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1. Introduction

In recent years, the study of fractional derivatives has been an important topic. It has been used to
model many phenomena in numerous fields such as science and engineering. There are many
interpretations for fractional derivatives, such as the definition of Caputo [1], the definition of
Riemann-Liouville [2], the definition of Grunwald-Letnikov [3], and most recently, Conformable [4],
Atangana-Baleanu [5], Wallström [6], Jumarie [7], Klimek [8] and others.

In practice, where quantitative results are needed for given real-world problems, numerically
approximate solutions can often be demonstrably better, more reliable, more detailed, efficient and
cost-effective than analytical ones for certain fractional structures. A number of studies [9–14] were
therefore involved in developing approaches for providing estimated solutions. One of these
approaches is the Hilbert space kernel reproduction (RKHS) method used for the first time by S.
Zaremba for the harmonic and biharmonic functions at the beginning of the 20th century to find
solutions for boundary value problems (BVPs).
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The RKHS precede the Dirac delta function in many ways, among which we mention providing an
important structure for random distribution of multi-round data and, providing accurate approximation
of multi-dimensional general functions and the possibility to pick any point in the integration interval.

The RKHS algorithm has been successfully applied to various fields of numerical analysis,
computational mathematics, probability and statistics [15,16], biology [17], quantum mechanics and
wave mechanics [18]. Therefore wide range of research works have been directed to its applications
in various stochastic categories [19], and defined problems involving operator equations [20], partial
differential equations [21,22], integrative equations [23,24], and differential integration equations
[24–29]. In addition, many studies have focused in recent years on the use of the RKHS method as a
framework for seeking approximate numerical solutions to different problems [30–39].

Moreover, the numerical solution of the different groups of BVP can be found in [40–42]. The
two-point BVPs has a strong interest in applied mathematics, this kind of problems arise directly from
mathematical models or by turning partial differential equations into ordinary differential equations.
As this type of problems does not have an exact solution, many special techniques have been used to
solve it, including the shooting method [43–44], the collocation method [45–46], the finite difference
method [47,48], and the quasilinearization method [49,50]. The continuous genetic algorithm approach
was used to solve these schemes in [51–53].

The present paper is structured as follows: in Section 2, we set out some basic concepts and results
from fractional calculus theory. In Section 3, the iterative form of the reproducing kernel algorithm is
used to build and measure the solution of the fractional differential method with temporal two points.
In Section 4 and 5, the convergence and error estimator are discussed to provide a number of numerical
results to demonstrate the efficiency and accuracy of the reproducing kernel Hilbert space method. At
last in section 6, a conclusion of the results is made.

2. Preliminaries

In applied mathematics and mathematical analysis, there are several definitions of fractional
derivatives, Riemann-Liouville and Caputo are the most popular of all [54]. In this section, we list
some of these definitions in addition to reproducing kernel spaces on finite domain [t0, t f ].

Definition 2.1. [55] Let n ∈ R+. The operator J n
t0 defined on L1[t0, t f ] by

J n
t0 f (x) := 1

Γ(n)

∫ x

t0
(x − ζ)n−1 f (ζ)dζ,

for t0 ≤ x ≤ t f , is called the Riemann-Liouville fractional integral operator of order n. For n = 0, we
set J 0

t0 := I, the identity operator.

Definition 2.2. [55] Let n ∈ R+ and m = [n]. The operatorDn
t0 defined by

Dn
t0 f := DmJ m−n

t0 f = 1
Γ(m−n) (

d
dx )m

∫ x

t0
(x − ζ)m−n−1 f (ζ)dζ,

is called the Riemann-Liouville fractional differential operator of order n. For n = 0, we set D0
t0 := I,

the identity operator.

Definition 2.3. [55] Let α ∈ R+ and n − 1 < α < n. The operatorDα
∗t0 defined by

Dα
∗t0 f (x) = J n−α

t0 D
n f (x) = 1

Γ(n−α)

∫ x

t0
(x − ζ)n−α−1( d

dζ )n f (ζ)dζ,
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for t0 ≤ x ≤ t f , is called the Caputo differential operator of order α.

Definition 2.4. [35] LetM be nonempty set, the function K :M×M −→ C is a reproducing kernel
of the Hilbert spaceH if the following conditions are met:

(1) K(., t) ∈ M,∀t ∈ M ,
(2) the reproducing property: ∀t ∈ M,∀z ∈ H : 〈z(.),K(., t)〉 = z(t).

The second condition means that the value of z at the point t is reproduced by the inner product of z
with K .

Note: The reproducing kernel is unique, symmetric and positive definite.

Definition 2.5. L2[t0, t f ] =
{
ϑ |

∫ t f

t0
ϑ2(t) dt < ∞

}
.

Definition 2.6. The spaceW1
2[t0, t f ] is defined as:

W1
2[t0, t f ] =

{
ϑ|ϑ is absolutely continuous real value function, ϑ′ ∈ L2[t0, t f ]

}
.

The inner product and its norm are given by: 〈ϑ1(t), ϑ2(t)〉W1
2

= ϑ1(t0)ϑ2(t0) +
∫ t f

t0
ϑ′1(t)ϑ′2(t)dt,

‖ϑ‖W1
2

=
√
〈ϑ(t), ϑ(t)〉W1

2
.

Definition 2.7. The spaceW2
2[t0, t f ] is defined by:

W2
2[t0, t f ] =

{
ϑ|ϑ, ϑ′ are absolutely continuous real value functions, ϑ′′ ∈ L2[t0, t f ], ϑ(t0) = 0

}
.

The inner product and its norm are given by: 〈ϑ1(t), ϑ2(t)〉W2
2

= ϑ1(t0)ϑ2(t0) + ϑ′1(t0)ϑ′2(t0) +
∫ t f

t0
ϑ′′1 (t)ϑ′′2 (t)dt,

‖ϑ‖W2
2

=
√
〈ϑ(t), ϑ(t)〉W2

2
.

Definition 2.8. W3
2[t0, t f ]=

{
ϑ|ϑ, ϑ′, ϑ′′are absolutely continuous, ϑ(3)∈ L2[t0, t f ], ϑ(t0)=0, ϑ(t f )=0

}
.

