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Abstract: The augmented cube AQ, is an outstanding variation of the hypercube Q,. It possesses
many of the favorable properties of Q, as well as some embedded properties not found in Q,. This
paper focuses on the fault-tolerant Hamiltonian connectivity of AQ,. Under the assumption that F' C
V(AQ,) U E(AQ,) with |F| < 2n — 3, we proved that for any two different correct vertices u and v in
AQ,, there exists a fault-free Hamiltonian path that joins vertices u# and v with the exception of (u, v),
which is a weak vertex-pair in AQ, — F(n > 4). It is worth noting that in this paper we also proved that
if there is a weak vertex-pair in AQ, — F, there is at most one pair. This paper improved the current
result that AQ,, is 2n — 4 fault-tolerant Hamiltonian connected. Our result is optimal and sharp under
the condition of no restriction to each vertex.
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1. Introduction

Interconnection networks are of particular interest in the study of parallel computing systems. An
interconnection network can be modeled as a graph G = (V, E), where V expresses the vertex set and
E expresses the edge set. Exploring the structures of G is essential for designing a suitable topology
for such an interconnection network. Topology structure has a crucial impact on the overall
performance of the network. It determines the physical distribution of network nodes/links and the
connection relationship between them. It also determines the number of hops in message transmission
and the length of links per hop. Therefore, the topology has a great influence on the delay and power
consumption. In addition, because the topology determines the number of available transmission
paths between nodes, it also affects the distribution of network traffic, network bandwidth and
transmission performance.
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The hypercube Q, is one of the most prevalent interconnection networks among all the popular
parallel network topologies that possess properties such as logarithmic diameter, high symmetry, linear
bisection width. The n-dimensional augmented cube AQ,, is an outstanding variation of the hypercube
0, It possesses many of the favorable properties of O, as well as some embedded properties not found
in Q,. Much research has been conducted on this type of augmented cube, and it appears frequently in
the literatures [1, 3,4, 12—-14, 16, 20, 22].

In the last several years, the path embedding problem has become one of the most-studied graph
embedding problems, appearing prolifically in the literatures [5, 6, 10, 14]. The fault-tolerant path
embedding problem has also been the subject of frequent investigation, as is evident in the literatures [3,
4,7,10,11,22-24].

A path (or cycle) is considered a Hamiltonian path (or Hamiltonian cycle) if it passes through every
vertex of graph G once and only once. A graph is said to be Hamiltonian if it contains at least one
Hamiltonian cycle. One of the most challenging contemporary problems in graph theory is identifying
a necessary and sufficient condition for a graph to be considered Hamiltonian. A graph G is regarded
as Hamiltonian connected if for any pair of distinct vertices u and v, a Hamiltonian path P,, exists.
Hamiltonian paths and cycles have applicability for practical problems such as online optimization
of complex, flexible manufacturing systems [25], wormhole routing [26], deadlock-free routing and
broadcasting algorithms [27]. Applicability for such problems have been a driving force for the study
of networks embedded with Hamiltonian paths.

In large interconnection networks, vertices(or edges) show a propensity for faultiness. This
faultiness demands attention, as fault-tolerance serves as an important index of a network’s stability.
A graph G can be said to be k-fault-tolerant Hamiltonian connected if G — F remains Hamiltonian
connected for any F C V(G) U E(G) with |F| < k.

Hsu et al. [3] proved that AQ,(n > 1) is Hamiltonian-connected. They also showed that AQ, is
(2n — 3)-fault-tolerant Hamiltonian and (2n — 4)-fault-tolerant Hamiltonian connected for n > 4 even
when faulty elements occur. Soon after, Wang et al. [4] proved that AQ, is (2n — 5)-fault-tolerant
Panconnected for n > 3. We improved this result and showed that if F c V(AQ,) U E(AQ,) with
|FF| < 2n — 4, then for any two distinct error-free vertices u and v with distance d, there exists an
error-free path P, of length / with max{d + 2,4} <[1<2"- f,—11nAQ, — F(n > 4) [22].

In this paper, we show that for any two distinct error-free vertices u and v, there exists a fault-free
Hamiltonian path P,, that joins vertices u and v with the exception of (, v), which is a weak vertex-pair
in AQ, — F(n > 4) under the assumption that F c V(AQ,) U E(AQ,) with |F| < 2n - 3.

The rest of this paper is outlined as follows. Section 2 introduces the definitions and properties of
the augmented cubes AQ,. In Section 3, we investigate some lemmas of AQ, to be used in our proofs.
Section 4 proves the main theorem. Finally, Section 5 concludes the paper.

2. The definition and properties of AQ,

In this section, we will introduce the definition of AQ, and basic properties used in this paper.

Definition 2.1. The n-dimensional augmented cube AQ,, proposed by Choudum and Sunitha [16],
can be defined recursively as follows.

AQ) is a complete graph K, with vertex set {0, 1}. For n > 2, AQ, is obtained by taking two copies
of the augmented cube AQ,_; denoted by “AQ,_, and 'AQ,_;, and adding 2 x 2"~! edges between the
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two copies as follows.

Let VPAQ,_) = {0x,_; ... x2x1]x; € {0,1}} and V('AQ,_1) = {Ix,_1...x:x1|x; € {0,1}}. A vertex
x € V(°AQ,_)) is adjacent to a vertex y € V('AQ,_,) if and only if either:

(1) x; = y; for 1 <i < n—1; in this case, xy is called a hypercube edge and we set x = y™" or
y = x™, or

(2) x; = y; for 1 <i < n—1; in this case, xy is called a complement edge and we set x = y“ or
y = xo.

And an edge between x = x,X,_1 ... X;...xpx; and y = X, X,—1 ... X; ... Xox1(x; € {0,1},2 < i < m)is
called an i-dimensional hypercube edge, setting x = % or y = x", an edge between
X = XpXp_1...Xi...xx;and y = x,x,_1 ... X% ... x(x; € {0,1},1 < i < n)is called an i-dimensional
complement edge, setting x = y“ or y = x. For any vertex u in AQ,, we use u" to denote u» and use
u¢ to denote u“. Examples of the augmented cubes AQ,, AQ, and AQ; are shown in Figure 1(a)—(c),

respectively.
T 00 10
1 I I

01 11

(a)AQ1  (b)AQ: (c)AQs
Figure 1. AQ,, AQ, and AQs.

AQ, is (2n — 1)-regular that has, naturally, 2" vertices. For the sake of simplicity, we write this as
L =AQ,_; and R ='AQ,_;. Let Nag,(x) express the set of vertices which are incident to vertex x and
E4,(x) express the set of edges which are incident to vertex x. For each vertex x € V(L)(or V(R)), let
N (x)(or Ng(x)) express the set of vertices adjacent to x in V(L)(or V(R)), E€ signify the set of edges
joining L to R and E(x)(or Eg(x)) serve as the set of edges which are incident to vertex x in L(or R).

For two distinct vertices u and v in G, a path P, from vertex u to vertex v of length k is a sequence
of different vertices (xg, x1,...,xy), where xo = u, x; = v, x,_1x; € E(G) foreachi =1,2,...,k,and k
is the number of edges in P,,, called the length of P,,. The distance between vertices u and v, denoted
by d,,, is the length of a shortest path from vertex u to vertex v in G.

Let P, = (u,uy,up,--- ,u—1,v) be a path from vertex u to vertex v. A subsequence
(i, w1, -+ ,uj) of P, 1is called a subpath of P,, denoted by P, (u;,u;). We can write
Py = (uy,-- uy, Py(ui,uj),uj, - -u—,v). A cycle is a path P,, with u = v. We use
C = (u,uy,uy, - -+ , U1, u) to denote a cycle containing vertex u.

We first give the useful definitions and properties about AQ,, as follows.

Proposition 2.1. Let uv be an edge in AQ,(n > 2) [4]. If uv is not an (n — 1)-dimensional complement
edge, then u", u¢, v and v* are all distinct. Otherwise,u” = v¢, u¢ = v".

Proposition 2.2. For any two distinct vertices u and v of AQ,,, we have [(Nag,(u)UE4g, (1)) N(Nag,(V)U
Epp, (M) < 5.

Proof. Let m be the adjacent vertex of vertex u. Then

h

UT = Uplly 1 - Uj il - - ipil, 1< j<n
m= o
U = Uplty_y c Ujilujog Uy, 2 < j<n.
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If there exists at least one common adjacent vertex between any two distinct vertices u and v of
AQ,, then d,, < 2. We divided to the following two cases to prove.

Casel.d, = 1.

Casel.l.v=u(1 <i<n). Thenv = u,u,_ -+ - wip 1 W;it;_y - - - o l;.

m € N(v) if and only if

USH = Uty -+ Bl gy -+ - Ty, 1 <i<n—1.
Ut = Uyl Upp Ui - - U, 2<i<n.
hi

U= Uply_y + o Ui il - Uply, 2 <0< n.

W = gy - B iy oy, 1 <i<n—1.

Then Nyg, () N Nag,(v) = {u*', u", whi sy for2 <i<n-1, Nag, () N Nyg, (v) = {u, uli+}
fori =1, Nag, (1) N Nag,(v) = {uc', u"} for i = n.

Case 1.2. v = uh"(2 <i< l’l) Thenv = UyUpy_1 -+ Uip UiUi—1 - * - UpULy.

m € N(v) if and only if

m= { U = Uplp_y - Ui Wiy - Tplly, 2 <0< n.

US = UpUp_y - - Uiy iloy -+ - Ty, 2 L0

Then NAQn(u) N NAQ,I(V) = {l/tci_l, l/tci} for2 <i<n.

Case 2. d,, =2.

Case2.1l.v=u“*(1<i<k<nk#i+1). Thenv =u,u,_1 - tpyiiyily_y - -
Ui Uity - - - upuy. m € N(v) if and only if

UST = Ul U UpUg—1 * * + Wi il - - - Uy,
U = Uy - U gl -+ Wi W0 - - - Ul

h _ - o
U™ = Uyl -+ Uyt Ui Uil -+~ U1, k=i+2.

h. _ - .
W= Uply ) v W\ Ul | WU - U, k=i+2.

Then Nag,(u) N Nag,(v) = {u, u, u, u"*1} for k = i + 2 and Nag,(u) N Nag,(v) = {u, u*} for
k#i+?2.

