15(c)). If $u_{2}=a$, then we use a^{c} instead of u_{2}^{g}.

Figure 15. Illustrations of Case 2.2.2.1 of Theorem 4.1.

Case 2.2.2.2. $F^{L} \subset N_{L}\left(v^{h}\right) \cup E_{L}\left(v^{c}\right)$. Suppose that $\left|F^{L} \cap E_{L}\left(v^{h}\right)\right| \geq\left|F^{L} \cap E_{L}\left(v^{c}\right)\right|$. Let $e_{1}, e_{2} \in$ $F^{L} \cap E_{L}\left(v^{h}\right)$ and $F_{1}^{L}=F^{L}-\left\{e_{1}, e_{2}\right\}+\left\{v^{h}\right\}$. Then $\left|F_{1}^{L}\right|=2 n-5$. Since $\left|N_{L}\left(v^{h}\right)\right|=2 n-3$ and $\left|F^{L}\right|=2 n-4$, there is a correct vertex y such that $y \in N_{L-F}\left(v^{h}\right)$.
(1) $u=v^{h}$. Choose a vertex x from $V(L)-F^{L}-\left\{u, v^{c}, y\right\}$ with $x^{h}, x x^{h} \notin F$ and $x^{h} \neq v$. Since $\left|F^{L} \cap E_{L}\left(v^{h}\right)\right| \geq\left|F^{L} \cap E_{L}\left(v^{c}\right)\right|$ and $F_{1}^{L}=F^{L}-\left\{e_{1}, e_{2}\right\}+\left\{v^{h}\right\},(x, y)$ is a normal vertex-pair in $L-F_{1}^{L}$. By induction hypothesis, a Hamiltonian path $P_{x y}$ exists in $L-F_{1}^{L}$. Since $\left|F^{R}\right| \leq 1$, by Lemma 3.1, a Hamiltonian path $P_{x^{h} v}$ exists in $R-F^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, y, P_{y x}, x, x^{h}, P_{x^{h} v}, v\right)$
can therefore be found(see Figure 16(a)).
(2) $u \neq v^{h}$.
(2.1) $y=u$. Then $u \in N_{L-F^{L}}\left(v^{h}\right)$. Notice that $F^{L} \subset N_{L}\left(v^{h}\right) \cup E_{L}\left(v^{c}\right)$ and $\left|F^{R}\right|+\left|F^{C}\right|=1$. Since (u, v) is a normal vertex pair in $A Q_{n}-F$, we have that $v^{h}\left(v^{h}\right)^{c},\left(v^{h}\right)^{c} \notin F$. Choose a vertex x from $V(L)-F^{L}-\left\{v^{h}, v^{c}, y\right\}$ with $x^{c}, x x^{c} \notin F$ and $x^{c} \neq v$. Since $\left|F^{L} \cap E_{L}\left(v^{h}\right)\right| \geq\left|F^{L} \cap E_{L}\left(v^{c}\right)\right|$ and $F_{1}^{L}=$ $F^{L}-\left\{e_{1}, e_{2}\right\}+\left\{\nu^{h}\right\},(u, x)$ is a normal vertex-pair in $L-F_{1}^{L}$. By induction hypothesis, a Hamiltonian path $P_{u x}$ exists in $L-F_{1}^{L}$.
(2.1.1) $v^{h} v \notin F$. Let $F_{1}^{R}=F^{R}+\{v\}$. Then $\left|F_{1}^{R}\right| \leq 2 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{x^{c}\left(v^{h}\right)^{c}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u x}, x, x^{c}, P_{x^{c}\left(v^{h}\right)^{c}},\left(v^{h}\right)^{c}, v^{h}, v\right)$ can therefore be found(see Figure 16(b)).

(a)

(b)

Figure 16. Illustrations of Case 2.2.2.2 of Theorem 4.1.
(2.1.2) $v^{h} v \in F$. Let $u_{1} \in N_{P_{u x}}(u)$. Since $\left|F^{R}\right|+\left|F^{C}\right|=1, u_{1}^{c}, u_{1} u_{1}^{c} \notin F$.

If $u_{1}^{c}=v$, let $F_{1}^{R}=F^{R}+\{v\}$. Then $\left|F_{1}^{R}\right| \leq 2 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{\left(v^{n}\right)}{ }^{c} x^{c}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, v^{h},\left(v^{h}\right)^{c}, P_{\left(v^{h}\right)}{ }^{c} x^{c}, x^{c}, x, P_{u x}\left(x, u_{1}\right), u_{1}, v\right)$ connecting vertices u and v can therefore be found(see Figure 17(a)).

If $u_{1}^{c} \neq v$, by $\left|F^{R}\right| \leq 1$ and Lemma 3.4, two disjoint paths $P_{\left(v^{h}\right)} x^{c} x^{c}, P_{u_{1}^{c} v}$ with $V\left(P_{\left(v^{h}\right)} x^{c}\right) \cup V\left(P_{u_{v}^{c} v}\right)=V\left(R-F^{R}\right)$ exist in $R-F^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, v^{h},\left(v^{h}\right)^{c}, P_{\left(v^{h}\right)^{c} x^{c}}, x^{c}, x, P_{u x}\left(x, u_{1}\right), u_{1}, u_{1}^{c}, P_{u_{1}^{c} v}, v\right)$ can therefore be found(see Figure 17(b)).

(a)

(b)

Figure 17. Illustrations of Case 2.2.2.2 of Theorem 4.1.
(2.2) $y \neq u$. Since $\left|F^{L} \cap E_{L}\left(v^{h}\right)\right| \geq\left|F^{L} \cap E_{L}\left(v^{c}\right)\right|$ and $F_{1}^{L}=F^{L}-\left\{e_{1}, e_{2}\right\}+\left\{v^{h}\right\},(u, y)$ is a normal vertex-pair in $L-F_{1}^{L}$. By induction hypothesis, a Hamiltonian path $P_{u y}$ exists in $L-F_{1}^{L}$.

If $v^{h} v \in F$, then $\left(v^{h}\right)^{c}, v^{h}\left(v^{h}\right)^{c} \notin F$. Since $\left|F^{R}\right| \leq 1$, by Lemma 3.1, a Hamiltonian path $P_{\left(v^{h}\right)^{c} v}$ exists in $R-F^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u y}, y, v^{h},\left(v^{h}\right)^{c}\right.$, $\left.P_{\left(v^{h}\right)^{c}}, v\right)$ can therefore be found(see Figure 18(a)).

If $v^{h} v \notin F$, then choose an edge $a b \in E\left(P_{u y}\right)$ with $a^{h}, b^{h}, a a^{h}, b b^{h} \notin F$ and $v \notin\left\{a^{h}, b^{h}\right\}$. Let $F_{1}^{R}=F^{R}+\{v\}$. Then $\left|F_{1}^{R}\right| \leq 2 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{a^{h} b^{h}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u y}(u, a), a, a^{h}, P_{a^{h} b^{h}}, b^{h}, b, P_{u y}(b, y), y, v^{h}, v\right)$ can therefore be found(see Figure 18(b)).

Figure 18. Illustrations of Case 2.2.2.2 of Theorem 4.1.