The inner product and its norm inW3
2[t0, t f ] are given by: 〈ϑ1(t), ϑ2(t)〉W3

2
=

∑2
i=0 ϑ

(i)
1 (t0)ϑ(i)

2 (t0) +
∫ t f

t0
ϑ(3)

1 (t)ϑ(3)
2 (t)dt,

‖ϑ‖W3
2

=
√
〈ϑ(t), ϑ(t)〉W3

2
, ϑ ∈ W3

2.

Remark 2.1. The Hilbert spaceWm
2 [t0, t f ] is called a reproducing kernel if for any fixed t ∈ [t0, t f ],

∃Kt(s) ∈ Wm
2 [t0, t f ] such that 〈ϑ(s),Kt(s)〉Wm

2
= ϑ(t) for any ϑ(s) ∈ Wm

2 [t0, t f ] and s ∈ [t0, t f ].

Remark 2.2.

(1) In [56],W1
2 is RKHS and its reproducing kernel is:

K1(t, s) = 1
2sinh1 [cosh(t + s − 1) + cosh|t − s| − 1].

(2) In [57],W2
2 is RKHS and its reproducing kernel is:

K2(s, t) = 1
6

{
t(−t2 + 3s(2 + t)) t ≤ s,
s(−s2 + 3t(2 + s)) t > s.
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3. Reproducing kernel Hilbert space method (RKHSM)

In this section, we develop an iterative method for constructing and calculating fractional differential
equations with a temporal two-point solution. In order to emphasize the idea, we start by considering
the general form of the BVP:{

Dα
t0 X(t) = F (t, X(t),Y(t)),
Dα

t0Y(t) = G(t, X(t),Y(t)), t0 ≤ t ≤ t f , 0 ≤ α ≤ 1.
(3.1)

Subject to BC’s:
X(t0) = δ,Y(t f ) = β. (3.2)

where:
δ, β ∈ R, andDα denotes the Caputo fractional derivative of order α and{

X(t) = [x1(t), x2(t), ..., xm(t)] ,
Y(t) =

[
y1(t), y2(t), ..., yl(t)

]
,

and
{

δ = [δ1(t), δ2(t), ..., δm(t)] , β =
[
β1(t), β2(t), ..., βl(t)

]
,

F =
[
f1(t), f2(t), ..., fm(t)

]
, G =

[
g1(t), g2(t), ..., gl(t)

]
.

We use the RKHS method to obtain a solution of BVPs (3.1) and (3.2) based on the following
methodology:

• To attain a problem with homogenous BC’s, we first assume that: Y(t0) = γ, (γ arbitrary) and{
U(t) = X(t) − X(t0),
V(t) = Y(t) − Y(t0).

(3.3)

We get: {
Dα

t0U(t) = Dα
t0 X(t),

Dα
t0V(t) = Dα

t0Y(t).
(3.4)

Subject to: {
U(t0) = 0,
V(t0) = Y(t0) − γ = 0.

(3.5)

• Then, we construct the reproducing kernel space W2
2[t0, t f ] in which each function satisfies the

homogeneous boundary conditions of (3.5) using the spaceW1
2[t0, t f ].

TakeKt(τ) andRt(τ) to be the reproducing kernel functions of the spacesW2
2[t0, t f ] andW1

2[t0, t f ]
respectively.
• Next, we define the invertible bounded linear operator L :W2

2[t0, t f ] −→W1
2[t0, t f ] such that:{

LU(t) = Dα
t0U(t),

LV(t) = Dα
t0V(t).

(3.6)

The BVPs (3.4), (3.5) can therefore be transformed to the following form:


LU(t) = F (t, X(t),Y(t)),
LV(t) = G(t, X(t),Y(t)),

U(t0) = 0,
V(t0) = 0.

(3.7)
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WhereU(t) andV(t) are inW2
2[t0, t f ] and F ,G ∈ W1

2[t0, t f ].
Applying Riemann-Liouville fractional integral operator J α

t0 to both sides using U(t0) = 0 and
V(t0) = 0, we get:

U(t) = 1
Γ(t0)

∫ t

t0
(t − τ)α−1F (τ, X(τ),Y(τ))dτ = F(t, X(t),Y(t)),

V(t) = 1
Γ(t0)

∫ t

t0
(t − τ)α−1G(τ, X(τ),Y(τ))dτ = G(t, X(t),Y(t)).

Thus, we can notice that: LU(t) = U(t), and so the BVPs are transformed to the equivalent form:
U(t) = F(t, X(t),Y(t)),
V(t) = G(t, X(t),Y(t)),

U(t0) = 0,
V(t0) = 0.

(3.8)

• When choosing a countable dense set {ti}
∞
i=1 from [t0, t f ] for the reproducing kernel of the space

W2
2[t0, t f ], we define a complete system onW2

2[t0, t f ] as: Ψi(t) = L∗Φi(t) where Φi(t) = Rti(τ),
and L∗ is the adjoint operator of L.

Lemma 3.1. Ψi(t) can be written on the following form:

Ψi(t) = LτKt(τ)|τ=ti .

Proof. It is clear that:

Ψi(t) = L∗Φi(t) = 〈L∗Φi(τ),Kt(τ)〉W2
2
,

= 〈Φi(τ), LKt(τ)〉W1
2

= LτKt|τ=ti .

• The orthonormal function system {Ψ
η

i (t)}∞i=1, η = 1, 2 of the spaceW2
2[t0, t f ] can be derived from

Gram-Schmidt orthogonalization process of {Ψη
i (t)}∞i=1 as follows:

Ψ
η

i (t) =
∑i

k=1B
η
ikΨ

η
k(t), i = 1, 2, ..., η = 1, 2,

where Bηik are positive orthogonalization coefficients such that:

B
η
11 =

1∥∥∥Ψη
1

∥∥∥ , Bηii =
1√∥∥∥Ψη

i

∥∥∥2
−

∑i−1
k=1(Cηik)

2

, B
η
i j =

−
∑i−1

k=1 C
η
ikB

η
k j√∥∥∥Ψη

i

∥∥∥2
−

∑i−1
k=1(Cηik)

2

, j < i. (3.9)

C
η
ik given by:

〈
Ψ
η
i ,Ψ

η
k

〉
W2

2
.