Case 2.2. v = I/tcihk(l <i<k<nk#i+ 1) Thenv = UpUp_1 *** Upr 1 U U1 =+ +
Ui Uil - - - Upity. m € N(v) if and only if

Ci

UT = Upllyy - Upp | Ul - - - Ui\ Wil - - - Upldy,

m = UM = Uty W B+ Wi Uil - Ul
U = gt - g Bl Wil - - T k=i+2.
Ul = Uy W Uk Wik - Ul k=i+2.

Then Nag, (1) N Nag,(v) = {usi, ul, u, u"=} for k = i + 2 and Nag,(u) N Nag,(v) = {u, u"} for
k#i+?2.

Case2.3.v=u""™2 <i<k<n). Thenv = uply_ - Ups1 Bl - * - Uis1Williy
-~ upuy. m € N(v) if and only if

h

U = Upllp * - Upp U1 - - Ui UL - - - Uy,

m = UM = Uty U Tl - Ui Ul - U
T ut = wgy g up Uy - - - By k=i+1.
UK = Uty - - Upy Bl - - - Todl], k=i+1.
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Then Nyp, (1) N Nag,(v) = {u", u, uc1,u*} for k = i + 1 and Ny, (u) N Nag,(v) = {u", u"} for
k+#i+1.

Case24.v = u’”""(2 <i<k< I’l) Thenv = Uplp_1 *** Upp Ul -+ - Ui Uil
-+~ ipiy. m € N(v) if and only if

uli = UpUp—1 *** Upp | Uglg—1 * ** Ui ] Wil * - Uy,

m = UK = Ul -+ Uyt g1+ * -l Wiy - - - Ul
- U = Ul - U Uiy - - - oL, k=i+1.
uhe = UpUy_1 *** Upp  Uglildi—1 -+ - Up U1, k=i+1.

Then Nag, (1) N Nag,(v) = {u", u, u=1,u"} for k = i + 1 and Nag, (1) N Nag,(v) = {u", u+} for
k#i+1.

Combining the above cases, we have that [Nyp, (1) N Nag,(v)| < 4. If uv € E(AQ,,), then |(Nag, (1) U
Epp, ()N (Nag,(WMUE, (W) < 5. Ifuv ¢ E(AQ,), then [(Nag,(u)UE g, (u))N(Nag,(V)UE4g, (V)| < 4.
Hence, we have [(Nag, (1) U Eag, (1)) N (Nag,(v) U E4g,(v))] < 5. |

Definition 2.2. Let FF c V(AQ,) U E(AQ,) with |F| = 2n — 3. If AQ, — F include a vertex w with
Nag,-r(w) = {wy, w,}, then w is considered a weak 2-degree vertex and (w;, w) is considered a w-weak
vertex pair(or a weak vertex pair, for short).

Take F' = {a, b} for an example, we know that w is a weak 2-degree vertex and (w;, w;) is a weak
vertex-pair in AQ; — F(See Figure 2).

Figure 2. Illustration of weak vertex-pair.

Because it is impossible for any error-free path P,,,, of length / with / > 3 to contain the weak
2-degree vertex w, no error-free Hamiltonian path that joins vertices w; and w, exists in AQ, — F.
Fortunately, at most one weak 2-degree vertex w and at most one w-weak vertex-pair exist in AQ, —
F(n > 5) forany F Cc V(AQ,) U E(AQ,) with |F| = 2n — 3. We shall provide proof of this fact in
Proposition 2.3.

Definition 2.3. If (w;, w,) is not a weak vertex-pair for arbitrary vertex w € V(AQ, — F), then (wy, w)
is called a normal vertex pair.

Proposition 2.3. Let F c V(AQ,) U E(AQ,) with |F| < 2n — 1(n > 6). Then there exists at most one
vertex z € V(AQ, — F) such that dyg,_r(z) < 2.

Proof. Assume that there exist two vertices z, z, such that dyp,-r(z1) < 2 and dag,-r(z2) < 2. Since
AQ, is a (2n — 1)-regular graph, we have |F N (Nag,(z1) U Exg,(z1))| = 2n — 3 and |F N (Nyg,(22) U
Eag,(22))l = 2n = 3.

By Proposition 2.2, [(Nag,(21) U Eag,(21)) N (Nag,(22) U Exg,(22))] < 5. Then |[F N (Nag,(z1) U
Exg,@))+HFN(Nag,(22)UEag,(22)|=|FN(Nag,(z1)UEag,(21))N(Nag,(22)UEag,(22)) = 2(2n—-3)-5 =
4dn—11 > 2n — 1(n > 6), a contradiction to |F| < 2n — 1.
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Hence, at most one vertex z € V(AQ, — F) exists in AQ, — F such that dug, r(z) < 2 for any
F C V(AQ,) U E(AQ,) with |F| < 2n — 1. g

By Proposition 2.3, we can obtain the Corollary 2.1 as follows.

Corollary 2.1. Let F c V(AQ,) U E(AQ,) with |F| < 2n — 3. Then at most a weak 2-degree vertex w
and at most a w-weak vertex-pair exist in AQ,, — F(n > 6).

3. Some lemmas

Denote F- = FNL, F* = FNR, F€ = FNEC, F, = FNV(AQ,), F. = FNE(AQ,), FL = V(L)nF*,
Ff=VRNF~, f, =|F, £ = |F[, ff = |F§I.
We need the following lemmas.

Lemma 3.1. AQ,(n > 3) is (2n — 4)-fault-tolerant Hamiltonian connected and (2n — 3)-fault-tolerant
Hamiltonian [3].

Lemma 3.2. If |[F£| = 2n — 3(n > 6), then for arbitrary vertex-pair (u,v) with u,v € V(L), there exist
two faulty elements x;, x, € F~ such that (u, v) is a normal vertex-pair in L — (FL — {x|, x,}).

Proof. We use the following two cases to prove.

Case 1. (u,v) is a w-weak vertex pair in L — FX. Then d;_p.(w) = 2 and |[F N (Np(w) U EL(w))| =
2n — 5. By Proposition 2.3, w is the unique vertex in L — FX with d; _pr(w) < 2.

So, we can choose two elements xi,x, € F* N (N (w) U E(w)). Let F{ = F" — {x;, x,}, then
dL,FlL(w) = 4. Hence, (u, v) is a normal vertex pair in L — FIL.

Case 2. (u,v) is a normal vertex pair in L — FL. Let vertex z € L — F- with the least degree.

Case 2.1. 5(L — FF) = 0, then FE C N1.(2) U E1(2), d;_p.(2) = 0.

Case 2.1.1. z € {u,v}. Assume that u = z(When v = z, the same proofs apply).

By Proposition 2.3, u is the unique vertex in L — F* with d;_z.(u) < 2. Then (u,v) is a normal
vertex-pair in L — (FL — {x;, x,}) for arbitrary two elements x;, x, of F~.

Case 2.1.2. 7 ¢ {u, v}.

By Proposition 2.3, z is the unique vertex in L — FL with d;_r.(z) < 2. There exist two elements
x1,% € FL 0 (Np(z) U E(2)) with x;,x2 ¢ {uz,vz}. Let F- = FY — {x}, x,}, then d_rpi(z) = 2 and
NL_FlL(z) # {u,v}. Hence, (1, V) is a normal vertex pair in L — Ff.

Case 2.2. 6(L— FY) = 1. Then [FEN (N (z) UEL(2)| =2n—4 and d;_p.(z) = 1.

By Proposition 2.3, z is the unique vertex in L — FL with d;_r.(z) < 2. There exist two elements
x1, % € FE N (Np(2) U E(2)). Let FE = FX — {x), x}, then dy_p1(z) = 3. Then (u,v) is a normal vertex
pairin L — FF.

Case 2.3. 5(L — FX) > 2.

Then (u, v) is a normal vertex-pair in L — (F — {x;, x,}) for arbitrary two elements x;, x, of F~.

The Lemma holds. i

By a similar argument to Lemma 3.2, we can get the following Lemma.
Lemma 3.3. If |FL| = 2n — 4(n > 6), then for arbitrary vertex-pair (u,v) with u,v € V(L), there is a

faulty element x € F* such that (u, v) is a normal vertex-pair in L — (FX — {x}).
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Lemma 34. Let F C V(AQ,) U E(AQ,) with |F| < 2 and x, y, z, w be four distinct vertices in AQ,,(n >
4). Then two disjoint paths P,,, P, such that V(P,,) U V(P,,) = V(AQ, — F) will exist.

Proof. We prove the lemma by induction on n > 4. The induction basis for n = 4 holds by computer
program. Suppose that the lemma holds for n — 1 with n > 5, then we must show the lemma holds for
n.

Case 1. x,y,z,w € V(L).

By induction hypothesis, two disjoint paths P,,, P, with V(P,,) U V(P,,) = V(L - F Ly exist in
L — FL. Assume that [V(Py)l > |[V(P,,)|. Then w > [%]/2 > 7(n > 5). Since |F| £ 2, we can
choose an edge x;y; C E(P,,) such that x", y, x;x", y;y" ¢ F. By Lemma 3.1, a Hamiltonian path Py
will exist in R — FR. Let P}, = (x, Pyy(x, X1), X1, X, Px:fy;]q,y’l’,yl, Py(y1,y).y). Then P}, P, are two
desired paths in AQ, — F(see Figure 3(a)).

Case 2. x,y,z€ V(L),w € V(R).

Since |[E€| = 12 = 2" — 12 > 20(n > 5), an error-free edge z;z" can be chosen form E such
that z; € {x,y,z}, 2/ # wand z;,Z" ¢ F. By induction hypothesis, two disjoint paths P,,, P, with
V(P,) U V(P,) = V(L-FF existin L — F*. By Lemma 3.1, we can find a Hamiltonian path Py, in
R — FR. Let P, =(z, PZZI,ZI,Z}I’,P

s w). Then P,,, P, are two desired paths in AQ, — F(see Figure
3(b)).

L=AQ°%_, R=AQ! ,

.1
F’

(a)

Figure 3. Illustrations of Lemma 3.4.

Case 3. x,y e V(L), z,w € V(R).