Case 2.3. $u, v \in V\left(R-F^{R}\right)$.
Notice that $u^{h}=\left(u^{c}\right)^{c_{n-1}}$ and $v^{h}=\left(v^{c}\right)^{c_{n-1}}$. By Proposition 2.2, $\left|N_{L}\left(u^{h}\right) \cap N_{L}\left(u^{c}\right)\right|=2$ and $\left|N_{L}\left(v^{h}\right) \cap N_{L}\left(v^{c}\right)\right|=2$. Let $N_{L}\left(u^{h}\right) \cap N_{L}\left(u^{c}\right)=\left\{m_{1}, m_{2}\right\}, N_{L}\left(v^{h}\right) \cap N_{L}\left(v^{c}\right)=\left\{m_{3}, m_{4}\right\}$, and $F_{1}^{L}=\left\{m_{1}, m_{2}, m_{3}, m_{4}, u^{h} u^{c}, v^{h} v^{c}\right\}$. Since $\left|F^{L}\right|=2 n-4 \geq 8(n \geq 6),\left|F^{L}-F_{1}^{L}\right| \geq 2$. Then we can choose a faulty element f with $f \in F^{L}-F_{1}^{L}$. Then $\left|F^{L}-\{f\}\right|=2 n-5$. By Lemma 3.1, a Hamiltonian cycle C exists in $L-\left(F^{L}-\{f\}\right)$. If C contains f, let $C=\left(a, P_{a b}, b, f, a\right)$. If C does not contain f, let $C=\left(a, P_{a b}, b, a\right)$ with $a b \notin\left\{u^{h} u^{c}, v^{h} v^{c}\right\}$. Since $\left|F^{R}\right|+\left|F^{C}\right|=1$, there is a vertex $a^{g} \in\left\{a^{h}, a^{c}\right\}$ and a vertex $b^{g} \in\left\{b^{h}, b^{c}\right\}$ with $a^{g}, b^{g}, a a^{g}, b b^{g} \notin F$. If $\left|\left\{a^{g}, b^{g}\right\} \cap\{u, v\}\right| \geq 1$, then by the choice of the above error element $f, a \neq b^{c_{n-1}}$, i.e., $a^{h}, a^{c}, b^{h}, b^{c}$ are all distinct. Since $\left|F^{R}\right|+\left|F^{C}\right|=1$, we can choose an error-free set $\left\{a^{g}, b^{g}, a a^{g}, b b^{g}\right\}$ such that $\left|\left\{a^{g}, b^{g}\right\} \cap\{u, v\}\right|=1$. Therefore, we only need to consider the following two cases.

Case 2.3.1. $\left|\left\{a^{g}, b^{g}\right\} \cap\{u, v\}\right|=0$.
Case 2.3.1.1. $a^{g} \neq b^{g}$.
Since $\left|F^{R}\right| \leq 1$, by Lemma 3.4, two disjoint paths $P_{u a^{g}}, P_{b^{g} v}$ with $V\left(P_{u a^{g}}\right) \cup V\left(P_{b^{g} v}\right)=V\left(R-F^{R}\right)$ exist in $R-F^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u a^{g}}, a^{g}, a, P_{a b}, b, b^{g}\right.$, $\left.P_{b^{g} v}, v\right)$ can therefore be found(see Figure 19(a)).

Case 2.3.1.2. $a^{g}=b^{g}$.
Let $F_{1}^{R}=F^{R}+\left\{a^{g}\right\}$. Then $\left|F_{1}^{R}\right| \leq 2$. Choose an edge $a_{1} b_{1} \in E\left(P_{a b}\right)$ with $a_{1}, b_{1} \notin\{a, b\}$, $a_{1}^{h}, b_{1}^{h} \notin\{u, v\}$ and $a_{1}^{h}, b_{1}^{h}, a_{1} a_{1}^{h}, b_{1} b_{1}^{h} \notin F$. By Lemma 3.4, two disjoint paths $P_{u a_{1}^{h}}, P_{b_{1}^{h} v}$ with $V\left(P_{u a_{1}^{h}}\right) \cup V\left(P_{\left.b_{1}^{h_{\nu}}\right)}\right)=V\left(R-F_{1}^{R}\right)$ exist in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u a_{1}^{h}}, a_{1}^{h}, a_{1}, P_{a b}\left(a_{1}, b\right), b, a^{g}, a, P_{a b}\left(a, b_{1}\right), b_{1}, b_{1}^{h}, P_{b_{1}^{h} v}, v\right)$ can therefore be found(see Figure 19(b)).

(a)

(b)

Figure 19. Illustrations of Case 2.3.1 of Theorem 4.1.

Case 2.3.2. $\left|\left\{a^{g}, b^{g}\right\} \cap\{u, v\}\right|=1$.
Case 2.3.2.1. $u \in\left\{a^{g}, b^{g}\right\}$, suppose that $u=a^{g}$. Let $F_{1}^{R}=F^{R}+\{u\}$. Then $\left|F_{1}^{R}\right| \leq 2 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{b^{s} v}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=$ ($u, a, P_{a b}, b, b^{g}, P_{b^{s} v}, v$) can therefore be found(see Figure 20(a)).

Case 2.3.2.2. $v \in\left\{a^{g}, b^{g}\right\}$, suppose that $v=a^{g}$. Let $F_{1}^{R}=F^{R}+\{v\}$. Then $\left|F_{1}^{R}\right| \leq 2 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{u b^{3}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=$ ($u, P_{u b^{s}}, b^{g}, b, P_{b a}, a, v$) can therefore be found(see Figure 20(b)).

(a)

(b)

Figure 20. Illustrations of Case 2.3.2 of Theorem 4.1.

Case 3. $\left|F^{L}\right|=2 n-3$. Then $\left|F^{R}\right|=\left|F^{C}\right|=0$.
Case 3.1. $u, v \in V\left(L-F^{L}\right)$. By Lemma 3.2, there exist two elements $f_{1}, f_{2} \in F^{L}$ with (u, v) is a normal vertex-pair in $L-\left(F^{L}-\left\{f_{1}, f_{2}\right\}\right)$. Let $F_{1}^{L}=F^{L}-\left\{f_{1}, f_{2}\right\}$. Then $\left|F_{1}^{L}\right|=2 n-5$. By induction hypothesis, a Hamiltonian path $P_{u v}$ exists in $L-F_{1}^{L}$ which may or may not include f_{1} or f_{2} on it. Removing f_{1} and f_{2}, path $P_{u v}$ is divided into three, two, or one segments relying on the situations in which f_{1} and f_{2} are on $P_{u v}$ or not. For the last two situations, we may arbitrarily delete one or two more edges from $P_{u v}$ to make it into three subpaths. Therefore, we may write the path $P_{u v}$ with these subpaths as ($\left.u, P_{u u_{1}}, u_{1}, f_{1}^{\prime}, x, P_{x y}, y, f_{2}^{\prime}, v_{1}, P_{v_{1} v}, v\right)$.

Case 3.1.1. The length of $P_{x y} l_{x y} \geq 1$. By Lemma 3.4, two disjoint paths $P_{u_{1}^{h} x^{h}}, P_{y^{h} v_{1}^{h}}$ with $V\left(P_{u_{1}^{h} x^{h}}\right) \cup V\left(P_{y^{h} v_{1}^{h}}\right)=V(R)$ exist in R. An error-free Hamiltonian path $P_{u v}^{1}=\left(u, P_{u u_{1}}, u_{1}, u_{1}^{h}, P_{u_{1}^{h} x^{h}}, x^{h}, x, P_{x y}, y, y^{h}, P_{y^{h} v_{1}^{h}}, v_{1}^{h}, v_{1}, P_{v_{1} v}, v\right)$ can therefore be found(see Figure 21(a)).