Theorem 3.1. If the operator L is invertible i.e: L−1 exist, and if {ti}
∞
i=1 is dense on [t0, t f ], then

{
Ψ
η
i

}∞
i=1

,
η = 1, 2 is the complete function system of the spaceW2

2[t0, t f ].

Proof. For each fixed U(t), V(t) ∈ W2
2[t0, t f ], let

〈
U(t),Ψ1

i (t)
〉

= 0, and
〈
V(t),Ψ2

i (t)
〉

= 0, i =

1, 2, ... that is:〈
U(t),Ψ1

i (t)
〉
W2

2
=

〈
U(t), L∗Φ1

i (τ)
〉
W2

2
=

〈
LU(t),Φ1

i (t)
〉
W1

2
= LU(ti) = 0,〈

V(t),Ψ2
i (t)

〉
W2

2
=

〈
V(t), L∗Φ2

i (τ)
〉
W2

2
=

〈
LV(t),Φ2

i (t)
〉
W1

2
= LV(ti) = 0,
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since {ti}
∞
i=1 is dense on [t0, t f ] then LU(t) = 0, and LV(t) = 0 it follows thatU(t) = 0, V(t) = 0 since

L−1 exist andU(t), V(t) are continuous.

Theorem 3.2. For eachU(t), V(t) ∈ W2
2[t0, t f ] the series

∑∞
i=0

〈
U(t),Ψ

1
i (t)

〉
W2

2

Ψ
1
i (t),∑∞

i=0

〈
V(t),Ψ

2
i (t)

〉
W2

2

Ψ
2
i (t),

are convergent in the sense of the norm ofW2
2[t0, t f ]. In contrast if {ti}

∞
i=1 is dense subset on [t0, t f ] then

the solutions of (3.8) given by: U(t) =
∑∞

i=1
∑i

k=1B
1
ikF(tk,U(tk),V(tk))Ψ

1
i (t),

V(t) =
∑∞

i=1
∑i

k=1B
2
ikG(tk,U(tk),V(tk))Ψ

2
i (t).

(3.10)

Proof. Let U(t), V(t) ∈ W2
2[t0, t f ] be the solutions of (3.8), since U(t), V(t) ∈ W2

2[t0, t f ], and∑∞
i=1

〈
U(t),Ψ

1
i (t)

〉
W2

2[t0,t f ]
Ψ

1
i (t) and

∑∞
i=1

〈
V(t),Ψ

2
i (t)

〉
W2

2[t0,t f ]
Ψ

2
i (t) represent the Fourier series

expansion about normal orthogonal system {Ψ
η

i (t)}∞i=1, η = 1, 2, and W2
2[t0, t f ] is Hilbert space, then

the series
∑∞

i=1

〈
U(t),Ψ

1
i (t)

〉
W2

2[t0,t f ]
Ψ

1
i (t),

∑∞
i=1

〈
V(t),Ψ

2
i (t)

〉
W2

2[t0,t f ]
Ψ

2
i (t) are convergent in the sense

of ‖.‖W2
2[t0,t f ]. In contrast, according to the orthogonal basis {Ψ

η

i (t)}∞i=1, we have:

U(t) =
∑∞

i=1

〈
U(t),Ψ

1
i (t)

〉
W2

2

Ψ
1
i (t),

=
∑∞

i=1

〈
U(t),

∑i
k=1B

1
ikΨ

1
k(t)

〉
W2

2
Ψ

1
i (t),

=
∑∞

i=1
∑i

k=1B
1
ik

〈
U(t),Ψ1

k(t)
〉
W2

2
Ψ

1
i (t),

=
∑∞

i=1
∑i

k=1B
1
ik

〈
U(t), L∗Φ1

k(t)
〉
W2

2
Ψ

1
i (t),

=
∑∞

i=1
∑i

k=1B
1
ik

〈
LU(t),Φ1

k(t)
〉
W1

2
Ψ

1
i (t),

=
∑∞

i=1
∑i

k=1B
1
ik

〈
F(tk,U(t),V(t)),Φ1

k(t)
〉
W1

2
Ψ

1
i (t),

=
∑∞

i=1
∑i

k=1B
1
ikF(tk,U(tk),V(tk)))Ψ

1
i (t).

The same for findingV(t):

V(t) =
∑∞

i=1
∑i

k=1B
2
ikG(tk,U(tk),V(tk))Ψ

2
i (t).

The theorem is proved.
SinceW2

2 is Hilbert space we get:∑∞
i=1

∑i
k=1B

1
ik

〈
LU(t),Φ1

k(t)
〉
W1

2
Ψ

1
i (t) < ∞ and

∑∞
i=1

∑i
k=1B

2
ik

〈
LV(t),Φ2

k(t)
〉
W1

2
Ψ

2
i (t) < ∞.

Hence:  Un(t) =
∑n

i=1
∑i

k=1B
1
ikF(tk,U(tk),V(tk))Ψ

1
i (t),

Vn(t) =
∑n

i=1
∑i

k=1B
2
ikG(tk,U(tk),V(tk))Ψ

2
i (t),

(3.11)

are convergent in the sense of ‖.‖W2
2

and (3.11) represents the numerical solution of (3.8).
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Remark 3.1.

(1) If the system (3.7) is linear, then the exact solutions can be found directly from (3.10).
(2) If the system (3.7) is non linear, then the exact and numerical solutions can be obtained by: U(t) =

∑∞
i=1A

1
i Ψ

1
i (t),

V(t) =
∑∞

i=1A
2
i Ψ

2
i (t),

(3.12)

where: {
A1

i =
∑i

k=1B
1
ikF(tk,Uk−1(tk),Vk−1(tk)),

A2
i =

∑i
k=1B

2
ikG(tk,Uk−1(tk),Vk−1(tk)).