By Lemma 3.1, we can find a Hamiltonian path P, in L— F* and a Hamiltonian path P, in R — F~.
Then P,,, P,, are two desired paths in AQ, — F(see Figure 4(a)).

Cased. x,z€ V(L), y,w € V(R).

Since |E€| — 12 = 2" — 12 > 20(n > 5), there are two error-free disjoint edges xlxﬁ’, zlz’]’ such that
x1,21 & {x,z}, X1, 2" ¢ {y,w} and x, x", z;, 2} ¢ F. By induction hypothesis, two disjoint paths P.,,, P,
with V(P,,,) U V(P,,) = V(L — F*) exist in L — F* and two disjoint paths Py, Py, with V(P ) U
V(Py,) = V(R = F®) exist in R — F*. Let Py = (X, Py, X1, X, Py Y), Py = (2, Pozyy 20,2 Pty W),
Then P,,, P,, are two desired paths in AQ, — F(see Figure 4(b)).

h
)Cly

L=AQ, R=AQ,_, L=AQ) R=AQ,_,
T
BET) 5wh

(a) (b)
Figure 4. Illustrations of Lemma 3.4.
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The lemma holds. O

Lemma 3.5. Let x,y,z,w,a,b be six distinct vertices in AQ,(n > 4). Then there exist three disjoint
paths P,,, P, and P, such that V(P,,) U V(P,,) U V(Py,) = V(AQ,).

Proof. We prove the lemma by induction on n > 4. The induction basis for n = 4 holds by computer
program. Suppose the lemma holds for n — 1 with n > 5, then we must show the lemma holds for n.

Case 1. x,y,z,w,a,b € V(L).

By induction hypothesis, three disjoint paths P, P, and P, with V(P,,)UV(P,,)UV(Py) = V(L)
will exist in L. Let x;y; € E(P,,). By Lemma 3.1, a Hamiltonian path Py can be found in R.
Let P}, = (x, Pyy(x, X1), X1, X, Px/f},;;,y’l’, Y1, Poy(y1,¥).y). Then P, , P, Py, are three desired paths in
AQ,(see Figure 5(a)).

Case 2. x,y,z,w,a € V(L), b € V(R).

Choose a vertex a; from V(L) — {x,y,z,w,a} such that there exists a vertex af € {a}l’,ai} with
a  # b By induction hypothesis, three disjoint paths P,,, P, and P, with
V(Py) U V(P,,) U V(Py,) = V(L) will exist in L. By Lemma 3.1, a Hamiltonian path P, can be
found in R. Let Py, = (a, Pu,,ai, af , Pa;]:b, b). Then Py, P, Py, are three desired paths in AQ,(see
Figure 5(b)).

Case 3. x,y,z,we V(L),a,b € V(R).

By Lemma 3.4, two disjoint paths Py, P, with V(P,,) UV(P,,) = V(L) existin L . By Lemma 3.1,
we can find a Hamiltonian path P, in R. Then P,,, P, P, are three desired paths in AQ,(see Figure

5(c)).

L=AQ% , R=AQ} L=AQ%_, R=AQ} L=AQ% , R=AQ!_,

n—1 n—1

) ("
o6 4 h a0 o8
zg:‘f—i“ f = |° |
w , 5} Tb
‘g" )I al ai T

-

Figure 5. Illustrations of Lemma 3.5.

Cased. x,y,z,ac V(L),w,b € V(R).

Since |[E€|—12 = 2"—12 > 20, there are two disjoint edges zlz}l’, ala}l’ such that z;,a; ¢ {x,y,z,a}and
Zl,al ¢ {w, b}. By induction hypothesis, three disjoint paths P,,, P, and P, with V(P,,) U V(P,,) U
V(Pu,) = V(L) will exist in L. And by Lemma 3.4, two disjoint paths PPy with V(Pzsz) U
V(Pyy) = V(R) will exist in R. Let P, = (z, PZZ,,zl,z’]’,Pzzlzw,w) and P, = (a,Paal,al,a}l’,Pa;:b,b).
Then P,,, P,,, Py, are three desired paths in AQ, (see Figure 6(a)).

Case 5. x,z,ac€ V(L),y,w,b € V(R).

Since |[E€| — 12 = 2" — 12 > 20, there are three disjoint edges x;x",z,z", a;a’ such that xi,z;,a; ¢
{x,z,a} and x!, 2!, a! ¢ {y, w, b}. By induction hypothesis, three disjoint paths Py, P, and P, with
V(Pyyx, )UV(P,,)UV(Ps,) = V(L) will exist in L and three disjoint paths Px?y, PZiIW,Pa;Ilb with V(Px‘;y) U

V(Pzzllw) U V(Pa;;b) = V(R) will exist in R. Let Py, = (x, Py, X1, x’l’, Px’;y’Y)’ P, =z Pz, z’f, Pz‘;w’ w)
and Py, = (a, Py, ai, a’f, Pa/;b» b). Then Py, P.,,, P, are three desired paths in AQ,(see Figure 6(b)).
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Case 6. x,y,a € V(L), z,w,b € V(R).

Since |E€| — 12 = 2" — 12 > 20, there is an edge ala’f such that a; ¢ {x,y,a} and a}f ¢ {z,w, b}. By
Lemma 3.4, two disjoint paths P,, and P,,, with V(P,,)UV(P,,,) = V(L) will exist in L and two disjoint
paths P,,, and Pa;]« » With V(P )U V(Pa/;h) = V(R) will existin R. Let P, = (a, Py, a1, a}l’, Pa?b, b). Then
P, P, Py, are three desired paths in AQ,(see Figure 6(c)).

The lemma holds. O
L=AQ) 4 R=AQ, , L=AQ) , R=AQ, , L=AQ)_, R=AQ, ,
N\ ( ) ("
x T Y
= () (B0 () (=
z wh z 5wh y? 9 w
Z1 Q2 21? tzl
2 & 2 ; a0 °b
h Q h h
aljJ C ?a] 1?) C a ay' aq
(a) (b) (c)

Figure 6. Illustrations of Lemma 3.5.

4. Main results

Theorem 4.1. Let F Cc V(AQ,) U E(AQ,) with |F| < 2n — 3(n > 4). Then for arbitrary two different
vertices u and v in AQ, — F, there exists an error-free Hamiltonian path P,, except (u,v) is a weak
vertex-pair in AQ, — F.

Proof. For |F| < 2n — 4, the theorem holds by Lemma 3.1. We only need to consider |F| = 2n — 3.

Now, we prove the theorem by induction on n > 4. The induction basis for n = 4,5 holds by
computer program (https://github.com/ZhangHeidi/Hypercubes/blob/master/ven02.c). Supposing that
the theorem holds for n — 1 with n > 6, we must show the theorem holds for n.

We may assume |F¥| < |[FX|(When |F¥| > |F*|, the same proofs apply). Then |F¥| < [#2] <n - 1.
Notice that [Ng(x)| = 2n — 3 for any vertex x € R, we have |Ng_pz(x)| > n — 2 > 4. Thus R — F® does
not contain weak vertex-pairs.

Case 1. |Ff| <2n-5.

Case 1.1. u,v € V(L - FY) or u,v € V(R — FF). Suppose that u,v € V(L — F%).

Case 1.1.1. (u,v) is a w-weak vertex-pair in L — FL, i.e., N;_pi(w) = {u, v}. Since |N.(w)| = 2n - 3,
we have |FL| = 2n — 5 and |FR| + |F€| = 2. Note that (u, v) is a normal vertex-pair in AQ,, — F, we can
choose a vertex w® from {w", w¢} such that we, wwe ¢ F.

Because |V(L) — FX — {u,w,v}| > 2! = (2n —=5) =3 > 22(n > 6) and |F¥| + |F€| = 2, there is a
vertex y € V(L) — FF — {u, w, v} such that y", yy" ¢ F and y" # wé. By Corollary 2.1, (u,y) is a normal
vertex-pair in L — F~. By induction hypothesis, a Hamiltonian path P,y exists in L — F*. Notice that
Np_p(w) = {u,v}, then Np, (w) = {u,v}. Since |FR| < 2 < 2n - 6, by Lemma 3.1, a Hamiltonian
path P, exists in R — F R An error-free Hamiltonian path P, = (u, w, w8, Py, Yy, P,y (y,v),v) can
therefore be found(see Figure 7(a)).

Case 1.1.2. (u,v) is a normal vertex-pair in L — F~.

Since |F*| < 2n — 5, by induction hypothesis, a Hamiltonian path P,, exists in L — F-. By L%J -

2n—-13) = L#J — (2n - 3) > 3, we can choose an edge ab € E(P,,) such that a", b", aa", bb" ¢ F.
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By induction hypothesis, a Hamiltonian path P exists in R — FX. An error-free Hamiltonian path
P! = (u, P,(u,a),a,a", Py, b", b, P, (b,v),v) can therefore be found(see Figure 7(b)).

Case 1.2. u € V(L - FF)and v € V(R — FR).

According to the definition of AQ,, |E€| = 2". Since |E€| - 2|F| = 2" — 2(2n — 3) > 46(n > 6), there
is an error-free edge ab € E€ suchthata,b ¢ {u,v}, a,b ¢ F and (u, a) is a normal vertex-pair in L—F L
By induction hypothesis, a Hamiltonian path P,, in L — F* and a Hamiltonian path Py, in R — F¥ exist.
An error-free Hamiltonian path P, = (u, P4, a, b, Py,, v) can therefore be found(see Figure 7(c)).

L=AQ)_, R=AQ,_, L=AQ)_, R=AQ,_, L=A4Q)_, R=AQ,_,
) ) 4

-
h
5y lu 14 ¥ah
S | | 1
N .
(a) (b)
Figure 7. Illustrations of Case 1.1 and Case 1.2 of Theorem 4.1.
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Case 2. |Ft| = 2n — 4. Then |FR| + |F€| = 1.

Case 2.1. u,v € V(L - FF).

By Lemma 3.3, we can choose an element f € F’ such that (u,v) is a normal vertex-pair in L —
(F = {f}). Let Ff = F- — {f}. Then |F}| = 2n — 5. By induction hypothesis, a Hamiltonian path P,
exists in L — FE.

Case 2.1.1. f € V(P,,) U E(P,).