Case 3.1.2. The length of $P_{x y} l_{x y}=0$. Then $x=y$.
Case 3.1.2.1. $x \neq u_{1}^{c_{n-1}}$ and $x \neq v_{1}^{c_{n-1}}$. By Proposition 2.1, $x^{h} \neq u_{1}^{c}, x^{c} \neq u_{1}^{h}$ and $x^{h} \neq v_{1}^{c}, x^{c} \neq v_{1}^{h}$. By Lemma 3.4, two disjoint paths $P_{u_{1}^{h} x^{h}}, P_{x^{c} v_{1}^{h}}$ with $V\left(P_{u_{1}^{h} x^{h}}\right) \cup V\left(P_{x^{c} v_{1}^{h}}\right)=V(R)$ exist in R. An error-free Hamiltonian path $P_{u v}^{1}=\left(u, P_{u u_{1}}, u_{1}, u_{1}^{h}, P_{u_{1}^{h} x^{h}}, x^{h}, x, x^{c}, P_{x^{c} v_{1}^{h}}, v_{1}^{h}, v_{1}, P_{v_{1} v}, v\right)$ can therefore be found(see Figure 21(b)).

Case 3.1.2.2. $x=u_{1}^{c_{n-1}}$ or $x=v_{1}^{c_{n-1}}$. Assume that $x=u_{1}^{c_{n-1}}$. By Proposition 2.1, $x^{h}=u_{1}^{c}, x^{c}=u_{1}^{h}$. Let $F_{1}^{R}=F^{R}+\left\{u_{1}^{h}\right\}$. Then $\left|F_{1}^{R}\right|=1 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{x^{h} \nu_{1}^{h}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}^{1}=\left(u, P_{u u_{1}}, u_{1}, u_{1}^{h}, x, x^{h}, P_{x^{h} v_{1}^{h}}, v_{1}^{h}, v_{1}, P_{v_{1} v}, v\right)$ can therefore be found(see Figure 21(c)).

Figure 21. Illustrations of Case 3.1 of Theorem 4.1.

Case 3.2. $u \in V\left(L-F^{L}\right), v \in V(R)$.

Case 3.2.1. $\left|F_{v}^{L}\right| \geq 1$. There exists at least one faulty vertex $x \in F^{L}$.
Let $F_{1}^{L}=F^{L}-\{x\}$. Then $\left|F_{1}^{L}\right|=2 n-4$. By Lemma 3.3, there is an element $f_{1} \in F_{1}^{L}$ with (u, x) is a normal vertex-pair in $L-\left(F_{1}^{L}-\left\{f_{1}\right\}\right)$. Let $F_{2}^{L}=F_{1}^{L}-\left\{f_{1}\right\}$. Then $\left|F_{2}^{L}\right|=2 n-5$. By induction hypothesis, a Hamiltonian path $P_{u x}$ exists in $L-F_{2}^{L}$ which may or may not include f_{1} on it. Similar to Case 3.1, we may write the path $P_{u x}$ as ($u, P_{u u_{1}}, u_{1}, f_{1}^{\prime}, y, P_{y x_{1}}, x_{1}, x$).

Case 3.2.1.1. The length of $P_{y x_{1}} l_{y x_{1}} \geq 1$.
(1) $y=u_{1}^{c_{n-1}}$. By Proposition 2.1, $y^{h}=u_{1}^{c}$ and $y^{c}=u_{1}^{h}$.
(1.1) $v \in\left\{y^{h}, u_{1}^{h}\right\}$. We may assume that $u_{1}^{h}=v$. We have $v \notin\left\{y^{h}, x_{1}^{h}\right\}$. Let $F_{1}^{R}=F^{R}+\left\{y^{h}\right\}$. Then $\left|F_{1}^{R}\right|=1 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{x_{1}^{h}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u u_{1}}, u_{1}, y^{h}, y, P_{y x_{1}}, x_{1}, x_{1}^{h}, P_{x_{1}^{h}}, v\right)$ can therefore be found(see Figure 22(a)).
(1.2) $v \notin\left\{y^{h}, u_{1}^{h}\right\}$.
(1.2.1) $x_{1}^{h} \neq v$. By Lemma 3.4, two disjoint paths $P_{u_{1}^{h} y^{h}}, P_{x_{1}^{h} v}$ with $V\left(P_{u_{1}^{h} y^{h}}\right) \cup V\left(P_{x_{1}^{h_{p}} v}\right)=V(R)$ exist in R. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u u_{1}}, u_{1}, u_{1}^{h}, P_{u_{1}^{h} y^{h}}\right.$, $\left.y^{h}, y, P_{y x_{1}}, x_{1}, x_{1}^{h}, P_{x_{1}^{h} v}, v\right)$ can therefore be found(see Figure 22(b)).
(1.2.2) $x_{1}^{h}=v$. Let $F_{1}^{R}=F^{R}+\{v\}$. Then $\left|F_{1}^{R}\right|=1 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{u_{1}^{h} y^{h}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u u_{1}}, u_{1}, u_{1}^{h}, P_{u_{1}^{h} y^{h}}, y^{h}, y, P_{y x_{1}}, x_{1}, v\right)$ can therefore be found(see Figure 22(c)).

Figure 22. Illustrations of Case 3.2.1.1 of Theorem 4.1.
(2) $y \neq u_{1}^{c_{n-1}}$. By Proposition 2.1, $y^{h} \neq u_{1}^{c}$ and $y^{c} \neq u_{1}^{h}$. There exists $\left\{u_{1}^{g}, y^{g}\right\} \in\left\{\left\{u_{1}^{h}, y^{h}\right\},\left\{u_{1}^{c}, y^{c}\right\}\right\}$ such that $v \notin\left\{u_{1}^{g}, y^{g}\right\}$.

For $x_{1}^{h} \neq v$, the proof is similar to (1.2.1) of Case 3.2.1.1.
For $x_{1}^{h}=v$, the proof is similar to (1.2.2) of Case 3.2.1.1.
Case 3.2.1.2. The length of $P_{y x_{1}} l_{y x_{1}}=0$. Then $x_{1}=y$.
(1) $y=u_{1}^{c_{n-1}}$. By Proposition 2.1, $y^{h}=u_{1}^{c}$ and $y^{c}=u_{1}^{h}$.
(1.1) $v \in\left\{y^{h}, u_{1}^{h}\right\}$. We may assume that $v=y^{h}$. Choose an edge $a b \in P_{u x}$ with $a, b \notin\left\{u_{1}, y, x\right\}$. Then $v \notin\left\{a^{h}, b^{h}\right\}$. Let $F_{1}^{R}=F^{R}+\left\{v, u_{1}^{h}\right\}$. Then $\left|F_{1}^{R}\right|=2 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{a^{h} b^{h}}$ exists in $R \quad-\quad F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u u_{1}}(u, a), a, a^{h}, P_{a^{h} b^{h}}, b^{h}, b, P_{u u_{1}}\left(b, u_{1}\right), u_{1}, u_{1}^{h}, y, v\right)$ can therefore be found(see Figure 23(a)).
(1.2) $v \notin\left\{y^{h}, u_{1}^{h}\right\}$. Let $F_{1}^{R}=F^{R}+\left\{u_{1}^{h}\right\}$. Then $\left|F_{1}^{R}\right|=1 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{y^{h_{v}}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u u_{1}}, u_{1}, u_{1}^{h}, y, y^{h}, P_{y^{h} v}, v\right)$ can therefore be found(see Figure 23(b)).