(3.13)

We use the known quantities ληi , η = 1, 2 to approximate the unknowns Aη
i , η = 1, 2 as follows:

we put t1 = t0 and set U0(t1) = U(t1), V0(t1) = V(t1) then U0(t1) = V0(t1) = 0 from the
conditions of (3.8), and define the n-term approximation toU(t), V(t) by: Un(t) =

∑n
i=1 λ

1
i Ψ

1
i (t),

Vn(t) =
∑n

i=1 λ
2
i Ψ

2
i (t),

(3.14)

where the coefficient ληi (η = 1, 2, i = 1, 2, ..., n), are presented as follows:{
λ1

n =
∑n

k=1B
1
ikF(tk,Uk−1(tk),Vk−1(tk)),

λ2
n =

∑n
k=1B

2
ikG(tk,Uk−1(tk),Vk−1(tk)),

(3.15)

and so:  Un(t) =
∑n

i=1 λ
1
i Ψ

1
i (t),

Vn(t) =
∑n

i=1 λ
2
i Ψ

2
i (t).

(3.16)

We can guarantee that the approximationsUn(t), Vn(t) satisfies the conditions enjoined by (3.7)
through the iterative process of (3.16).

4. Error estimation and convergence

In this section, we present some convergence theories to emphasize that the approximate solution
we got is close to the exact solution. Indeed, this finding is very powerful and efficient to RKHS theory
and its applications.

Lemma 4.1. ‖Un(t)‖∞n=1, and ‖Vn(t)‖∞n=1 are monotone increasing in the sense of the norm of ‖.‖2
W2

2
.

Proof. Since
∥∥∥∥Ψη

i (t)
∥∥∥∥∞

i=1
, η = 1, 2 are the complete orthonormal systems in the spaceW2

2[t0, t f ] then
we have: 

‖Un(t)‖2
W2

2
= 〈Un(t),Un(t)〉W2

2
=

〈∑n
i=1 λ

1
i Ψ

1
i (t),

∑n
i=1 λ

1
i Ψ

1
i (t)

〉
W2

2

=
∑n

i=1(λ1
i )2,

‖Vn(t)‖2
W2

2
= 〈Vn(t),Vn(t)〉W2

2
=

〈∑n
i=1 λ

2
i Ψ

2
i (t),

∑n
i=1 λ

2
i Ψ

2
i (t)

〉
W2

2

=
∑n

i=1(λ2
i )2.

Thus ‖Un(t)‖W2
2
, ‖Vn(t)‖W2

2
are monotone increasing.
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Lemma 4.2. As n→ ∞, the approximate solutionsUn(t), Vn(t) and its derivativesU′n(t), V′n(t) are
uniformly convergent to the exact solutionsU(t), V(t) and its derivativesU′(t), V′(t) respectively.

Proof. For any t ∈ [t0, t f ]:

|U′n(t) −U′(t)| =
∣∣∣∣〈Un(t) −U(t),K ′t(τ)〉W2

2

∣∣∣∣ ,
≤ ‖K ′t(τ)‖W2

2
‖Un(t) −U(t)‖W2

2
,

≤ N1 ‖Un(t) −U(t)‖W2
2
, N1 ∈ R,

and

|V′n(t) −V′(t)| ≤ N2 ‖Vn(t) −V(t)‖W2
2
, N2 ∈ R,

if ‖Un(t) −U(t)‖W2
2
−→ 0, ‖Vn(t) −V(t)‖W2

2
−→ 0 as n → ∞, then the approximate solutions

U
(i)
n (t), V(i)

n (t) are uniformly converges to the exact solutionsU(i)(t), V(i)(t)
i = 1, 2 respectively.

Theorem 4.1. If {
Un(t) −→ U(t),
Vn(t) −→ V(t),

and F(t,U(t),V(t)), G(t,U(t),V(t)) are continuous in [t0, t f ], then:{
F(tn,Un−1(tn),Vn−1(tn)) −→ F(t,U(t),V(t))
G(tn,Un−1(tn),Vn−1(tn)) −→ G(t,U(t),V(t))

as n −→ ∞. (4.1)

Proof. For the first part, we will prove that:{
Un−1(tn) −→ U(t),
Vn−1(tn)) −→ V(t),

it is easy to see that:{
|Un−1(tn) −U(t)| = |Un−1(tn) −Un−1(t) +Un−1(t) −U(t)| ≤ |Un−1(tn) −Un−1(t)| + |Un−1(t) −U(t)| ,
|Vn−1(tn) −V(t)| = |Vn−1(tn) −Vn−1(t) +Vn−1(t) −V(t)| ≤ |Vn−1(tn) −Vn−1(t)| + |Vn−1(t) −V(t)| ,

by reproducing property of Kt(τ) we have:{
Un−1(tn) =

〈
Un−1(τ),Ktn(τ)

〉
,

Vn−1(tn) =
〈
Vn−1(τ),Ktn(τ)

〉
,

and {
Un−1(t) = 〈Un−1(τ),Kt(τ)〉 ,
Vn−1(t) = 〈Vn−1(τ),Kt(τ)〉 ,

thus |Un−1(tn) −Un−1(t)| =
∣∣∣∣〈Un−1(τ),Ktn(τ) − Kt(τ)

〉
W2

2

∣∣∣∣ ≤ ‖Un−1(τ)‖W2
2

∥∥∥Ktn(τ) − Kt(τ)
∥∥∥
W2

2
,

|Vn−1(tn) −Vn−1(t)| =
∣∣∣∣〈Vn−1(τ),Ktn(τ) − Kt(τ)

〉
W2

2

∣∣∣∣ ≤ ‖Vn−1(τ)‖W2
2

∥∥∥Ktn(τ) − Kt(τ)
∥∥∥
W2

2
,

and from the symmetric property of Kt(τ) we get:∥∥∥Ktn(τ) − Kt(τ)
∥∥∥
W2

2
−→ 0

n→∞
,
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hence: |Un−1(tn) −Un−1(t)| −→ 0 as tn → t.
By lemma (4.2)  Un(t)

c.u
−→ U(t),

Vn(t)
c.u
−→ V(t),

thus: {
|Un−1(t) −U(t)| −→ 0
|Vn−1(t) −V(t)| −→ 0

as n −→ ∞.