If f € EL)Nn FL say f = ab; if f € V(L) n FL, say Np (f) = {a,b}; let
P., = (u, P,,(u,a),a, f,b, P, (b,v),v). Suppose that [{a", b", aa", bb"} N F| < |{a®, b°, aa‘, bb} N F)|.

Case 2.1.1.1. [{d", b", ad",bb"} N F| = 0.

Since |F®| < 1 < 2n — 6, by Lemma 3.1, a Hamiltonian path P exists in R — FX. An error-free
Hamiltonian path P! = (u, P,,(u,a),a,d", Py, b", b, P,,(b,v),v) can therefore be found(see Figure
8(a)).

Case 2.1.1.2. [{d", b", aa",bb"} N F| = 1. Then |{a, b€, aa®, bb’} N F| = 1.

Notice that |FR| + |[F¢| = 1, we have {d",b",ad",bb"} N F = {a b, aa,bb‘} N F, i.e.,
{a",b", ad", bb"} = {a, b¢, aa’, bb¢}. Then by Proposition 2.1, a = b, a" = b and a® = b". Suppose
that a" € F, then " ¢ F. Let ajb; € E(P,) with a;,b; ¢ {a,b} and F® = F® + {b"}. Then
|[F¥| < 2 < 2n - 6. By Lemma 3.1, a Hamiltonian path Py exists in R — F¥. An error-free
Hamiltonian path P}, = (u, P, (u,a),a,b",b, P, (b,a),a,d", Py, b, by, Pyy(by,v),v) can therefore
be found(see Figure 8(b)).

Case 2.1.2. f ¢ V(P,) U E(P,).

Then an edge a»b, can be chosen from P,, with a4, b%, ayal, b,b% ¢ F. Since |[F¥| < 1 < 2n - 6.
By Lemma 3.1, a Hamiltonian path P exists in R — F k. An error-free Hamiltonian path P! =
(u, P, @), a, al, Py, b4, by, Pyy(ba, v), v) can therefore be found(see Figure 8(c)).
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Figure 8. Illustrations of Case 2.1 of Theorem 4.1.

Case2.2. uc V(L-F')andv € V(R - F®).

Case 2.2.1. |[F%| > 1. There is a vertex x € FX. Let F£ = FL — {x}, then |[FL| = |[FY - 1 =2n - 5.

Case 2.2.1.1. (4, x) is a normal vertex-pair in L — FT.

By induction hypothesis, a Hamiltonian path P,, exists in L — F lL Let Np, (x) = x;. Since [FR| +
|F€| = 1, there is a vertex x§ € {x", x¢} such that x, x;x% ¢ F.

(1) x{ = v. Choose an edge ab € E(P,,) such that a",b",ad",bb" ¢ F and a,b ¢ {x,x,}. Let
F® = FR 4+ {v}. Then |[F¥| < 2 < 2n — 6. By Lemma 3.1, a Hamiltonian path P exists in R — FX. An
error-free Hamiltonian P, = (u, P,.(u, @), a, a", Py, b", b, P,(b, x,), X1, v) can therefore be found(see
Figure 9(a)).

(2) x{ # v. Since |F¥| < 1 < 2n — 6. By Lemma 3.1, a Hamiltonian path P, exists in R — F*. An
error-free Hamiltonian path P,, = (u, P, (u, x1), X1, x‘f , Px?v, v) can therefore be found(see Figure 9(b)).

L:AQ?H1 R:AQ}F1 L= AQ?H1 R:AQ}F1
) (
a v al
b bl
x
X1 oV
~J .

(a)
Figure 9. Illustrations of Case 2.2.1.1 of Theorem 4.1.

Case 2.2.1.2. (u, x) is a w-weak vertex-pair in L — FIL. Then NL_FIL(W) ={u,x},i.e., N_pr(w) = u.

By Corollary 2.1., (u,w) is a normal vertex-pair in L — FL. Since |Ff| = 2n — 5, by induction
hypothesis, a Hamiltonian path P, exists in L — F lL .By N, _ FL (w) = {u, x}, we have Np  (w) = {x}. Let
Np,,(x) = {x;} with x; # w.

(D) W', w} N F| = 0.

(1.1) v € {w", w°}, assume that v = w". If x; = w-', then by Proposition 2.1, x" = w*, x¢ = w". We
can choose an edge ab € E(P,,,) such that a”, b", aa", bb" ¢ F and a, b ¢ {w, x, x,}, then v, w* ¢ {a", b"}.
Let F® = F® + {v,w‘}). Then |F¥| < 3 < 2n — 6. By Lemma 3.1, a Hamiltonian path P, exists in
R— FR. An error-free Hamiltonian path P,, = (u, P, (u, a), a,d", Py, b", b, P, (b, x1), X1, w*, w,v) can
therefore be found(see Figure 10(a)). If x; # w-!, then by Proposition 2.1, x’l‘ W] # w’. There
exists an error-free vertex x° € {x¢, x"} such that x¥, x;x¥ ¢ F. We have x§ ¢ {w’, v}. Let F¥ = FR + {y}.
Then |F| < 2 < 2n — 6. By Lemma 3.1, a Hamiltonian path Py exists in R — FX. An error-free
Hamiltonian path P,, = (u, P,,,(u, x1), X1, xf , Pﬁwc, w¢, w, v) can therefore be found(see Figure 10(b)).
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Figure 10. Illustrations of Case 2.2.1.2 of Theorem 4.1.

(1.2) v ¢ {wh, we).

For x; = w'. By Proposition 2.1, x! = w*, x{ = w", i.e., v ¢ {x!, x{}. Let Ff = F® + {w‘}. Then
|FX| <2 <2n—6. By Lemma 3.1, a Hamiltonian path P, exists in R — F}. An error-free Hamiltonian
path P,, = (u, P,,,(u, x1), x;, w’, w, wh, P, v) connecting vertices u and v can therefore be found (see
Figure 11(a)).

For x; # w-'. By Proposition 2.1, x! # w*,x{ # w". There exists a correct vertex x{ € {x{, x'}
such that x5, x;x{ ¢ F. If x¥¥ = v, we can choose an edge ab € E(P,,) with a,b & {w,x,x},
a",ad",b",bb" ¢ F and a # w',b # w'. Let Ff = F® + {y}. Then |FF| < 2. By Lemma 3.4, two
disjoint paths P, Pyepn With V(Pyi) U V(Pyep) = V(R — FE) exist in R — FX. An error-free
Hamiltonian path P,, = (u, P,,,(u,a),a,a", Py, W', w,we, Py, b, b, P, (b, x1), x1,v) can therefore
be found(see Figure 11(b)). If x‘f # v. Since |F®| < 1, by Lemma 3.4, two disjoint paths Pxfwh, P,
with V(Pg) U V(Py,) = V(R - F Ry exist in R — FR.  An error-free Hamiltonian path
P, = (u, P, (u,x), xq, x‘f , Pxél’wh, w", w, w¢, P, ) can therefore be found(see Figure 11(c)).

L=AQ°%_, R=AQ._, L=AQ°_, R=AQ._ , L=AQ% , R=AQ._,
ﬁ\ e u\ f£
v a ah
A | w <L
w \ w b xg. -&(hﬂ
R ‘%CT T Tiol | |
J) g ") N

(a) (b)
Figure 11. Illustrations of Case 2.2.1.2 of Theorem 4.1.

(2) (w", w} N F| = 1. Assume that w € F. Let Np_ (1) = {u}.

uw

For x; = w' or uy = w'. Assume that x; = w*', then by Proposition 2.1, x| = w*,x{ = w"

i.e., x! € F. Since [F€| + |F¥| = 1, there exists a correct vertex u§ € {u$, u!} such that u$,uu ¢ F and
uf #v. Let FR = F® + {w"}). Then |FF| <2 < 2n - 6. By Lemma 3.1, a Hamiltonian path P, exists in
R — FR. An error-free Hamiltonian path P,, = (u, w, W", x1, Py(x1, u1), uy, uf, Pz, v) can therefore be
found(see Figure 12(a)).

For x; # w' and u; # w-'. By Proposition 2.1, x1 # w*, x # wh, ull # we, u$ # wh. If v € {x", u"},
assume that v = x". Let F® = FR + {v}. Then |FF| < 2 < 2n— 6. By Lemma 3.1, a Hamiltonian path
Pwhulll exists in R — F f. An error-free Hamiltonian path P, = (u, w, wh, Pwhu/;, u’f, uy, Py, (uy, x1), x1,v)
can therefore be found(see Figure 12(b)). If v ¢ {x}l’, u}f}, since |F®| < 1, by Lemma 3.4, two disjoint
paths Py, Py, With V(Pyua) U V(P,) = V(R — F¥) exist in R — F*. An error-free Hamiltonian path
P, = u,ww, Py X 1, Py (X1, u1), uy, P, v) can therefore be found(see Figure 12(c)).

wh
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Figure 12. Illustrations of Case 2.2.1.2 of Theorem 4.1.

Case 2.2.2. |FE| = 0. A faulty edge f can be chosen from F” such that f ¢ E (V") U E(1°).
Otherwise, FX' c E;(v") U E;(v°). Consider the following two cases.

Case 2.2.2.1. There is a faulty edge f € F* such that f ¢ E(V") U E(°). Let Ff = F* — f. Then
|FL| = 2n — 5. By Lemma 3.1, a Hamiltonian cycle C containing vertex u exists in L — F.

(1) f ¢ E(C). Let a € Nc(u) with a,aa”" ¢ F and C = (u, P, a, u).

For a" # v, since |F¥| < 1, by Lemma 3.1, a Hamiltonian path P, exists in R — F®. An error-free
Hamiltonian path P,, = (4, P, a,a", P, v) can therefore be found(see Figure 13(a)).

For a" = v, let Ff = F® + {v}. Then |FF| <2 < 2n— 6. Choose an edge a;b; € E(C) such that
al, b, aa".b\b" ¢ F and a;,b; ¢ {u,a}. By Lemma 3.1, a Hamiltonian path Py exists in R — FR.
An error-free Hamiltonian path P,, = (u, P,,(u,a,), ai, a}l’, Pa7 B> b" by, P.(b1,a),a,v) can therefore be
found(see Figure 13(b)).

(2) f € E(C). Let f = ab. Consider the following two cases.