Figure 23. Illustrations of Case 3.2.1.2 of Theorem 4.1.
(2) $y \neq u_{1}^{c_{n-1}}$. By Proposition 2.1, $y^{h} \neq u_{1}^{c}$ and $y^{c} \neq u_{1}^{h}$. There is a vertex $u_{1}^{g} \in\left\{u_{1}^{h}, u_{1}^{c}\right\}$ such that $u_{1}^{g} \neq v$.
(2.1) $v \in\left\{y^{h}, y^{c}\right\}$. We may assume that $v=y^{h}$. Let $F_{1}^{R}=F^{R}+\{v\}$. Then $\left|F_{1}^{R}\right|=1 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{u_{1}^{g} y^{c}}$ exists in $R-F_{1}^{R}$. Let $P_{u v}=\left(u, P_{u u_{1}}, u_{1}, u_{1}^{g}, P_{u_{1}^{g} v}, y^{c}, y, v\right)$. An error-free Hamiltonian path $P_{u v}$ can therefore be found(see Figure 24(a)).
(2.2) $v \notin\left\{y^{h}, y^{c}\right\}$. By Lemma 3.4, two disjoint paths $P_{u_{1}^{g} y^{c}}, P_{y^{h} v}$ with $V\left(P_{u_{1}^{g} y^{c}} \cup V\left(P_{y^{h_{v}}}\right)=V(R)\right.$ exist in R. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u u_{1}}, u_{1}, u_{1}^{g}, P_{u_{1}^{g} y}\right.$, $y^{c}, y, y^{h}, P_{y^{h} v}, v$) can therefore be found(see Figure 24(b)).

(a)

(b)

Figure 24. Illustrations of Case 3.2.1.2 of Theorem 4.1.

Case 3.2.2. $\left|F_{v}^{L}\right|=0$.
Case 3.2.2.1. For any vertex $y \in V(L),\left|E_{L}(y) \cap F^{L}\right| \leq 2$.
Since $\left|F^{L}\right|=2 n-3 \geq 9(n \geq 6)$, we can choose two edges $f_{1}, f_{2} \in F^{L}$ with $f_{1}, f_{2} \notin E_{L}\left(v^{h}\right) \cup$ $E_{L}\left(v^{c}\right)$ and f_{1}, f_{2} do not share the same vertex. Let $F_{1}^{L}=F^{L}-\left\{f_{1}, f_{2}\right\}$. Then $\left|F_{1}^{L}\right|=2 n-5$. We may assume that $v^{h} \neq u$. By induction hypothesis, there exists a Hamiltonian path $P_{u v^{h}}$ in $L-F_{1}^{L}$ which may or may not include f_{1} or f_{2} on it. Removing f_{1} and f_{2}, path $P_{u v^{k}}$ is divided into three, two, or one segments relying on the situations in which f_{1} and f_{2} are on $P_{u v^{h}}$ or not. For the last two situations, we may delete one or two more edges which are not incident to vertices v^{h}, v^{c} from $P_{u v^{n}}$ to make it into three subpaths. Therefore, we may write the path $P_{u v^{n}}$ with these subpaths as $\left(u, P_{u u_{1}}, u_{1}, f_{1}^{\prime}, x, P_{x y}, y, f_{2}^{\prime}, v_{1}, P_{v_{1} v^{h}}, v^{h}\right)$. Let $F_{1}^{R}=F^{R}+\{v\}$. Then $\left|F_{1}^{R}\right|=1$. By Lemma 3.4, two disjoint paths $P_{u_{1}^{h} x^{h}}$ and $P_{y^{h} v_{1}^{h}}$ with $V\left(P_{u_{1}^{h} x^{h}}\right) \cup V\left(P_{y^{h} v_{1}^{h}}\right)=V\left(R-F_{1}^{R}\right)$ exist in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u u_{1}}, u_{1}, u_{1}^{h}, P_{u_{1}^{h} x^{h}}, x^{h}, x, P_{x y}, y, y^{h}, P_{y^{h} v_{1}^{h}}, v_{1}^{h}, v_{1}, P_{v_{1} v^{h}}, v^{h}, v\right)$ can therefore be found(see Figure 25(a)).

Case 3.2.2.2. A vertex y exists in L with $\left|E_{L}(y) \cap F^{L}\right| \geq 3$.
Let $e_{1}, e_{2}, e_{3} \in E_{L}(y) \cap F^{L}$ and $F_{1}^{L}=F^{L}-\left\{e_{1}, e_{2}, e_{3}\right\}+y$. Then $\left|F_{1}^{L}\right|=2 n-5$.
(1) $y=u$. There is a vertex $u^{g} \in\left\{u^{h}, u^{c}\right\}$ with $u^{g} \neq v$. Let $N_{L}\left(u^{g}\right)=\left\{u, u_{1}\right\}$ and $z \in V(L)-\left\{u, u_{1}, v^{h}, v^{c}\right\}$ with $\left(u_{1}, z\right)$ is a normal vertex-pair in $L-F_{1}^{L}$. Then $z^{h} \neq v$. By induction hypothesis, a Hamiltonian path $P_{u_{1} z}$ exists in $L-F_{1}^{L}$. Let $F_{1}^{R}=F^{R}+\left\{u^{g}\right\}$. Then $\left|F_{1}^{R}\right|=1 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path
$P_{z^{h} v}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, u^{g}, u_{1}, P_{u_{1} z}, z, z^{h}, P_{z^{h} v}, v\right)$ can therefore be found(see Figure 25(b)).

(a)

(b)

Figure 25. Illustrations of Case 3.2.2.1 and Case 3.2.2.2 of Theorem 4.1.
(2) $y \neq u$.
(2.1) $y \in\left\{v^{h}, v^{c}\right\}$. We may assume that $y=v^{c}$. Let $z \in V(L)-\left\{u, v^{h}, v^{c}\right\}$ with (u, z) is a normal vertex-pair in $L-F_{1}^{L}$. Then $z^{h} \neq v$. By induction hypothesis, a Hamiltonian path $P_{u z}$ exists in $L-F_{1}^{L}$. Let $F_{1}^{R}=F^{R}+\{v\}$. Then $\left|F_{1}^{R}\right|=1 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{z^{h}(v)^{h}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u z}, z, z^{h}, P_{z^{h}(v)^{h}},\left(v^{c}\right)^{h}, v^{c}, v\right)$ can therefore be found(see Figure 26(a)).
(2.2) $y \notin\left\{v^{h}, v^{c}\right\}$. Let $z \in V(L)-\left\{u, y, v^{h}, v^{c}\right\}$ with (u, z) is a normal vertex-pair in $L-F_{1}^{L}$ and $z \neq y^{c_{n-1}}$. By Proposition 2.1, $z^{h} \neq y^{c}$ and $z^{c} \neq y^{h}$. By induction hypothesis, a Hamiltonian path $P_{u z}$ exists in $L-F_{1}^{L}$. By Lemma 3.4, two disjoint paths $P_{z^{h} y^{h}}$ and $P_{y^{c} v}$ with $V\left(P_{z^{h} y^{h}}\right) \cup V\left(P_{y^{c} v}\right)=V(R)$ exist in R. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u z}, z, z^{h}, P_{z^{h} y^{h}}, y^{h}, y, y^{c}, P_{y^{c} v}, v\right)$ can therefore be found(see Figure 26(b)).

Figure 26. Illustrations of Case 3.2.2.2 of Theorem 4.1.

Case 3.3. $u, v \in V(R)$.
Case 3.3.1. $\left|F_{v}^{L}\right| \geq 2$. There are at least two vertices $x_{1}, x_{2} \in F^{L}$. Let $F_{1}^{L}=F^{L}-\left\{x_{1}, x_{2}\right\}$. Then $\left|F_{1}^{L}\right|=2 n-5$.