Therefore {
Un−1(tn) −→ U(t),
Vn−1(tn) −→ V(t),

in the sense of the ‖.‖W2
2

as tn −→ t and n −→ ∞ for any t ∈ [t0, t f ].
Moreover, since F and G are continuous, we obtain:{

F(tn,Un−1(tn),Vn−1(tn)) −→ F(t,U(t),V(t))
G(tn,Un−1(tn),Vn−1(tn)) −→ G(t,U(t),V(t))

as n −→ ∞.

Theorem 4.2. Suppose that ‖Un‖W2
2

and ‖Vn‖W2
2

are bounded in Eq (3.14), if {ti}
∞
i=1 is dense on [t0, t f ],

then the approximate solutionsUn(t),Vn(t) in Eq (3.14) convergent to the exact solutionsU(t), V(t)
of Eq (3.7) in the spaceW2

2[t0, t f ] andU(t), V(t) given by (3.12).

Proof. We first start by proving the convergence ofUn(t) andVn(t) from Eq (3.14) we conclude that: Un+1(t) = Un(t) + λ1
n+1Ψ

1
n+1(t),

Vn+1(t) = Vn(t) + λ2
n+1Ψ

2
n+1(t),

by orthogonality of
{
Ψ
η

i (t)
}∞

i=1
, (η) = 1, 2 we get: ‖Un+1(t)‖2

W2
2

= ‖Un(t)‖2
W2

2
+ (λ1

n+1)2 = · · · = ‖U0(t)‖2
W2

2
+

∑n+1
i=1 (λ1

i )2,

‖Vn+1(t)‖2
W2

2
= ‖Vn(t)‖2

W2
2

+ (λ2
n+1)2 = · · · = ‖V0(t)‖2

W2
2

+
∑n+1

i=1 (λ2
i )2,

‖Un(t)‖W2
2
, ‖Vn(t)‖W2

2
are monotone increasing by Lemma (4.1). From the assymption that

‖Un(t)‖W2
2
, ‖Vn(t)‖W2

2
are bounded, ‖Un(t)‖W2

2
, ‖Vn(t)‖W2

2
are convergent as n → ∞, then ∃ c, d

constants such that { ∑∞
i=1(λ1

i )2 = c,∑∞
i=1(λ2

i )2 = d,

if m > n using {
(Um −Um−1)⊥(Um−1 −Um−2)⊥ · · · ⊥(Un+1 −Un),
(Vm −Vm−1)⊥(Vm−1 −Vm−2)⊥ · · · ⊥(Vn+1 −Vn),

further that  ‖Um(t) −Um−1(t)‖2
W2

2
= (λ1

m)2,

‖Vm(t) −Vm−1(t)‖2
W2

2
= (λ2

m)2,
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so:  ‖Um(t) −Un(t)‖2
W2

2
=

∑m
i=n+1(λ1

i )2 −→ 0
‖Vm(t) −Vn(t)‖2

W2
2

=
∑m

i=n+1(λ2
i )2 −→ 0

as n,m→ ∞,

sinceW2
2[t0, t f ] is complete, ∃ U(t), V(t) inW2

2[t0, t f ] such that{
Un(t) −→ U(t)
Vn(t) −→ V(t)

as n −→ ∞,

in the sense of the norm ofW2
2[t0, t f ].

Now, we prove that U(t), V(t) are solutions of Eq (3.7). Since {ti}
∞
i=1 is dense on [t0, t f ], ∀ t ∈

[t0, t f ], ∃ subsequence
{
tn j

}
such that tn j −→j→∞

t. From lemma (3) and (4) in [25] we have:{
LU(tn j) = F(tn j ,Un j−1(tn j),Vn j−1(tn j)),
LV(tn j) = G(tn j ,Un j−1(tn j),Vn j−1(tn j)),

let j goes to∞, by theorem (4.1) and the continuity of F and G we have:{
LU(t) = F(t,U(t),V(t)),
LV(t) = G(t,U(t),V(t)),

that isU(t), V(t) are solutions of Eq (3.7).

Theorem 4.3. Let ξn = |Un(t) −U(t)|, ξ
′

n = |Vn(t) −V(t)|, where: Un(t), Vn(t), U(t), V(t) denote
the approximate and the exact solutions respectively, then the sequences of numbers {ξn} ,

{
ξ
′

n

}
are

decreasing in the sense of the norm ‖.‖W2
2

and ξn −→
n→∞

0, ξ
′

n −→n→∞
0.

Proof. From the extension form of U(t), V(t) and Un(t), Vn(t) in Eqs (3.12), (3.14) and (3.15) we
can write: 

‖ξn‖
2
W2

2
=

∥∥∥∥∑∞i=n+1 λ
1
i Ψ

1
i (t)

∥∥∥∥2

W2
2

=
∑∞

i=n+1(λ1
i )2,∥∥∥ξ′n∥∥∥2

W2
2

=
∥∥∥∥∑∞i=n+1 λ

2
i Ψ

2
i (t)

∥∥∥∥2

W2
2

=
∑∞

i=n+1(λ2
i )2,

and 
‖ξn−1‖

2
W2

2
=

∥∥∥∥∑∞i=n λ
1
i Ψ

1
i (t)

∥∥∥∥2

W2
2

=
∑∞

i=n(λ1
i )2,∥∥∥ξ′n−1

∥∥∥2

W2
2

=
∥∥∥∥∑∞i=n λ

2
i Ψ

2
i (t)

∥∥∥∥2

W2
2

=
∑∞

i=n(λ2
i )2.

Clearly: ‖ξn‖
∞
n=1 ,

∥∥∥ξ′n∥∥∥∞n=1
are decreasing in a sense of ‖.‖W2

2
from theorem (3.2) the series∑∞

i=1 λ
1
i Ψ

1
i (t),

∑∞
i=1 λ

2
i Ψ

2
i (t) are convergent, thus ‖ξn‖W2

2
−→ 0,

∥∥∥ξ′n∥∥∥W2
2
−→ 0 as n −→ ∞.