(2.1) f € Ec(u). Let f = ub and C = (u, P, b, u). Since |FE| + |F€| = 1, there is a correct vertex
b% € {b", b°} such that bb® ¢ F. Since f ¢ E(") U E(°), b% # v. Then by |FR| < 1 and Lemma 3.1, a
Hamiltonian path Py, exists in R — FX. An error-free Hamiltonian path P, = (u, Py, b, b%, Pps,, v) can
therefore be found(see Figure 13(c)).

L= AQ%—l R= AQ11'L—1 L= AQ%—l R= AQ11'L—1 L= AQ%—l R= Aerz—l
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Figure 13. Illustrations of Case 2.2.2.1 of Theorem 4.1.
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22) f ¢ Ec(u). Let f = ab and C = (u,P,,a,b, Py, ,u;,u). Suppose that
|{u’]1, U u}]l, a',aa", b",bb"} N F| < {u$, uiuf, a‘, aa, b°,bb} N F|.

2.2.1) |{uﬁ’, uluﬁ’, a',aa", b",bb"y N F| = 0.

For u’f # v, by Lemma 3.4, two disjoint paths Puzllv, P with V(Pu/fv) U V(P = V(R — FR) exist
in R — FR. An error-free Hamiltonian path P,, = (u, Py, a,a", Py, b", b,
Py, uy, u}l‘, Pu?v, v) can therefore be found(see Figure 14(a)).

For u! = v, let F& = FR + {v}. Then |F¥| < 2 < 2n - 6. By Lemma 3.1, a Hamiltonian path
Py exists in R — F f. An error-free Hamiltonian path P,, = (u, P, a, a, Py, b, b, Py, ,u;1,v) can
therefore be found(see Figure 14(b)).
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Figure 14. Illustrations of Case 2.2.2.1 of Theorem 4.1.

(2.2.2) fu,uyu, d", aa", b",bb"y N F| = 1. Then |{u$, uju$, a, aa’, b°, bb°}y N F| = 1. Notice that

|FR| + |F€| = 1, we have {ufl’, ulu;l’, a',aad",b",bb"y N F = {uf, uuf,a‘,aa’, b°,
bb} N F. Then by Proposition 2.1, a = b ora = u{"" or b = u{"".
For a = b, by Proposition 2.1, a" = b° and a° = b". Suppose that a" € F. Then b" ¢ F and
h

|{u’]1, ulu’f, ul,uui} N F| = 0. It follows that a vertex u‘f can be chosen from {u{, u{} such that u‘f * V.
Let F{ = F® + {b"}. Then |F{| < 2 < 2n— 6. By Lemma 3.1, a Hamiltonian path P, exists in R — F7.
An error-free Hamiltonian path P,, = (u, P,,,a,b", b, Py, uy, uf , Pufv» v) can therefore be found(see
Figure 15(a)).

For a = u{"", by Proposition 2.1, " = u$ and a° = u". Suppose that a" € F. Then u! ¢ F and
[{b", bb", bbb} N F| = 0. Let FR = FR + {u"}. Then |FF| < 2 < 2n— 6. Notice that f = ab ¢
E(W") U EQL), thenv ¢ {b", b°}. By Lemma 3.1, a Hamiltonian path P, exists in R — F f . An error-free
Hamiltonian path Py, = (u, Py, a, u, uy, Py p, b, b", Py, v) can therefore be found(see Figure 15(b)).

For b = u{"', by Proposition 2.1, b" = u$ and b° = u!. Assume that u! € F. Then b" ¢ F
and |{a", aa",a‘,aa’} N F| = 0. Let up = Nc(u) with uy # uy. Then ul, upul, u$, uu ¢ F. Notice
that f = ab ¢ E(V") U E(°), then v ¢ {a",a}. If u, = a®, since v ¢ {d",a‘}, then for any vertex
uj € {ub,u5) with u§ # v. If u, # a“', then there is a vertex uj € {u},uS} such that uj # v. Since
|FR| < 1, by Lemma 3.4, two disjoint paths P, P, with V(Pgyp) U V(Pg,) = V(R - F R) exist in
R — F®. An error-free Hamiltonian path P,, = (u, Py, b, b", Py, d", a, Pu(a, up), up, uj, P, v) can
therefore be found(see Figure 15(c)). If u, = a, then we use a instead of ug.

L=AQ°_, R=AQ. |, L=AQ"_, R=AQ! , L=4Q"_,
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b ?bh b ph b
S Y,

(a) (b) (c)
Figure 15. Illustrations of Case 2.2.2.1 of Theorem 4.1.

Case 2.2.2.2. FL c N,(V") U E (+v°). Suppose that |[FE N E; (V)| > |FE N E(°). Let ey, e, €
FENE; (V") and FlL = Ff —{e;, e;} + {V"}. Then |F1L| = 2n->5. Since [IN,(V")| = 2n—3 and |F| = 2n -4,
there is a correct vertex y such that y € N;_p.(V").

(1) u = V". Choose a vertex x from V(L) — FX — {u,v¢,y} with x*, xx" ¢ F and x" # v. Since
IFENE (M) = |[FE 0 EL()] and FE = FE — {ey, ex} + {V"}, (x,) is a normal vertex-pair in L — FF,
By induction hypothesis, a Hamiltonian path P,, exists in L — FF. Since |F¥| < 1, by Lemma 3.1, a
Hamiltonian path P, exists in R — FR. An error-free Hamiltonian path P,, = (u,y, Py, x, X P, v)
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can therefore be found(see Figure 16(a)).

2) u # v

(2.1) y = u. Then u € N;_p(v"). Notice that F£' ¢ N;(v") U E.(v) and |FR| + |F€| = 1. Since
(u,v) is a normal vertex pair in AQ, — F, we have that V!(v")°, v*)° ¢ F. Choose a vertex x from
V(L) — F* = (", y} with x°, xx° ¢ F and x° # v. Since |F* N E (V)| > |[FX 0 EL(v°)| and FE =
F —{ey, ex} + {V"}, (u, x) is a normal vertex-pair in L — F£. By induction hypothesis, a Hamiltonian
path P,, exists in L — F{.

(2.1.1) Vv ¢ F. Let FR = F® + {v}. Then |FF| < 2 < 2n - 6. By Lemma 3.1, a Hamiltonian
path P,y exists in R — F f. An error-free Hamiltonian path P, = (u, P, X, X%, P ey, V"V, v) can
therefore be found(see Figure 16(b)).
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Figure 16. Illustrations of Case 2.2.2.2 of Theorem 4.1.

(2.1.2) Vv'v € F. Let u; € Np, (u). Since [FR| + |[F€| = 1, u§, uju ¢ F.

If u$ = v,let Ff = FR+{v}. Then |F¥| < 2 < 2n—6. By Lemma 3.1, a Hamiltonian path Py, exists
in R — FR. An error-free Hamiltonian path P,, = (u, V", ("")°, Py e, X, X, Pyux(X, u1), 1, v) connecting
vertices u and v can therefore be found(see Figure 17(a)).

If u$ # v, by [Fff < 1 and Lemma 3.4, two disjoint paths Py, Py, with
V(Pyige) U V(Pge,) = V(R — FF) exist in R — F® An error-free Hamiltonian path
P,, = (u, V", "), Py es X, X, Pug(x, uy), uy, S, Pycy, v) can therefore be found(see Figure 17(b)).
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Figure 17. Illustrations of Case 2.2.2.2 of Theorem 4.1.

(22) y # u. Since |[F* N E,(V")| > [FE N E ()| and FF = FL — {ey, e2} + {V"}, (u,y) is a normal
vertex-pair in L — FI. By induction hypothesis, a Hamiltonian path P, exists in L — F}.

If vy € F, then ("),v"(V")" ¢ F. Since |F¥| < 1, by Lemma 3.1, a Hamiltonian path P, exists
in R — FR. An error-free Hamiltonian path P, = (u, Py, y, Vi, (vh)c,

Py, v) can therefore be found(see Figure 18(a)).

If Vv ¢ F, then choose an edge ab € E(P,) with a",b" aa",bb" ¢ F and v ¢ {a",b"}. Let
F{ = FR 4+ {v}. Then |FF| <2 < 2n - 6. By Lemma 3.1, a Hamiltonian path P, exists in R — FX.
An error-free Hamiltonian path P, = (u, P,,(u,a), a,a", Py, b", b, P,y(b,),y,V", v) can therefore be
found(see Figure 18(b)).
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L=AQ,_, R=AQ,_, L=AQ)_, R=AQ,_,

ul l v a u £ah
’Uh ”Uh ¢ b Uh ) bh‘
y v y ° |
(a) (b)
Figure 18. Illustrations of Case 2.2.2.2 of Theorem 4.1.

Case 2.3. u,v € V(R — FP).

Notice that ¥" = (u)*' and Vv = (). By Proposition 2.2, |N (") N Ny (u¢)] = 2 and
INLO") N N () 2. Let Ny(u") N Ny(u) = {m,mp}, NoO") 0 N.(v*) = {m3,my}, and
Fl = {my, my, msy, my, u"u,vv¢}. Since |F*| = 2n— 4 > 8(n > 6), |F* — F¥| > 2. Then we can choose a
faulty element f with f € F* — Ff. Then |[F* — {f}| = 2n — 5. By Lemma 3.1, a Hamiltonian cycle C
exists in L — (Ff — {f}). If C contains f, let C = (a,Pu,b, f,a). If C does not contain f, let

= (a, Py, b,a) with ab ¢ {u/"u,v"v¢}). Since |FX| + |F€| = 1, there is a vertex a® € {a",a‘} and a
vertex b¢ € {b", b} with a8, b8, aa®,bb® ¢ F. If |{a®, b} N {u,v}| > 1, then by the choice of the above
error element f, a # b, i.e., a",a,b", b¢ are all distinct. Since |[F| + |F€| = 1, we can choose an
error-free set {a®, b8, aa®, bb%} such that |{a®, b%} N {u, v}| = 1. Therefore, we only need to consider the
following two cases.

Case 2.3.1. [{a8, b5} N {u,v}| = 0.

Case 2.3.1.1. a8 # bS.