Case 3.3.1.1. $\left(x_{1}, x_{2}\right)$ is a normal vertex-pair in $L-F_{1}^{L}$. By induction hypothesis, a Hamiltonian path $P_{x_{1} x_{2}}$ exists in $L-F_{1}^{L}$. Let $N_{P_{x_{1} x_{2}}}\left(x_{1}\right)=x_{11}$ and $N_{P_{x_{1} x_{2}}}\left(x_{2}\right)=x_{21}$.
(1) There is a vertex $x_{11}^{g} \in\left\{x_{11}^{h}, x_{11}^{c}\right\}$ and a vertex $x_{21}^{g} \in\left\{x_{21}^{h}, x_{21}^{c}\right\}$ such that $x_{11}^{g}, x_{21}^{g} \notin\{u, v\}$. By Lemma 3.4, two disjoint paths $P_{u x_{11}^{g}}, P_{x_{21}^{g} v}$ with $V\left(P_{\left.u x_{11}^{g}\right)}\right) \cup V\left(P_{x_{21}^{g} \nu}\right)=V(R)$ exist in R. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u x_{11}^{g}}, x_{11}^{g}, x_{11}\right.$, $\left.P_{x_{1} x_{2}}\left(x_{11}, x_{21}\right), x_{21}, x_{21}^{g}, P_{x_{21}} v, v\right)$ can therefore be found(see Figure 27(a)).
(2) For any vertex $x_{11}^{g} \in\left\{x_{11}^{h}, x_{11}^{c}\right\}$ and vertex $x_{21}^{g} \in\left\{x_{21}^{h}, x_{21}^{c}\right\},\left\{x_{11}^{g}, x_{21}^{g}\right\}=\{u, v\}$. We assume that $x_{11}^{g}=u$ and $x_{21}^{g}=v$. Let $a b \in E\left(P_{x_{1} x_{2}}\left(x_{11}, x_{21}\right)\right)$ with $a, b \notin\left\{x_{11}, x_{21}\right\}$ and $F_{1}^{R}=F^{R}+\{u, v\}$. Then $\left|F_{1}^{R}\right|=2 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{a^{h} b^{h}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian
path $P_{u v}=\left(u, x_{11}, P_{x_{1} x_{2}}\left(x_{11}, a\right), a, a^{h}, P_{a^{h} b^{h}}, b^{h}, b, P_{x_{1} x_{2}}\left(b, x_{21}\right), x_{21}, v\right)$ can therefore be found(see Figure 27(b)).
(3) $\left\{x_{11}^{h}, x_{11}^{c}\right\}=\{u, v\}$ and $u, v \notin\left\{x_{21}^{h}, x_{21}^{c}\right\}$ or $\left\{x_{21}^{h}, x_{21}^{c}\right\}=\{u, v\}$ and $u, v \notin\left\{x_{11}^{h}, x_{11}^{c}\right\}$. Assume that $\left\{x_{11}^{h}, x_{11}^{c}\right\}=\{u, v\}$ and $u, v \notin\left\{x_{21}^{h}, x_{21}^{c}\right\}$. Let $F_{1}^{R}=F^{R}+\{u\}$. Then $\left|F_{1}^{R}\right|=1 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{x_{21}^{h}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, x_{11}, P_{x_{1} x_{2}}\left(x_{11}, x_{21}\right), x_{21}, x_{21}^{h}, P_{x_{21}^{h}}, v\right)$ can therefore be found(see Figure 27(c)).

Figure 27. Illustrations of Case 3.3.1.1 of Theorem 4.1.

Case 3.3.1.2. $\left(x_{1}, x_{2}\right)$ is a w-weak vertex-pair in $L-F_{1}^{L}$, i.e., $F^{L} \subset N_{L}(w) \cup E_{L}(w),\left|N_{L-F^{L}}(w)\right|=0$ and $N_{L-F_{1}^{L}}(w)=\left\{x_{1}, x_{2}\right\}$. Since (u, v) is a normal vertex-pair in $A Q_{n}-F,\left|\left\{w^{h}, w^{c}\right\} \cap\{u, v\}\right| \leq 1$. By Corollary 2.1, $\left(w, x_{2}\right)$ is a normal vertex-pair in $L-F_{1}^{L}$. By induction hypothesis, a Hamiltonian path $P_{w x_{2}}$ exists in $L-F_{1}^{L}$. Since $N_{L-F_{1}^{L}}(w)=\left\{x_{1}, x_{2}\right\}$, we have $N_{P_{w x_{2}}}(w)=x_{1}$.
(1) $\left|\left\{w^{h}, w^{c}\right\} \cap\{u, v\}\right|=1$. Suppose that $u \in\left\{w^{h}, w^{c}\right\}$, say $u=w^{h}$. Let $N_{P_{w x_{2}}}\left(x_{1}\right)-w=x_{11}$ and $N_{P_{w x_{2}}}\left(x_{2}\right)=x_{21}$.
(1.1) $x_{11}=w^{c_{n-1}}$ or $x_{21}=w^{c_{n-1}}$. Suppose that $x_{11}=w^{c_{n-1}}$. By Proposition 2.1, $w^{h}=x_{11}^{c}$ and $w^{c}=x_{11}^{h}$. There is a vertex $x_{21}^{g} \in\left\{x_{21}^{h}, x_{21}^{c}\right\}$ such that $x_{21}^{g} \neq v$. Let $F_{1}^{R}=F^{R}+\left\{u, w^{c}\right\}$. Then $\left|F_{1}^{R}\right|=2 \leq 2 n-6$. By Lemma 3.1, an error-free Hamiltonian path $P_{x_{21}^{g} \nu}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, w, w^{c}, x_{11}, P_{w x_{2}}\left(x_{11}, x_{21}\right), x_{21}, x_{21}^{g}, P_{x_{21}^{g}}, v\right)$ can therefore be found(see Figure 28(a)).
(1.2) $x_{11} \neq w^{c_{n-1}}$ and $x_{21} \neq w^{c_{n-1}}$. Then by Proposition 2.1, $x_{11}^{h} \neq w^{c}, x_{11}^{c} \neq w^{h}$ and $x_{21}^{c} \neq w^{h}$, $x_{21}^{h} \neq w^{c}$.

If $v \in\left\{x_{21}^{c}, x_{11}^{c}\right\}$, we may assume that $x_{21}^{c}=v$. Let $F_{1}^{R}=F^{R}+\{u, v\}$. Then $\left|F_{1}^{R}\right|=2 \leq 2 n-6$. By Lemma 3.1, an error-free Hamiltonian path $P_{W^{c} x_{11}^{c}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, w, w^{c}, P_{w^{c} x_{11}^{c}}, x_{11}^{c}, x_{11}, P_{w x_{2}}\left(x_{11}, x_{21}\right), x_{21}, v\right)$ can therefore be found(see Figure 28(b)).

If $v \notin\left\{x_{21}^{c}, x_{11}^{c}\right\}$, let $F_{1}^{R}=F^{R}+\{u\}$. Then $\left|F_{1}^{R}\right|=1$. By Lemma 3.4, two disjoint paths $P_{w^{c} x_{11}^{c}}$, $P_{x_{21}^{c} v}$ with $V\left(P_{w^{c} x_{11}^{c}}\right) \cup V\left(P_{x_{21}^{c} v}\right)=V\left(R-F_{1}^{R}\right)$ exist in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=$ (u,w, $\left.w^{c}, P_{w^{c} x_{11}^{c}}, x_{11}^{c}, x_{11}, P_{w x_{2}}\left(x_{11}, x_{21}\right), x_{21}, x_{21}^{c}, P_{x_{21}^{c} v}, v\right)$ can therefore be found(see Figure 28(c)).

Figure 28. Illustrations of Case 3.3.1.2 of Theorem 4.1.
(2) $\left|\left\{w^{h}, w^{c}\right\} \cap\{u, v\}\right|=0$.
(2.1) $x_{11}=w^{c_{n-1}}$ or $x_{21}=w^{c_{n-1}}$. Assume that $x_{11}=w^{c_{n-1}}$. By Proposition 2.1, $w^{h}=x_{11}^{c}$ and $w^{c}=x_{11}^{h}$.