Theorem 4.4. The approximate solutions Un(t), Vn(t) of (3.7) converge to its exact solutions
U(t), V(t) with not less than the second order convergence. That is: |Un −U| ≤ Mk2 and
|Vn −V| ≤ Nk2, where k =

t f−t0
n .

Proof. See [36].
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5. Numerical examples and algorithm

Numerical examples are conducted in order to verify the accuracy of this method. Computations
are performed using Mathematica 11.0.

Algorithm 1: Use the following stages to approximate the solutions of BVPs (3.4) and (3.5) based
on RKHS method.

• Stage A: Fixed t ∈ [t0, t f ] and set τ ∈ [t0, t f ]
for i = 1, ..., n do the following stages:

– stage 1: set ti = t0 +
(t f−t0)i

n ;

– stage 2: if τ ≤ t let

Kτ(t) =
∑3

i=0 pi(t)τi;

else let

Kτ(t) =
∑3

i=0 qi(t)τi.

– stage 3: For η = 1, 2;
set

Ψ
η
i (t) = LτKt(τ)|τ=ti .

Output the orthogonal functions system Ψ
η
i (t).

• Stage B: Obtain the orthogonalization coefficients Bηi j as follows:

For η = 1, 2;
For i = 1, ..., n;
For j = 1, ..., i set Cηik =

〈
Ψ
η
i ,Ψ

η
j

〉
W2

2
and B11 = 1

S qrt(Cη11) .

Output Cηi j and B11.

• Stage C: For η = 1, 2;
For i = 1, ..., n, set Bηii = (

∥∥∥Ψη
i

∥∥∥2

W2
2
−

∑i−1
k=1(Cηik)

2)
−1
2 ;

else if j , i set Bηi j = −(
∑i−1

k=1 C
η
ikB

η
k j).(

∥∥∥Ψη
i

∥∥∥2

W2
2
−

∑i−1
k=1(Cηik)

2)
−1
2 .

Output the orthogonalization coefficients Bηi j.

• Stage D: For η = 1, 2;
For i = 1, ..., n set Ψ

η

i (t) =
∑i

k=1B
η
ikΨ

η
i (t).

Output the orthonormal functions system Ψ
η

i (t).

• Stage E: Set t1 = 0 and chooseU0(t1) = 0, V0(t1) = 0;
For η = 1, 2;
For i = 1 set{

λ1
1 = B1

11F(t1,U0(t1),V0(t1)),
λ2

1 = B2
11G(t1,U0(t1),V0(t1)),

and

 U1(t) = λ1
1Ψ

1
1(t),

V1(t) = λ2
1Ψ

2
1(t).
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For i = 2, 3, ..., n set{
λ1

i =
∑i

k=1B
1
nkF(tk,Uk−1(tk),Vk−1(tk)),

λ2
i =

∑i
k=1B

2
nkG(tk,Uk−1(tk),Vk−1(tk)),

set  Un(t) =
∑n

i=1 λ
1
i Ψ

1
i (t),

Vn(t) =
∑n

i=1 λ
2
i Ψ

2
i (t).

Outcome the numerical solutionsUn(t), Vn(t).

Then we implement the above algorithm using numerical simulations. We arrange the resulting data
in tables and graphs for examples discussed on [t0, t f ] as follows:

Example 5.1. Consider the following system:{
Dαω(t) = −4ω + 3Θ + 6,
DαΘ(t) = −2.4ω + 1.6Θ + 3.6, 0 ≤ t ≤ 0.5, 0 ≤ α ≤ 1,

subject to: {
ω(0) = 0,

Θ(0.5) = −2.25e−1 + 2.25e−0.2,

with exact solution when α = 1 is:{
ω(t) = −3.375e−2t + 1.875e−0.4t + 1.5,
Θ(t) = −2.25e−2t + 2.25e−0.4t.

After the initial conditions have been homogenised and algorithm 1 used, apply ti = 0.5i
n , i = 1, n and

n = 40, the tables 1 and 2 describe the exact solutions of ω(t) and Θ(t) and approximate solutions for
different values of α.

Table 1. Numerical results for ω(t) of example 5.1.

t Exact Sol of ω(t) App Sol of ω(t) α = 0.9 α = 0.8 α = 0.7 Abs Error Rel Error

0. 0. 0. 0. 0. 0. 0. Indeterminate
0.1 0.538264 0.538235 0.672451 0.820896 0.975714 2.8979 × 10−5 5.3838 × 10−5

0.2 0.968513 0.968496 1.10364 1.22992 1.34045 1.6912 × 10−5 1.7462 × 10−5

0.3 1.31074 1.31073 1.41427 1.49734 1.55882 7.6470 × 10−6 5.8341 × 10−6

0.4 1.58128 1.58128 1.64374 1.68334 1.70372 5.4565 × 10−7 3.4507 × 10−7

0.5 1.79353 1.79353 1.81496 1.8167 1.805 4.8467 × 10−6 2.7023 × 10−6

Table 2. Numerical results for Θ(t) of example 5.1.

t Exact Sol Θ(t) App Sol of Θ(t) α = 0.9 α = 0.8 α = 0.7 Abs Error Rel Error

0. 0. 0. 0. 0. 0. 0. Complex Infinity
0.1 0.319632 0.31963 0.397424 0.48192 0.56754 1.7129 × 10−6 5.3589 × 10−6

0.2 0.568792 0.568797 0.643125 0.70952 0.76353 5.6398 × 10−6 9.9154 × 10−6

0.3 0.760745 0.760756 0.812467 0.84948 0.87141 1.1152 × 10−5 1.4659 × 10−5

0.4 0.906333 0.906349 0.930619 0.93950 0.93585 1.5248 × 10−5 1.6823 × 10−5

0.5 1.01442 1.01443 1.01229 0.99765 0.97506 1.8229 × 10−5 1.7970 × 10−5
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Figure 1. Solution and graphical curves of Example 5.1.