Since |FR| < 1, by Lemma 3.4, two disjoint paths P, Py, With V(P,u) U V(Pys,) = V(R — FR) exist
in R — FR. An error-free Hamiltonian path P,, = (u, Py, a®,a, P, b, b%,

Py, v) can therefore be found(see Figure 19(a)).
Case 2.3.1.2. a® = bS.
Let FR = F® + {a®). Then |FF| < 2. Choose an edge aib; € E(Pg) with a;,b; ¢ {a,b},

aj, by ¢ {u,v} and @}, b}, aial,bib} ¢ F . By Lemma 3.4, two disjoint paths PPy, with
V(P U V(th) = V(R - FR) exist in R — F¥. An error-free Hamﬂtoman path
P, = (u, PW ,al,al, Py(ay,b),b,a8,a, Py(a,by), bl,bl,thv, v) can therefore be found(see Figure
19(b)).
L=AQ"_, R=AQ. _, L=A4Q°_, R=AQ._,
£ (& A\
a ad ali oh
==
I e

(a) (b)
Figure 19. Illustrations of Case 2.3.1 of Theorem 4.1.

Case 2.3.2. |{a8, b8} N {u,v}| = 1.

Case 2.3.2.1. u € {a%, b%}, suppose that u = af. Let FR = F® + {u}. Then |F¥| <2 < 2n-6.
By Lemma 3.1, a Hamiltonian path P, exists in R — Ff. An error-free Hamiltonian path P,, =
(u,a, Py, b, b%, Py, v) can therefore be found(see Figure 20(a)).
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Case 2.3.2.2. v € {a® b}, suppose that v = a. Let FR = F® + {v}. Then |FF| < 2 < 2n-6.
By Lemma 3.1, a Hamiltonian path P, exists in R — F f. An error-free Hamiltonian path P,, =
(u, Py, b8, b, Py, a,v) can therefore be found(see Figure 20(b)).

L=AQ° R = AQ} L=AQ° R = AQ!

n—1 n—1 n—1 n—1

R (

b b9 b b9
4#) = | n b
(a) (b)

Figure 20. Illustrations of Case 2.3.2 of Theorem 4.1.

Case 3. |Ft| = 2n — 3. Then |F¥| = |F¢| = 0.

Case 3.1. u,v € V(L — F¥). By Lemma 3.2, there exist two elements f;, f, € FX with (u,v) is a
normal vertex-pair in L — (F* — {fi, f2}). Let F£ = FX - {fi, f2}. Then |F£| = 2n — 5. By induction
hypothesis, a Hamiltonian path P,, exists in L — F¥ which may or may not include f; or f on it.
Removing fi; and f,, path P,, is divided into three, two, or one segments relying on the situations in
which f; and f, are on P,, or not. For the last two situations, we may arbitrarily delete one or two
more edges from P,, to make it into three subpaths. Therefore, we may write the path P,, with these
subpaths as (i, Py, U1, f15 X Pays ¥, fos Vis Popys V).

Case 3.1.1. The length of P,, [,, > 1. By Lemma 3.4, two disjoint paths Py, Py with
V(Pu?xh) U V(Pyhvllz) = V(R) exist in R. An error-free Hamiltonian path
Pl = (u Puul,ul,u’f,PuW,xh,x, Py, yh,Pyhv;f,v’f,vl,Pvlv,v) can therefore be found(see Figure

21(a)).

Case 3.1.2. The length of P,, I,, = 0. Then x = y.

Case 3.1.2.1. x # u{"" and x # v{""'. By Proposition 2.1, x" # uf, x* # u” and x" # V¢, x* # V..
By Lemma 3.4, two disjoint paths Pu/;xh, chvllz with V(Pu»llxh) U V(thfv’;) = V(R) exist in R. An error-free
Hamiltonian path P}, = (u, Py, u;,ul, P, X" x, x6, P
Figure 21(b)).

Case 3.1.2.2. x = u{"" or x = v{""'. Assume that x = u{""'. By Proposition 2.1, x" = u§, x* = u". Let
F® = FR 4+ {u"}. Then |F¥| = 1 < 2n— 6. By Lemma 3.1, a Hamiltonian path P » exists in R — FR. An
error-free Hamiltonian path P,‘N = (u, Py, u1, u}l’, x,x" P 1 v}l’, v1, Py,y, V) can therefore be found(see
Figure 21(c)).

v’f, vi, Py, v) can therefore be found(see

cylt
xvl’

xhy

xhy

L=AQ°%_, R=AQ._, L=AQ°_, R=AQ._ , L=AQ% , R=AQ._,
A @{;Z . o @;’g L. “?
4 S " — I i "
" QL " \? "
(a) (b) ()
Figure 21. Illustrations of Case 3.1 of Theorem 4.1.

=

Case3.2. uc V(L-Fb),ve V(R).
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Case 3.2.1. |F£| > 1. There exists at least one faulty vertex x € F~.

Let F£ = FL — {x}. Then |FE| = 2n — 4. By Lemma 3.3, there is an element f; € FF with (u,x) is a
normal vertex-pair in L — (F} —{fi}). Let F¥ = F¥ —{f;}. Then |F}| = 2n—5. By induction hypothesis,
a Hamiltonian path P, exists in L — F which may or may not include f; on it. Similar to Case 3.1,
we may write the path P, as (u, Py,,, u, fl', Vs Pyyys X1, X).

Case 3.2.1.1. The length of Py, [, > 1.

(1) y = uy". By Proposition 2.1, y* = u¢ and y° = u”.

(1.1) v € {y", u"}. We may assume that u’ = v. We have v ¢ {y",x"}. Let FR = F® + {y"}. Then
|FR|=1<2n-6. By Lemma 3.1, a Hamiltonian path P, exists in R — F R An error—free Hamiltonian
path P,, = (u, P,y,, u, Y, y, Py, x1, xl, s V) can therefore be found(see Figure 22(a)).

(1.2)v e (', ul).
(1.2.1) x}l’ # v. By Lemma 3.4, two disjoint paths P”hyh, th with V(Pu?yh) U V(Px;fv) = V(R) exist in
R. An error-free Hamiltonian path P, = (u, P, , Ui, ”1 , P, Iy

Yy, Py, x1, xl ,P Iy v) can therefore be found(see Figure 22(b)).

(1.2.2) " = v. Let F® = F® + {v}. Then |[F¥| = 1 < 2n — 6. By Lemma 3.1, a Hamiltonian path
Puillyh existsin R — F f. An error-free Hamiltonian path P,, = (u, Py,,, U, ”1’ P, Iy Yy, Py, x1,v) can
therefore be found(see Figure 22(c)).

L=AQ°% , R=AQ! |, L=AQ°%_, R=AQl , L=AQ% , R=AQ!_,
R s ™\ s ™\
w1 u 6’[) X u1 u6 6’UUh 411,1 ué I uiL
e————(O h
Y T Z Yy T L}IL Y zzl L/
L1 x 1 T T
J \L J \L J
(a) (b) (c)

Figure 22. Illustrations of Case 3.2.1.1 of Theorem 4.1.

(2) y # u{"". By Proposition 2.1, y" # uS and y° # u”. There exists {u$, y*} € {{/, "}, {u,y}} such
that v ¢ {uf,yg}.

For x}l’ # v, the proof is similar to (1.2.1) of Case 3.2.1.1.

For x" = v, the proof is similar to (1.2.2) of Case 3.2.1.1.

Case 3.2.1.2. The length of Py, [,,, = 0. Then x; = y.

(1) y = uy"". By Proposition 2.1, y* = u¢ and y° = u”.

(I.h)ve ' u } We may assume that v = y". Choose an edge ab € P, with a,b ¢ {u,,y, x}. Then
v ¢ {a", b"}. Let FR F® + {v,u"}. Then |F¥| =2 < 2n— 6. By Lemma 3.1, a Hamiltonian path P
exists in R - Fi. R An error-free Hamiltonian path

P, =,P,(ua),a, a", Py, b, b P, (b, uy), uy, ul, v, V) can therefore be found(see Figure 23(a)).

(1.2)v ¢ {y", ul}. Let FR = F® + {u"}. Then |F¥| =1 < 2n - 6. By Lemma 3 1, a Hamiltonian path
Py, exists in R — F R An error—free Hamlltonlan path P,, = (u, Py, ,u;, ul, v, ", Py, v) can therefore
be found(see Flgure 23(b)).
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L=AQ°%_, R=AQ!_, L=AQ°%_, R=AQ!_,
T ( ﬁ
a u !(lh u !U
13 T [bh z h
) Yy
Y OV uy o, I
U1 U | 1

Y \
(a) (b)

Figure 23. Illustrations of Case 3.2.1.2 of Theorem 4.1.

(2) y # u"'. By Proposition 2.1, y* # uj and y© # u}l’ There is a vertex uf € {u}l’,uﬁ} such that

ui #v. 1

(2.1) v € {y",y°}. We may assume that v = y". Let F¥ = FR + {v}. Then |F¥| = 1 < 2n - 6. By
Lemma 3.1, a Hamiltonian path P, exists in R — F. Let Py = (U, Py uy, 165, Py, Y5, 3,v). An
error-free Hamiltonian path P, can therefore be found(see Figure 24(a)).

(2.2) v ¢ (", y°}. By Lemma 3.4, two disjoint paths Py, Py with V(P,,fyc) U V(Py,) = V(R) exist
in R. An error-free Hamiltonian path P,, = (u, P, u;, uf , Pufyc,
¥, v, ", Py, v) can therefore be found(see Figure 24(b)).

L=AQ) R=AQ,_, L=AQ)_, R=AQ,_,
2\ 4
wd " ul gv
v 28y z0 ‘Ls_yh
w1 tu? 51 yf]
") \_ L

(a) (b)
Figure 24. Illustrations of Case 3.2.1.2 of Theorem 4.1.

Case 3.2.2. |[F| = 0.

Case 3.2.2.1. For any vertex y € V(L), |E;.(y) N Ft| < 2.