If at least one vertex of $\{u, v\}$, say v, is adjacent to x_{21}. Let $F_{1}^{R}=F^{R}+\left\{w^{c}, v\right\}$. Then $\left|F_{1}^{R}\right|=2 \leq 2 n-6$. By Lemma 3.1, an error-free Hamiltonian path $P_{u w^{k}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u w^{h}}, w^{h}, w, w^{c}, x_{11}, P_{w x_{2}}\left(x_{11}, x_{21}\right), x_{21}\right.$,
$v)$ can therefore be found(see Figure 29(a)).
If both of u and v are not adjacent to x_{21}. Let $F_{1}^{R}=F^{R}+w^{c}$. Then $\left|F_{1}^{R}\right|=1$. By Lemma 3.4, two disjoint paths $P_{u w^{h}}, P_{x_{21}^{h},}$ with $V\left(P_{u w^{h}}\right) \cup V\left(P_{x_{21}^{h}} v\right)=V\left(R-F_{1}^{R}\right)$ exist in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u w^{h}}, w^{h}, w, w^{c}, x_{11}, P_{w x_{2}}\left(x_{11}, x_{21}\right)\right.$, $\left.x_{21}, x_{21}^{h}, P_{x_{21}^{h}}, v\right)$ can therefore be found(see Figure 29(b)).

Figure 29. Illustrations of Case 3.3.1.2 of Theorem 4.1.
(2.2) $x_{11} \neq w^{c_{n-1}}$ and $x_{21} \neq w^{c_{n-1}}$. Then by Proposition 2.1, $x_{11}^{h} \neq w^{c}, x_{11}^{c} \neq w^{h}$ and $x_{11}^{c} \neq w^{h}$, $x_{11}^{h} \neq w^{c}$.
(2.2.1) There is a vertex $x_{11}^{g} \in\left\{x_{11}^{h}, x_{11}^{c}\right\}$ with $x_{11}^{g} \notin\{u, v\}$ and $x_{21}^{g} \in\left\{x_{21}^{h}, x_{21}^{c}\right\}$ with $x_{21}^{g} \notin\{u, v\}$. By Lemma 3.5, three disjoint paths $P_{u w^{h}}, P_{w^{c} x_{11}^{g}}, P_{x_{21}^{g}}$ exist in R with $V\left(P_{u w^{h}}\right) \cup V\left(P_{w^{c} x_{11}^{g}}\right) \cup V\left(P_{x_{21}^{g} v}\right)=V(R)$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u w^{h}}, w^{h}, w, w^{c}, P_{w^{c} x_{11}^{g}}, x_{11}^{g}, x_{11}, P_{w x_{2}}\left(x_{11}, x_{21}\right), x_{21}, x_{21}^{g}, P_{x_{21}^{g}}, v\right)$ can therefore be found(see Figure 30(a)).
(2.2.2) $\left\{x_{11}^{h}, x_{11}^{c}\right\}=\{u, v\}$ and $u, v \notin\left\{x_{21}^{h}, x_{21}^{c}\right\}$ or $\left\{x_{21}^{h}, x_{21}^{c}\right\}=\{u, v\}$ and $u, v \notin\left\{x_{11}^{h}, x_{11}^{c}\right\}$. Assume that $\left\{x_{11}^{h}, x_{11}^{c}\right\}=\{u, v\}$ and $u, v \notin\left\{x_{21}^{h}, x_{21}^{c}\right\}$. Let $F_{1}^{R}=F^{R}+\{u\}$. Then $\left|F_{1}^{R}\right|=1$. By Lemma 3.4, two disjoint paths $P_{x_{21}^{h} w^{h}}, P_{w^{c} v}$ exist in $R-F_{1}^{R}$ with $V\left(P_{x_{21}^{h} w^{h}}\right) \cup V\left(P_{w^{c} v}\right)=V\left(R-F_{1}^{R}\right)$. An error-free Hamiltonian path $P_{u v}=\left(u, x_{11}, P_{w x_{2}}\left(x_{11}, x_{21}\right), x_{21}, x_{21}^{h}, P_{x_{21}^{h} w^{h}}, w^{h}, w, w^{c}, P_{w^{c} v}, v\right)$ can therefore be found(see Figure 30(b)).

Figure 30. Illustrations of Case 3.3.1.2 of Theorem 4.1.
(2.2.3) $\left\{x_{21}^{h}, x_{21}^{c}, x_{11}^{h}, x_{11}^{c}\right\}=\{u, v\}$. We may assume that $x_{21}^{h}=u$ and $x_{11}^{h}=v$. Let $a \in N_{P_{w x 2}}\left(x_{11}\right)$ with $a \neq x_{1}$ and $b \in N_{P_{w x_{2}}}(a)$ with $b \neq x_{11}$.
(2.2.3.1) $a=w^{c_{n-1}^{2}}$. Then $a^{h}=w^{c}$ and $a^{c}=w^{h}$. Let $F_{1}^{R}=F^{R}+\left\{u, v, w^{h}\right\}$. Then $\left|F_{1}^{R}\right|=3 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{b^{c} w^{c}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=$
($\left.u, x_{21}, P_{w x_{2}}\left(x_{21}, b\right), b, b^{c}, P_{b^{c} w^{c}}, w^{c}, w, w^{h}, a, x_{11}, v\right)$ can therefore be found(see Figure 31(a)).
(2.2.3.2) $b=w^{c_{n-1}}$. Then $b^{h}=w^{c}$ and $b^{c}=w^{h}$. Let $F_{1}^{R}=F^{R}+\left\{u, v, w^{h}\right\}$. Then $\left|F_{1}^{R}\right|=3 \leq 2 n-6$. By Lemma 3.1, a Hamiltonian path $P_{w^{c} a^{c}}$ exists in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=$ ($\left.u, x_{21}, P_{w x_{2}}\left(x_{21}, b\right), b, w^{h}, w, w^{c}, P_{w^{c} a^{c}}, a^{c}, a, x_{11}, v\right)$ can therefore be found(see Figure $31(\mathrm{~b})$).
(2.2.3.3) $a \neq w^{c_{n-1}}$ and $b \neq w^{c_{n-1}}$. Then $a^{h} \neq w^{c}, a^{c} \neq w^{h}$ and $b^{h} \neq w^{c}, b^{c}=w^{h}$. Let $F_{1}^{R}=F^{R}+\{u, v\}$. Then $\left|F_{1}^{R}\right|=2$. By Lemma 3.4, two disjoint paths $P_{b^{h} w^{h}}, P_{w^{c} a^{h}}$ exist in $R-F_{1}^{R}$ with $V\left(P_{b^{h} w^{h}}\right) \cup V\left(P_{w^{c} a^{h}}\right) \quad=\quad V\left(R-F_{1}^{R}\right)$. An error-free Hamiltonian path $P_{u v}=\left(u, x_{21}, P_{w x_{2}}\left(x_{21}, b\right), b, b^{h}, P_{b^{h} w^{h}}, w^{h}, w, w^{c}, P_{w^{c} a^{h}}, a^{h}, a, x_{11}, v\right)$ can therefore be found(see Figure 31(c)).