Graphs of the approximate solutions of ω(t) are plotted in Figure 1 (a), for different values of α. It
is obvious from Figure 1 (a) that the approximate solutions are in reasonable alignment with the exact
solution when α = 1 and the solutions are continuously based on a fractional derivative. The graph in
Figure 1 (b) represent the absolute errors of θ(t).

Example 5.2. Consider the following system:{
Dαω = ω2 − 4(ω − 1) − cos2(t) − sin(t),
DαΘ = ωΘ − 2Θ − t2 cos(t) + 2t,

0 6 t 6 1,

with conditions: {
ω(0) = 3,
Θ(1) = 1,

when α = 1 the exact solution is: {
ω(t) = cos(t) + 2,
Θ(t) = t2.

After homogenizing the initial conditions and using algorithm 1, apply ti = i
n , i = 1, n and n = 35,

the tables 3 and 4 describe the exact solutions of ω(t) and Θ(t) and approximate solutions for different
values of α.

Table 3. Numerical results for ω(t) of example 5.2.

t Exact Sol of ω(t) App Sol of ω(t) α = 0.9 α = 0.8 α = 0.7 Abs Error

0. 3. 3. 3. 3. 3. 0.
0.2 2.98007 2.98008 2.97308 2.96301 2.94782 1.71231717 × 10−5

0.4 2.92106 2.92108 2.89745 2.86363 2.81286 2.336775593 × 10−5

0.6 2.82534 2.82537 2.77748 2.71004 2.61271 3.05778094 × 10−5

0.8 2.69671 2.69675 2.6203 2.51736 2.38161 3.84719926 × 10−5

1. 2.5403 2.54035 2.43686 2.3082 2.15981 4.636294967 × 10−5
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Table 4. Numerical results for Θ(t) of example 5.2.

t Exact Sol of Θ(t) App Sol of Θ(t) α = 0.9 α = 0.8 α = 0.7 Abs Error

0. 0. 0. 0. 0. 0. 0.
0.2 0.04 0.0399862 0.0526074 0.0695245 0.0925163 1.379651819 × 10−5

0.4 0.16 0.159985 0.198264 0.246476 0.306978 1.465169064 × 10−5

0.6 0.36 0.359987 0.428814 0.509138 0.597815 1.348748932 × 10−5

0.8 0.64 0.639991 0.735269 0.833398 0.919358 9.089432173 × 10−6

1. 1. 1. 1.10687 1.19567 1.24369 0.

Figure 2. Solution and graphical curves of Example 5.2.

Graphs of the approximate solutions of θ(t) are plotted in Figure 2 (b) for different values of α. The
graph in Figure 2 (a) represent the absolute errors of ω(t).

Example 5.3. Consider the following fractional system:
Dαω = Θ − ρ + t,
DαΘ = 3t2,

Dαρ = Θ + e−t, 0 ≤ t ≤ 1,

subject to: 
ω(0) = 1,
Θ(0) = 1,
ρ(1) = 1.25 − e−1,

with exact solution: 
ω(t) = −0.05t5 + 0.25t4 + t + 2 − e−t,

Θ(t) = t3 + 1,
ρ(t) = 0.25t4 + t − e−t.

After the initial conditions have been homogenised and algorithm 1 used, apply ti = i
n , i = 1, n and

n = 30, the tables 5–7 describe the exact solutions of ω(t), Θ(t) and ρ and approximate solutions for
different values of α.
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Table 5. Numerical results for ω(t) of example 5.3.

t Exact Sol of ω(t) App Sol of ω(t) α = 0.9 α = 0.8 α = 0.7 Absolute Error
0. 1. 1. 1. 1. 1. 0.

0.2 1.38165 1.38163 1.45132 1.52412 1.59527 2.778531454 × 10−5

0.4 1.73557 1.73552 1.80231 1.85993 1.90359 4.434730105 × 10−5

0.6 2.0797 2.07964 2.12935 2.16496 2.18472 5.613341879 × 10−5

0.8 2.43669 2.43662 2.46954 2.48922 2.49658 6.305905268 × 10−5

1. 2.83212 2.83206 2.8543 2.86685 2.87146 6.508054219 × 10−5

Table 6. Numerical results for Θ(t) of example 5.3.

t Exact Sol of Θ(t) App Sol of Θ(t) α = 0.9 α = 0.8 α = 0.7 Absolute Error
0. 1. 1. 1. 1. 1. 0.

0.2 1.008 1.38163 1.01064 1.01411 1.01865 7.327471963 × 10−15

0.4 1.064 1.73552 1.07942 1.09826 1.1212 1.720845688 × 10−13

0.6 1.216 2.07964 1.25738 1.30578 1.36221 8.968381593 × 10−13

0.8 1.512 2.43662 1.59278 1.6843 1.78757 1.98951966 × 10−12

1. 2. 2.83206 2.13222 2.27818 2.43862 1.869615573 × 10−12

Table 7. Numerical results for ρ(t) of example 5.3.

t Exact Sol of ρ(t) App Sol of ρ(t) α = 0.9 α = 0.8 α = 0.7 Absolute Error

0. -1. -1. -1. -1. -1. 0.
0.2 -0.618331 -0.61828 -0.534717 -0.436751 -0.323107 5.101539186 × 10−5

0.4 -0.26392 -0.263882 -0.161995 -0.0516111 0.0670132 3.825972939 × 10−5

0.6 0.0835884 0.0836139 0.191075 0.304226 0.423533 2.55064838 × 10−5

0.8 0.453071 0.453084 0.568489 0.69138 0.823913 1.275324046 × 10−5

1. 0.882121 0.882121 1.01733 1.16604 1.3321 0.

Figure 3. Solution and graphical curves of Example 5.3.

Graphs of the approximate solutions of ω(t) and θ(t) are plotted in Figure 3 (a), Figure 3 (b) for
different values of α. The graph in Figure 3 (c) represent the absolute errors of ρ(t).