Since |Ff| = 2n — 3 > 9(n > 6), we can choose two edges fi, f» € FL with fi, f» ¢ E, (V") U
E () and fi, f> do not share the same vertex. Let FI' = F* —{f;, fo}. Then |Ff| = 2n - 5. We
may assume that v # u. By induction hypothesis, there exists a Hamiltonian path P, in L — F-
which may or may not include f; or f, on it. Removing f; and f,, path P, is divided into three,
two, or one segments relying on the situations in which f; and f, are on P, or not. For the last
two situations, we may delete one or two more edges which are not incident to vertices V", ¢ from
P, to make it into three subpaths. Therefore, we may write the path P, with these subpaths as
(ty Py Urs [+ X Prys ¥y f5 V1, Py, V). Let FR = FR 4+ {v}. Then |F¥| = 1. By Lemma 3.4, two
disjoint paths P,y and Py with V(Pw) U V(Pyy) = V(R = F K) exist in R — F®. An error-free
Hamiltonian path P,, = (u, Puul,ul,u}l’,Puzth,xh,x, Py, y, yh,Pyhvzlz,v’f,vl,th, V", v) can therefore be
found(see Figure 25(a)).

Case 3.2.2.2. A vertex y exists in L with |E;(y) N F¥| > 3.

Let ey, ex,e3 € Ef(y) N FF and FE = F- — {ey, e5, €3} + y. Then |FE| = 2n - 5.

(1) y = u. There is a vertex u® € {u", u} with u® # v. Let N, (u®) = {u, u,} and z € V(L)—{u, u;, V", v¢}
with (uy, z) is a normal vertex-pair in L— F~. Then z" # v. By induction hypothesis, a Hamiltonian path
P, existsin L — Ff. Let F{ = F® + {uf}. Then |F¥| = 1 < 2n— 6. By Lemma 3.1, a Hamiltonian path
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P, existsin R — F f. An error-free Hamiltonian path P,, = (u, u®,u;, P,,;, 2, 7", P_i,,v) can therefore
be found(see Figure 25(b)).

L:AQ%—1 R:AQ}L—l
2) (
1 z gu?
T ?mh
Y 5y2
U1 v
h ov |1
Te—tor 1L

(a) (b)
Figure 25. Illustrations of Case 3.2.2.1 and Case 3.2.2.2 of Theorem 4.1.

2)y # u.

(2.1) y € {v",v°}. We may assume that y = 1¢. Let z € V(L) — {u,v", v} with (u,z) is a normal
vertex-pair in L — FL. Then " # v. By induction hypothesis, a Hamiltonian path P, exists in L — FF.
Let F{ = F®+{v}. Then |F{| = 1 <2n—6. By Lemma 3.1, a Hamiltonian path P_, .y exists in R — FY.
An error-free Hamiltonian path P, = (u, P,.,z,7", P ey (v)", v¢, v) can therefore be found(see Figure
26(a)).

(22)y ¢ (V') Letz € V(L) — {u,y,v",v*} with (u,2) is a normal vertex-pair in L — F- and
z # y'. By Proposition 2.1, " # y¢ and z° # y". By induction hypothesis, a Hamiltonian path P,,
existsin L—F IL By Lemma 3.4, two disjoint paths P and Py, with V(P ) UV(Pye,) = V(R) existin
R. An error-free Hamiltonian path P,, = (u, P,., 7, 7", Py, YLy, 96, Pyc,,v) can therefore be found(see
Figure 26(b)).

L=AQ°%_, R=AQ!_, L=AQ°%_, R=AQ!_,
N (
’ll,s
-0V h
Ve UC)
I -
J (&

(a) (b)
Figure 26. Illustrations of Case 3.2.2.2 of Theorem 4.1.

Case 3.3. u,v € V(R).

Case 3.3.1. |FL| > 2. There are at least two vertices x;,x, € F'. Let FI = F — {x;,x,}. Then
|FL| = 2n - 5.

Case 3.3.1.1. (x1,x) is a normal vertex-pair in L — F. By induction hypothesis, a Hamiltonian
path P,,,, exists in L — F}. Let Np, . (x1) = xi1 and Np,  (x2) = X2

(1) There is a vertex x§, € {x!,x¢,} and a vertex x5, € {x?, x5} such that x¥,x5, ¢ {u,v}. By
Lemma 3.4, two disjoint paths P, Ps, with VP, )UV(Ps,) = V(R) exist in R. An error-free
Hamiltonian path P,, = (u, P, , X5, X,
P o (X11, X21), X21, x‘gl, Px§ﬂ” v) can therefore be found(see Figure 27(a)).

(2) For any vertex x5, € {x",x{} and vertex x5, € {x!, x5}, {x§,,x5,} = {u,v}. We assume that
x5, = wuand xj = v. Letab € E(Py,y,(x11,%21)) With a,b ¢ {x1;, X1} and F¥ = F® + {u,v}. Then
|FR| = 2 < 2n—-6. By Lemma 3.1, a Hamiltonian path P exists in R— F. An error-free Hamiltonian
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path P, = (u, x11, Py,x,(X11, @), a, d", Py, b", b, P, (b, X21), X21,v) can therefore be found(see Figure
27(b)).

(3) {x", x5} = {u,v} and u,v ¢ {x2, x5} or {x},,x5,} = {u,v} and u,v ¢ {x",x¢,}. Assume that
{x", x5} = {u,v} and u,v ¢ {x2,x5,}. Let FR = F® + {u}. Then |[FF| =1 < 2n—6. By Lemma 3.1, a

1
Hamiltonian  path Py, exists in R - FX An error-free Hamiltonian path

P, = (U, x11, Py x, (X115 X21), X21, xgl, nglv, v) can therefore be found(see Figure 27(c)).

L=AQ° R = AQ! L=AQ° R=AQl_, L=4Q°% , R=AQ._,

n—1 n—1 n—1

) ( ) ( )\ (
x11 5m‘1’1 x“i ou 11 ou
% x1 | i
x1 ?u a ah x1 lv_
z2 5vg Ib - bk 20 N
otk ol T L e

J - J - J -

(a) (b) ()
Figure 27. Illustrations of Case 3.3.1.1 of Theorem 4.1.

Case 3.3.1.2. (x;, x,) is a w-weak vertex-pair in L — FE, i.e., FL ¢ Ny(w) U E;(w), IN._pr(W)| = 0
and NL_FIL(W) = {x}, x2}. Since (u,v) is a normal vertex-pair in AQ,, — F, [{w", w°} N {u,v}| < 1. By
Corollary 2.1, (w, x,) is a normal vertex-pair in L — FL. By induction hypothesis, a Hamiltonian path
P,., exists in L — FL. Since Ny pt(W) = {x1, X2}, we have Np, (W) = x1.

(1) [tw", w0 {u,v}| = 1. Suppose that u € {w", we}, say u = w". Let Np,_(x;) —=w = x;; and
NPW2 (x2) = x21.

(1.1) xy1 = w1 or xp; = w-'. Suppose that x;; = w-'. By Proposition 2.1, w" = x{, and w* = x".
There is a vertex x5, € {x?, x5} such that x, # v. Let FX = F® + {u,w‘}. Then |FFf| =2 < 2n - 6.
By Lemma 3.1, an error-free Hamiltonian path P, exists in R — F®. An error-free Hamiltonian path
P, = (u,w,we, x11, Pyy, (X11, X21), X21, x§1 , nglv, v) can therefore be found(see Figure 28(a)).

(1.2) x;; # w™! and x,; # w™'. Then by Proposition 2.1, x}l’1 # w', X, # w' and X5, # wh,
x’z’1 + we.

If v € {x5,, x{,}, we may assume that x5, = v. Let Ff = F* + {u,v}. Then |F{| =2 < 2n - 6. By
Lemma 3.1, an error-free Hamiltonian path P, exists in R — F R. An error-free Hamiltonian path
P, = (u,w,w, PW"X‘{I s X{1> X11, Py, (X11, X21), X21, v) can therefore be found(see Figure 28(b)).

Ifv ¢ {x5,,x5,}, let F* = F® + {u}). Then |Ff| = 1. By Lemma 3.4, two disjoint paths P
Py, With V(Pyeys ) U V(P ) = V(R = F}) exist in R — Ff. An error-free Hamiltonian path P,, =
(u, w,nwe, PW"X% s X5 X1t Py, (X115 X21), X21, X5 nglv, v) can therefore be found(see Figure 28(c)).

L=AQ%_, R=AQ! | L=AQ% , R=AQ! |, L=AQ% , R=AQ._,

A ( A 4 \ (
l Sv c z11 gacfl z11 5;1:‘131
*i1 pow” z1 71
3161} / ou w w® w QW
o ~~ou
20 g 20 x20 & -
21 $21 21 oV Xo1 5[?21
i i i ov
J . J . J -

(a) (b) (c)
Figure 28. Illustrations of Case 3.3.1.2 of Theorem 4.1.
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) [{(w", wy N {u, v} = 0.

(2.1) x1; = ' or xp; = w-'. Assume that x;; = w*-'. By Proposition 2.1, w" = x¢, and w* = x" .

If at least one vertex of {u, v}, say v, is adjacent to x;. Let FX = FR+{w*,v}. Then |[F¥| =2 < 2n-6.
By Lemma 3.1, an error-free Hamiltonian path P, exists in R — F¥. An error-free Hamiltonian path
Py, = (u, Py, Wh» w, W, X110, Py, (X115 X21), X21,

v) can therefore be found(see Figure 29(a)).

If both of u and v are not adjacent to x,;. Let F® = FX + w°. Then |F¥| = 1. By Lemma 3.4, two
disjoint paths P, Py , With V(P,n)UV(Py ) = V(R-F R) existin R— FF. An error-free Hamiltonian
path P,, = (u, P, W', w, w°, x11, Py, (X11, X21),

X21, xgl , szzz]v, v) can therefore be found(see Figure 29(b)).

L=AQ% , R=AQ._, L=4Q% , R=AQ!_,
A ( A (
u§ 11 oy we
z11 —=ow* 1 /oh
20 20
121T oV Iglf lﬁg’l
v
J \ J \;

(a) (b)
Figure 29. Illustrations of Case 3.3.1.2 of Theorem 4.1.

(2.2) x;1 # w and xp; # w'. Then by Proposition 2.1, x # w, x$, # w" and x5, # W/,
xﬁ‘l * we.

(2.2.1) There is a vertex x§, € {x",x¢} with X3, ¢ {u,v} and x5, € {x}, x5,} with x5, & {u,v}. By
Lemma 3.5, three disjoint paths P, wa% , nglv existin R with V(P,,,») U V(chxg]I )1V, V(Px;v) = V(R).
An error-free Hamiltonian path P, = (u, P, W, w, w°, Py, X1 X1ty Py (X115 X21), Xa1, X5, P ,,v)
can therefore be found(see Figure 30(a)).