Figure 31. Illustrations of Case 3.3.1.2 of Theorem 4.1.
Case 3.3.2. $\left|F_{v}^{L}\right| \leq 1$.
Case 3.3.2.1. For any vertex x with $\left|E_{L}(x) \cap F^{L}\right| \leq 2$. Since $\left|F^{L} \cap E(L)\right| \geq 2 n-4 \geq 8(n \geq 6)$, we can choose two edges $e_{1}, e_{2} \notin E_{L}\left(u^{c}\right) \cup E_{L}\left(v^{h}\right) \cup E_{L}\left(v^{c}\right)$. Let $F_{1}^{L}=F^{L}-\left\{e_{1}, e_{2}\right\}$. Then $\left|F_{1}^{L}\right|=2 n-5$. By Lemma 3.1, a Hamiltonian cycle C will exist in $L-F_{1}^{L}$ which may or may not include e_{1} or e_{2} on it. Removing e_{1} and e_{2}, cycle C is divided into two, one or zero pieces depending on the cases in which e_{1} and e_{2} are on C or not. For the last two cases, we may choose to delete one or two more edges which are not incident to vertices $u^{h}, u^{c}, \nu^{h}, v^{c}$ from C to make it into two subpaths. Therefore, we may write cycle C using these subpaths as ($x, e_{1}^{\prime}, x_{1}, P_{x_{1} y_{1}}, y_{1}, e_{2}^{\prime}, y, P_{y x}, x$).
(1) The length of $P_{y x} l_{y x} \geq 1$. Since $\left|F^{R}\right|=0$, by Lemma 3.5, three disjoint paths $P_{u x_{1}^{c}}, P_{y_{1}^{c} y^{c}}$, $P_{x^{c} v}$ exist in R with $V\left(P_{u x_{1}^{c}}\right) \cup V\left(P_{y_{1}^{c} y^{c}}\right) \cup V\left(P_{x^{c} v}\right)=V(R)$. An error-free Hamiltonian path $P_{u v}=$ ($u, P_{u x_{1}^{c}}, x_{1}^{c}, x_{1}, P_{x_{1} y_{1}}, y_{1}, y_{1}^{c}, P_{y_{1}^{c}}, y^{c}, y, P_{y x}, x, x^{c}, P_{x^{c} v}, v$) can therefore be found(see Figure 32(a)).
(2) The length of $P_{y x} l_{y x}=0$. Then $x=y$.
(2.1) $x=u^{h}$. Let $F_{1}^{R}=F^{R}+\{u\}$. Then $\left|F_{1}^{R}\right|=1$. By Lemma 3.4, two disjoint paths $P_{x y_{1}^{c} y_{1}^{c}}$, $P_{x_{1}^{c} v}$ with $V\left(P_{x^{c} y_{1}^{c}}\right) \cup V\left(P_{x_{1}}\right)=V\left(R-F_{1}^{R}\right)$ exist in $R-F_{1}^{R}$. An error-free Hamiltonian path $P_{u v}=$ (u, x, $\left.x^{c}, P_{x^{c} y_{1}^{c}}^{c} y_{1}^{c}, y_{1}, P_{y_{1} x_{1}}, x_{1}, x_{1}^{c}, P_{x_{1}^{c} v}, v\right)$ can therefore be found(see Figure 32(b)).

Figure 32. Illustrations of Case 3.3.2.1 of Theorem 4.1.
(2.2) $x \neq u^{h}$.
(2.2.1) $x \neq x_{1}^{c_{n-1}}$ and $x \neq y_{1}^{c_{n-1}}$. By Proposition 2.1, $x^{h} \neq x_{1}^{c}, x^{c} \neq x_{1}^{h}$ and $x^{h} \neq y_{1}^{c}, x^{c} \neq y_{1}^{h}$. By Lemma 3.5, three disjoint paths $P_{u x_{1}^{c}}, P_{y_{1}^{c} x^{c}}$ and $P_{x^{h} v}$ exist in R with $V\left(P_{u x_{1}^{c}}\right) \cup V\left(P_{y_{1}^{c} x^{c}}\right) \cup V\left(P_{x^{h} v}\right)=V(R)$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u x_{1}^{c}}, x_{1}^{c}, x_{1}, P_{x_{1} y_{1}}, y_{1}, y_{1}^{c}, P_{y_{1}^{c} x^{c}}, x^{c}, x, x^{h}, P_{x^{h} v}, v\right)$ can therefore be found(see Figure 33(a)).
(2.2.2) $x=x_{1}^{c_{n-1}}$ or $x=y_{1}^{c_{n-1}}$. Suppose that $x=x_{1}^{c_{n-1}}$. By Proposition 2.1, $x^{h}=x_{1}^{c}$ and $x^{c}=x_{1}^{h}$. Let $F_{1}^{R}=F^{R}+\left\{x_{1}^{c}\right\}$. Then $\left|F_{1}^{R}\right|=1$. By Lemma 3.4, two disjoint paths $P_{u x^{c}}, P_{y_{1}^{c} v}$ exist in $R-F_{1}^{R}$ with $V\left(P_{u x^{c}}\right) \cup$ $V\left(P_{y_{1}^{c} \nu}\right)=V\left(R-F_{1}^{R}\right)$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u x^{c}}, x^{c}, x, x_{1}^{c}, x_{1}, P_{x_{1} y}, y_{1}, y_{1}^{c}, P_{y_{1}^{c} v}, v\right)$ can therefore be found(see Figure 33(b)).

Figure 33. Illustrations of Case 3.3.2.1 of Theorem 4.1.
Case 3.3.2.2. There exists a vertex x with $\left|E_{L}(x) \cap F^{L}\right| \geq 3$. Let $e_{1}, e_{2}, e_{3} \in E_{L}(x) \cap F^{L}$ and $F_{1}^{L}=F^{L}-\left\{e_{1}, e_{2}, e_{3}\right\}+x$. Then $\left|F_{1}^{L}\right|=2 n-5$.
(1) There exists no correct element incident to vertex x in $L-F^{L}$. Since (u, v) is a normal vertex-pair in $A Q_{n}-F,\left|N_{A Q_{n}-F}(x) \cap\{u, v\}\right| \leq 1$. Choose two different vertices x_{1}, y from $V(L)-\left\{x, u^{h}, u^{c}, v^{h}, v^{c}\right\}$ with $x_{1} \neq x^{c_{n-1}}, y \neq x^{c_{n-1}}$ and $\left(x_{1}, y\right)$ is a normal vertex-pair in $L-F_{1}^{L}$. By induction hypothesis, a Hamiltonian path $P_{x_{1} y}$ exists in $L-F_{1}^{L}$. Notice that $x_{1}, y \in V(L)-\left\{x, u^{h}, u^{c}, v^{h}, v^{c}\right\}$, then $u, v \notin\left\{x_{1}^{h}, x_{1}^{c}, y^{h}, y^{c}\right\}$.
(1.1) $\left|N_{A Q_{n}-F}(x) \cap\{u, v\}\right|=1$. Assume that $u \in N_{A Q_{n}-F}(x)$ and $u=x^{h}$. Let $F_{1}^{R}=F^{R}+\{u\}$. Then $\left|F_{1}^{R}\right|=1$. By Lemma 3.4, two disjoint paths $P_{x^{c} x_{1}^{c}}, P_{y^{c} v}$ exist in $R-F_{1}^{R}$ with $V\left(P_{x^{c} x_{1}^{c}}\right) \cup V\left(P_{y^{c} v}\right)=$ $V\left(R-F_{1}^{R}\right)$. An error-free Hamiltonian path $P_{u v}=\left(u, x, x^{c}, P_{x^{c} x_{1}^{c}}, x_{1}^{c}, x_{1}, P_{x_{1} y}, y, y^{c}, P_{y^{c} v}, v\right)$ can therefore be found(see Figure 34(a)).
(1.2) $\left|N_{A Q_{n}-F}(x) \cap\{u, v\}\right|=0$. By Lemma 3.5, three disjoint paths $P_{u x^{h}}, P_{x^{c} x_{1}^{c}}, P_{y^{c} v}$ exist in R with $V\left(P_{u x^{n}}\right) \cup V\left(P_{x^{c} x_{1}^{c}}\right) \cup V\left(P_{y_{v} c_{v}}\right) \quad=\quad V(R)$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u x^{h}}, x^{h}, x, x^{c}, P_{x^{c} x_{1}^{c}}, x_{1}^{c}, x_{1}, P_{x_{1} y}, y, y^{c}, P_{y^{c} v}, v\right)$ can therefore be found(see Figure 34(b)).
(2) There is a vertex x_{1} incident to vertex x in $L-F^{L}$. Choose a vertex $y \in V(L)-\left\{x, x_{1}, v^{h}, v^{c}, u^{h}, u^{c}\right\}$ with $\left(x_{1}, y\right)$ is a normal vertex-pair in $L-F_{1}^{L}$, then $u, v \notin\left\{y^{h}, y^{c}\right\}$. By induction hypothesis, a Hamiltonian path $P_{x_{1} y}$ exists in $L-F_{1}^{L}$. There is a vertex $x^{g} \in\left\{x^{h}, x^{c}\right\}$ with $x^{g} \neq\{u, v\}$. By Lemma 3.4, two disjoint paths $P_{u x^{8}}, P_{y^{c} v}$ exist in R with $V\left(P_{u x^{g}}\right) \cup V\left(P_{y^{c} v}\right)=V(R)$. An error-free Hamiltonian path $P_{u v}=\left(u, P_{u x g}, x^{g}, x, x_{1}, P_{x_{1} y}, y, y^{c}, P_{y^{c} v}, v\right)$ can therefore be found(see Figure 34(c)).