Now, we consider the following tables where the RKHS method has been applied in order to give
numerical approximations with other values of n, and then compare it with finite difference and
collocation methods.
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Table 8. Error in ω(t) of the first example.

t Error in ω(t) Error in ω(t) Error in ω(t) Error in ω(t)
by RKHS for n=40 by RKHS for n=100 by Finite difference by Collocation

0 0. Indeterminate 0. 0.
0.1 2.89 × 10−5 3.93 × 10−6 2.08 × 10−2 1.62 × 10−4

0.2 1.69 × 10−5 1.65 × 10−6 3.25 × 10−2 8.06 × 10−4

0.3 7.64 × 10−6 8.48 × 10−7 3.79 × 10−2 4.04 × 10−4

0.4 5.45 × 10−7 4.29 × 10−9 3.89 × 10−2 1.61 × 10−4

0.5 4.84 × 10−6 4.19 × 10−7 3.70 × 10−2 1.73 × 10−4

Table 9. Error in Θ(t) of the first example.

t Error in Θ(t) Error in Θ(t) Error in Θ(t) Error in Θ(t)
by RKHS for n=40 by RKHS for n=100 by Finite difference by Collocation

0 0. Indeterminate 2.81 × 10−2 1.41 × 10−4

0.1 1.71 × 10−6 4.40 × 10−6 1.40 × 10−2 2.77 × 10−5

0.2 5.63 × 10−6 1.86 × 10−6 5.01 × 10−3 7.64 × 10−5

0.3 1.11 × 10−5 8.21 × 10−7 7.39 × 10−4 9.81 × 10−5

0.4 1.52 × 10−5 9.84 × 10−7 6.04 × 10−4 1.31 × 10−4

0.5 1.82 × 10−5 1.14 × 10−6 0. 0.

Table 10. Error in ω(t) of the second example.

t Error in ω(t) Error in ω(t) Error in ω(t) Error in ω(t) Error in ω(t)
by RKHS for n=35 by RKHS for n=60 by RKHS for n=100 by Finite difference by Collocation

0 0. 0. 0. 0. Failed
0.2 1.71 × 10−5 3.44 × 10−6 2.51 × 10−7 1.09 × 10−2 Failed
0.4 2.33 × 10−5 4.69 × 10−6 3.49 × 10−7 2.62 × 10−2 Failed
0.6 3.05 × 10−5 6.14 × 10−6 4.73 × 10−7 4.63 × 10−2 Failed
0.8 3.84 × 10−5 7.73 × 10−6 5.98 × 10−7 7.11 × 10−2 Failed
1 4.63 × 10−5 9.73 × 10−6 7.45 × 10−7 9.91 × 10−2 Failed

Table 11. Error in Θ(t) of the second example.

t Error in Θ(t) Error in Θ(t) Error in Θ(t) Error in Θ(t) Error in Θ(t)
by RKHS for n=35 by RKHS for n=60 by RKHS for n=100 by Finite difference by Collocation

0 0. 0. 0. 5.54 × 10−2 Failed
0.2 1.37 × 10−5 2.82 × 10−6 2.51 × 10−7 4.49 × 10−2 Failed
0.4 1.46 × 10−5 3.00 × 10−6 3.49 × 10−7 3.34 × 10−2 Failed
0.6 1.34 × 10−5 2.79 × 10−6 4.73 × 10−7 2.04 × 10−2 Failed
0.8 9.08 × 10−6 2.03 × 10−6 5.98 × 10−7 7.77 × 10−3 Failed
1 0. 0. 0. 0. Failed
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Table 12. Error in ω(t) of the third example.

t Error in ω(t) Error in ω(t) Error in ω(t) Error in ω(t)
by RKHS for n=30 by RKHS for n=60 by Finite difference by Collocation

0 0. 0. 0. 0.
0.2 2.77 × 10−5 1.43 × 10−6 2.83 × 10−3 5.86 × 10−4

0.4 4.43 × 10−5 1.42 × 10−6 1.24 × 10−2 5.29 × 10−4

0.6 5.61 × 10−5 1.12 × 10−6 3.13 × 10−2 5.44 × 10−4

0.8 6.30 × 10−5 6.62 × 10−6 6.06 × 10−2 4.86 × 10−4

1 6.50 × 10−5 9.69 × 10−6 1.00 × 10−2 1.08 × 10−3

Table 13. Error in Θ(t) of the third example.

t Error in Θ(t) Error in Θ(t) Error in Θ(t) Error in Θ(t)
by RKHS for n=30 by RKHS for n=60 by Finite difference by Collocation

0 0. 0. 0. 0.
0.2 7.32 × 10−15 6.28 × 10−13 5.00 × 10−3 0.
0.4 1.72 × 10−13 2.80 × 10−13 2.20 × 10−2 0.
0.6 8.96 × 10−13 4.10 × 10−13 5.10 × 10−2 0.
0.8 1.98 × 10−12 5.94 × 10−13 9.20 × 10−2 0.
1 1.86 × 10−12 5.37 × 10−14 1.45 × 10−1 0.

Table 14. Error in ρ(t) of the third example.

t Error in ρ(t) Error in ρ(t) Error in ρ(t) Error in ρ(t)
by RKHS for n=30 by RKHS for n=60 by Finite difference by Collocation

0 0. 0. 5.59 × 10−2 1.29 × 10−4

0.2 5.10 × 10−5 1.48 × 10−6 6.47 × 10−2 5.49 × 10−5

0.4 3.82 × 10−5 3.07 × 10−6 6.80 × 10−2 6.03 × 10−5

0.6 2.55 × 10−5 4.66 × 10−6 6.14 × 10−2 5.73 × 10−5

0.8 1.27 × 10−5 6.26 × 10−6 4.03 × 10−2 6.23 × 10−5

1 0. 0. 0. 0.

6. Conclusions

In this article, we effectively utilize the RKHSM to develop an approximate solution of differential
fractional equations with temporal two-point BVP. The results of examples demonstrate reliability
and consistency of the method. In the future, we recommend further research on the RKHS method,
as solving the temporal two-point boundary value problems with the conformable and the Atangana-
Baleanu derivatives. We expect to achieve better results and good approximations for the solutions.
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