(2.2.2) {x, x5} = {u, v} and u, v ¢ {xh, x5} or {x, x5,} = {u,v} and u,v ¢ {x", x,}. Assume that
{x",x) = {u,v}and u,v ¢ {x2, x5 }. Let FR = F® + {u}. Then |F¥| = 1. By Lemma 3.4, two disjoint
paths nglwh,chv existin R— F f with V(nglwh) UV(P,ue,) = V(IR-F f). An error-free Hamiltonian path
Py, = (u, x11, Pyy, (X171, X21), X21, xgl, nglwh, w", w, w¢, P,c,, ) can therefore be found(see Figure 30(b)).

L=AQ% , R=AQ} L=AQ% , R=AQ._,

Figure 30. Illustrations of Case 3.3.1.2 of Theorem 4.1.

wx

(2.2.3) {xh, x5, X!, x5} = {u, v}). We may assume that x5, = u and x| = v. Leta € Np
a+ xyand b € Nwa; (a) with b # xq;.
(2.2.3.1) a = w'. Then a" = w° and a° = w". Let F® = FR + {u,v,w"}. Then |Ff| =3 < 2n - 6.

By Lemma 3.1, a Hamiltonian path P, exists in R — F ’f. An error-free Hamiltonian path P,, =

) (.X]]) with
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(U, x21, Py, (X21, b), b, b, Ppeyye, W, W, wh, a, x11,v) can therefore be found(see Figure 31(a)).

(2.2.3.2) b = w'. Then b" = w® and b = w'. Let F‘]R = FR 4+ {u,v,w"}. Then IF‘]RI =3<2n-6.
By Lemma 3.1, a Hamiltonian path P,., exists in R — F f. An error-free Hamiltonian path P,, =
(U, x21, Pyx,(x21,b), b, wh,w, WE, Py, a, a, X11, v) can therefore be found(see Figure 31(b)).

(2233)a # wo' and b # w'. Then a" # w¢, a¢ # w'" and b # w°, b° = w'. Let
F® = FR + {u,v}. Then |[FX| = 2. By Lemma 3.4, two disjoint paths Py, P, exist in R — F{ with
V(Pgi) U V(Peg) = VIR - FN. An  error-free  Hamiltonian  path
P, = (u,x21, Py, (X21,b), b, b", Pijiy, W', W, W, Pyegn, d", @, x11,v) can therefore be found(see Figure
31(c)).

L=AQ% , R=AQL_ , L=4Q% , R=AQ._, L=AQ% , R=AQ!

n—1

g\ ( 5° g\ (. hl - g\ 4 5bh}
11 yﬁ;h 11 /’ ov & 11 ov a', I
x1 . x1 . x1 =

w w w : w

x20 x20 ) |
9621T ol szlT oy, xm} ol

J \§ J \ J g

(a) (b) ()
Figure 31. Illustrations of Case 3.3.1.2 of Theorem 4.1.

Case 3.3.2. |[Ff < 1.

Case 3.3.2.1. For any vertex x with |[E;(x) N FL| < 2. Since |FE N E(L)| > 2n—4 > 8(n > 6), we
can choose two edges e, e, ¢ Er(u) UE (V") U E;(v°). Let F£ = FL —{ey, e,}). Then |FE| = 2n—5. By
Lemma 3.1, a Hamiltonian cycle C will exist in L — F IL which may or may not include e; or e; on it.
Removing e; and e,, cycle C is divided into two, one or zero pieces depending on the cases in which e
and e, are on C or not. For the last two cases, we may choose to delete one or two more edges which
are not incident to vertices u", u¢,v",v¢ from C to make it into two subpaths. Therefore, we may write
cycle C using these subpaths as (x, e’l, X1, Py Vi, e’z, Y, Py, X).

(1) The length of Py, [,, > 1. Since |F R = 0, by Lemma 3.5, three disjoint paths Pux;‘, Pyiy"’
P, exist in R with V(Puxclr) U V(Pyll:yc) U V(Py,) = V(R). An error-free Hamiltonian path P,, =
(u, Py X7, X1, Pryyys Y1, Y95 Pyeye, Y, ¥, Py, X, X6, Prey, v) can therefore be found(see Figure 32(a)).

(2) The length of Py, I, = 0. Then x = y.

(2.1) x = u". Let FR = F® + {u}. Then |[FF| = 1. By Lemma 3.4, two disjoint paths Py,
Py, With V(Pyeye) U V(Py,) = V(R = F}) exist in R — F{. An error-free Hamiltonian path P, =
(u, x, x°, chyg,yj', Vi Pyxys X1, X5, ngv, v) can therefore be found(see Figure 32(b)).

L=AQ%_, R=AQL_, L=AQ°%_, R=AQ!_,
-\ (
81)
x1% xll txi
z X oU
y wn I8
Yy
y f v
J J o

(a) (b)
Figure 32. Illustrations of Case 3.3.2.1 of Theorem 4.1.

22) x #u".
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(2.2.1) x # x" and x # y{"'. By Proposition 2.1, x* # x¢, x° # x¥ and x" # y$, x* # yI. By
Lemma 3.5, three disjoint paths Py, Py and P,», exist in R with V(Pue)UV(Pyexc)UV(Pu) = V(R).
An error-free Hamiltonian path P,, = (u, Puxg, X0 X1 Py Y1, Y5 Py?xc, x°, x, x", P, v) can therefore
be found(see Figure 33(a)).

(2.2.2) x = x{"" or x = y{""'. Suppose that x = x{""'. By Proposition 2.1, x" = x{ and x° = x/. Let
F{ = F*+{x{}. Then |F{| = 1. By Lemma 3.4, two disjoint paths Py, Pyc, exist in R—F{ with V(P,)U
V(Pylv) =VR-F f). An error-free Hamiltonian path Py, = (u, Py, X, X, X{, X1, Pyy V1, Y9, Pyiv’ V)
can therefore be found(see Figure 33(b)).

L= AQTL 1 R = AQ’IL 1 L= AQn 1 R = AQn 1

) ( 5— ) ( 5—

X1 %c u c

} t 1 1 0 T
& ] @ ezt |

2 h

xc v c

|y i g
/ - / -

(a) (b)
Figure 33. Illustrations of Case 3.3.2.1 of Theorem 4.1.

Case 3.3.2.2. There exists a vertex x with |E.(x) N FY| > 3. Let e;,es,e3 € Ei(x) N FL and
FlL = FL —{ey, ey, 3} + x. Then |F1L| =2n-15.

(1) There exists no correct element incident to vertex x in L— F~. Since (u, v) is a normal vertex-pair
inAQ,—F,|Nag,-r(x)N{u, v}| < 1. Choose two different vertices x;,y from V(L)—{x, u", u, v ve) with
xp # x',y # x and (x;, y) is a normal vertex-pair in L—F7. By induction hypothesis, a Hamiltonian
path P, , exists in L — FL Notice that x;,y € V(L) — {x, u", u¢, v, v } then u,v ¢ {xl,xl,y , )

(1.1) [Nag,-r(x) N {u,v}l = 1. Assume that u € Nyg,-r(x) and u = x". Let FR = F® + {u}. Then
IFf| = 1. By Lemma 3.4, two disjoint paths P, v exist in R — FX with V(chx YU V(Py,) =
VIR-F R) An error-free Hamiltonian path P,, = (u, x, x° s Prexe, X7, X1, ley, Y, Y%, Pyey, v) can therefore
be found(see Figure 34(a)).

(1.2) [Nag,-r(x) N {u,v}| = 0. By Lemma 3.5, three disjoint paths P, P, Pyey exist in R with
V(P,») U V(Pxfx ) U V(Py,) = V(R). An error-free  Hamiltonian path
Py, = (u, Py, X", x, x¢ s Prexey X7, X1, Py, ¥, Y6, Pyey, v) can therefore be found(see Figure 34(b)).

(2) There is a vertex x; 1n01dent to vertex x in L— F%. Choose a vertex y € V(L) —{x, x;, V", v¢, u", u¢}
with (x;, y) is a normal vertex-pair in L—F~, then u,v ¢ {y ,¥°}. By induction hypothesis, a Hamiltonian
path P, exists in L — F. L. There is a vertex x¢ € {x",x°} with x¥ # {u,v}. By Lemma 3.4, two
disjoint paths P, Py, ex1st in R with V(P,) U V(Pye V) = V(R). An error-free Hamiltonian path
Py, = (u, Py, x5, x, X1, Py, ¥, Y°, Pyey, v) can therefore be found(see Figure 34(c)).

L=AQ% , R=AQ. , L=AQ% , R=AQ.L , L=4Q% , R=AQ}

n—1

e e
= []
X1 c
.
T - 9
—ou |
y y© Sye |
U U
| | e I

(a) (b) (c)
Figure 34. Illustrations of Case 3.3.2.2 of Theorem 4.1.
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Combining the above cases, we completed the proof of the Theorem 4.1. O
5. Conclusions

This paper studied the Hamiltonian path in n-dimensional augmented cube AQ, with a set F of up
to 2n — 3 faulty elements. We have proved that for arbitrary vertex-pair (u,v) in AQ, — F, there exists
a fault-free Hamiltonian path that joins vertices u and v with the exception of (u,v), which is a weak
vertex-pair in AQ, — F(n > 4). It is worth pointing out that we also proved that if there is a weak
vertex-pair in AQ, — F, there is at most one pair. This paper improved the current result that AQ, is
2n — 4 fault-tolerant Hamiltonian connected. Since the degree of each vertex is 2n — 1 in AQ,,, our
result is optimal and sharp under the condition of no restriction to each vertex.

The result of the paper can be further improved. One possible research is the Hamiltonian
connectivity when the correct degree of each vertex is restricted and the fault-tolerant bound of AQ,
may be improved; another is the issue of finding the shorter path under the current optimal
fault-tolerant bound in which when |F| < 2n — 3, any correct two vertices u, v in AQ, — F have a path
of each length from d-rank to 2" — f, — 2 connecting them, where d is the distance of u, v and f, is the
number of faulty vertices in AQ,.
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