Figure 34. Illustrations of Case 3.3.2.2 of Theorem 4.1.

Combining the above cases, we completed the proof of the Theorem 4.1.

5. Conclusions

This paper studied the Hamiltonian path in n-dimensional augmented cube $A Q_{n}$ with a set F of up to $2 n-3$ faulty elements. We have proved that for arbitrary vertex-pair (u, v) in $A Q_{n}-F$, there exists a fault-free Hamiltonian path that joins vertices u and v with the exception of (u, v), which is a weak vertex-pair in $A Q_{n}-F(n \geq 4)$. It is worth pointing out that we also proved that if there is a weak vertex-pair in $A Q_{n}-F$, there is at most one pair. This paper improved the current result that $A Q_{n}$ is $2 n-4$ fault-tolerant Hamiltonian connected. Since the degree of each vertex is $2 n-1$ in $A Q_{n}$, our result is optimal and sharp under the condition of no restriction to each vertex.

The result of the paper can be further improved. One possible research is the Hamiltonian connectivity when the correct degree of each vertex is restricted and the fault-tolerant bound of $A Q_{n}$ may be improved; another is the issue of finding the shorter path under the current optimal fault-tolerant bound in which when $|F| \leq 2 n-3$, any correct two vertices u, v in $A Q_{n}-F$ have a path of each length from d-rank to $2^{n}-f_{v}-2$ connecting them, where d is the distance of u, v and f_{v} is the number of faulty vertices in $A Q_{n}$.

Acknowledgments

The work was supported by NNSF of China (No.61170303, 61472465, 61562066) and the National Key R\&D Program of China (No. 2018YFC0910500, No.2020AAA0108004).

Conflict of interest

The authors declare that they have no competing interests.

References

1. C. M. Lee, Y. H. Teng, J. J. M. Tan, L. H. Hsu, Embedding Hamiltonian paths in augmented cubes with a required vertex in a fixed position, Comput. Math. Appl., 58 (2009), 1762-1768.
2. D. Zhou, J. Fan, C. K. Lin, J. Zhou, X. Wang, Cycles embedding in exchanged crossed cube, Int. J. Found. Comput. Sci., 28 (2017), 61-76.
3. H. C. Hsu, L. C. Chiang, J. J. M. Tan, L. H. Hsu, Fault Hamiltonicity of augmented cubes, Parallel Comput., 31 (2005), 131-145.
4. H. Wang, J. Wang, J. M. Xu, Fault-tolerant panconnectivity of augmented cubes, Frontiers Math. China, 4 (2009), 697-719.
5. J. Fan, X. Lin, X. Jia, Optimal path embedding in crossed cubes, IEEE Trans. Parallel Distrib. Syst., 16 (2005), 1190-1200.
6. J. Fan, X. Jia, X. Lin, Optimal embeddings of paths with various lengths in twisted cubes, IEEE Trans. Parallel Distrib. Syst., 18 (2007), 511-521.
7. J. Fan, X. Lin, Y. Pan, X. Jia, Optimal fault-tolerant embedding of paths in twisted cubes, J. Parallel Distrib. Comput., 67 (2007), 205-214.
8. J. Fan, X. Jia, Embedding meshes into crossed cubes, Inf. Sci., 177 (2007), 3151-3160.
9. X. Wang, J. Fan, X. Jia, S. Zhang, J. Yu, Embedding meshes into twisted-cubes, Inf. Sci., 181 (2011), 3085-3099.
10. J. Xu, M. Ma, A survey on cycle and path embedding in some networks, Frontiers Math. China, 4 (2009), 217-252.
11. M. Ma, G. Liu, J. M. Xu, Fault-tolerant embedding of paths in crossed cubes, Theor. Comput. Sci., 407 (2008), 110-116.
12. M. Ma, G. Liu, J. M. Xu, The super connectivity of augmented cubes, Inf. Process. Lett., 106 (2008), 59-63.
13. M. Xu, J. M. Xu, The forwarding indices of augmented cubes, Inf. Process. Lett., 101 (2007), 185-189.
14. M. Ma, G. Liu, J. M. Xu, Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes, Parallel Comput., 33 (2007), 36-42.
15. P. Kulasinghe, S. Bettayeb, Embedding binary trees into crossed cubes, IEEE Trans. Comput., 44 (1995), 923-929.
16. S. A. Choudum, V. Sunitha, Augmented cubes, Networks, 40 (2002), 71-84.
17. S. A. Choudum, V. Sunitha, Distance and short parallel paths in augmented cubes, Electron. Notes Discrete Math., 15 (2003), 64.
18. S. A. Choudum, V. Sunitha, Wide-diameter of augmented cubes, Technical Report, Department of Mathematics, Indian Institute of Technology Madras, Chennai, 2000.
19. S. A. Choudum, V. Sunitha, Automorphisms of augmented cubes, Technical Report, Department of Mathematics, Indian Institute of Technology Madras, Chennai, 2001.
20. W. W. Wang, M. J. Ma, J. M. Xu, Fault-tolerant pancyclicity of augmented cubes, Inf. Process. Lett., 103 (2007), 52-56.
21. W. C. Fang, C. C. Hsu, C. M. Wang, On the fault-tolerant embeddings of complete binary trees in the mesh interconnection networks, Inf. Sci., 151 (2003), 51-70.
22. X. Xu, H. Zhang, S. Zhang, Y. Yang, Fault-tolerant panconnectivity of augmented cubes $A Q_{n}$, Int. J. Found. Comput. Sci., 30 (2019), 1247-1278.
23. H. Zhang, X. Xu, J. Guo, Y. Yang, Fault-tolerant Hamiltonian-connectivity of twisted hypercubelike networks THLNs, IEEE Access, 6 (2018), 74081-74090.
24. H. Zhang, X. Xu, Q. Zhang, Y. Yang, Fault-tolerant path-embedding of twisted hypercube-like networks (THLNs), Mathematics, 7 (2019), 1066.
25. N. Ascheuer, Hamiltonian Path Problems in the On-line Optimization of Flexible Manufacturing Systems, PhD thesis, Konrad-Zuse-Zentrum fur Informationstechnik Berlin, 1996.
26. N. C. Wang, C. P. Yan, C. P. Chu, Multicast communication in wormhole-routed symmetric networks with Hamiltonian cycle model, J. Syst. Archit., 51 (2005), 165-183.
27. X. Lin, P. K. McKinley, L. M. Li, Deadlock-free multicast wormhole routing in 2-D mesh multiprocessors, IEEE Trans. Parallel Distrib. Syst., 5 (1994), 793-804.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
