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Abstract: We propose a new quantity to study complicated dynamical systems based on the repelling
behaviors of particle trajectories throughout the whole time interval under consideration. Since this
proposed quantity measures the averaged repelling rate along each particle trajectory against nearby
trajectories, we name the quantity the Lagrangian Averaged Repelling Rate (LARR). The LARR is
shown to be objective, i.e. unchanged under time-dependent rotations and translations of the coordinate
frame. We also compare the proposed LARR with the commonly used concept called the finite time
Lyapunov exponent (FTLE), the latter also measures the separation behaviors of particles but only
cares about the initial and terminal states of them. An efficient Eulerian algorithm is also proposed
to compute the LARR. Numerical examples illustrate the effectiveness of the LARR in measuring the
repelling properties of particle trajectories and also the difference between the proposed LARR and the
traditional FTLE.
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1. Introduction

In recent decades, people from various fields have been working on developing useful tools to
analyze, visualize, and then extract important information in time-varying continuous dynamical
systems, especially the fluid flows [1, 2, 4, 5, 11, 16, 17, 19–21, 23]. Mathematically, a dynamical
system is modelled as an ordinary differential equation (ODE) given by

ẋ(t) = u(x(t), t) (1.1)

with the initial condition x(t0) = x0 and a Lipschitz velocity field u : Rd × R → Rd. Among all, the
Lagrangian coherent structure (LCS) is one of most useful and interesting approaches, which partitions
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the space-time domain into subregions based on certain quantity measured along with the passive tracer
advected according to the associated dynamical system.

The most commonly used way to extract the LCS is based on the so-called finite time Lyapunov
exponent (FTLE) [5, 6, 8–10, 13–15, 21]. It measures the rate of change in the distance between
neighboring particles across a finite interval of time with an infinitesimal perturbation in the initial
position. Define the flow map Φ

t0+T
t0 : Rd → Rd as the mapping which takes the point x0 to the particle

location at the final time t = t0 + T , i.e Φ
t0+T
t0 (x0) = x(t0 + T ) with x(t) satisfying (1.1). The FTLE can

then be computed using the largest eigenvalue of the deformation matrix based on the Jacobian of this
resulting flow map. For example, the FTLE σT

0 (x) from time t = 0 to time t = T is computed as

σT
0 (x) = 1

T ln
√
λmax(∆T

0 (x)) where ∆T
0 (x) = (∇ΦT

0 (x))T (∇ΦT
0 (x)) is the deformation matrix and (·)T

denotes the matrix transpose. Following the definition of Haller [5, 7, 8], one can see that the LCS is
closely related to the ridges of the FTLE fields.

From the definition of the FTLE, however, one can see that the FTLE computed over a time interval,
say [t0, t0 + T ], only concerns the particle positions at the initial time t = t0 and the terminal time t =

t0 + T . In other words, it does not care about where these particle trajectories travel at the intermediate
times t ∈ (t0, t0 + T ). In this paper, we propose an alternative tool called the Lagrangian Averaged
Repelling Rate (LARR), to measure the averaged repelling rate of each particular particle trajectory in
the whole time interval. In particular, we trace the particle evolution and compute the trajectory integral
of its maximum repelling rate against nearby trajectories within the whole time intervel [t0, t0 + T ]. It
means that, the proposed LARR takes the repelling behavior of the trajectory at any intermediate time
t ∈ (t0, t0 +T ) into account. A counterpart for measuring the attracting behaviors of particle trajectories
can be similarly defined and discussed and we omit it in this paper.

Finally, we want to point out that compared to the traditional FTLE, the LARR actually measures the
repelling properties of trajectories from a different perspective. People might make a choice depending
on their need or the particular application. If they care about the ultimate growth rate of distances
between particle trajectories at the single final time, then only the initial and final positions of these
trajectories are concerned and the FTLE should be used. However, if they want to measure the averaged
growth rate of distances between particle trajectories during the whole time interval, then LARR might
be a better choice.

2. The proposed LARR

In this section, we first give two simple examples to illustrate that the FTLE values only depend on
the initial and final locations of particle trajectories and then propose an alternative quantity called
LARR. After that, the objectivity of the LARR is shown and an efficient Eulerian algorithm for
computing the LARR is developed.

2.1. Two illustrative examples

Before giving the definition of the LARR, we first consider two examples to show that the FTLE
only focuses on the initial and final particle locations and thus might not be enough in measuring
the averaged separation or repelling behaviors of particle trajectories. The first example is a constant
velocity model given by u(x) = (1, 0)T , where all particles travel with the constant speed 1 towards
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the positive x-axis as shown in Figure 1(a). It is easy to see that the deformation matrix is the second
order identity matrix and hence the FTLE σ1

0(x) from t = 0 to t = 1 equals to zero at any point x in the
phase space. Then we consider a little more complex dynamical system with the velocity field u(x) =

(1, y2 sin(2πt))T , from which we can obtain an analytical flow map ΦT
0 (x) = (x+T, πy/(π−y sin2(πT )))T .

In particular, the flow map at T = 1 is given by Φ1
0(x) = (x + 1, y)T and the resulting FTLE is also zero

at any point x. Figure 1(b) shows several trajectories within the time interval [0, 1] of particles taking
off from the points on the line segment with endpoints (0, 1) and (0, 2). In both subfigures, we can see
that the distance between any two nearby trajectories at time t = 1 does not change compared to their
initial distance. As we said, the FTLE only cares about the particle states at the initial time t = 0 and
the terminal time t = 1. As a result, it is not surprising that the FTLE σ1

0(x) constantly equals to zero at
any point x in both examples. However, we can see from Figure 1(b) that those particle trajectories do
not always keep a constant distance from each other during the evolution process in the intermediate
time levels t ∈ [0, 1]. On average, the upper trajectories have higher repelling rates than the lower ones.

(a) x

y

1

2

(b) x

y

1

2

Figure 1. Several particle trajectories starting from the points (0, y0) with y0 ∈ [1, 2]
corresponding to (a) the first example, and (b) the second example.

2.2. The construction of the LARR

Inspired by the second example in Section 2.1, we here propose a novel tool to measure the averaged
repelling rate along the whole particle trajectory under consideration. In particular, we have to consider
the repelling rate of the trajectory at any time level τ ∈ [t0, t0 + T ], not only the initial and the terminal
time levels. To measure the repelling rate of the particle trajectory x(t) at a particular time level τ ∈
[t0, t0 + T ], we consider another particle trajectory x∗(t) which is infinitesimally close to x(t) at time τ,
i.e. |ξ(τ)| � 1, where ξ(t) , x∗(t) − x(t) denotes the difference between the two trajectories at time t.
According to (1.1), we have

dξ(t)
dt
|t=τ = u(x(τ) + ξ(τ), τ) − u(x(τ), τ) = ∇u(x(τ), τ)ξ(τ) + G(x(τ), ξ(τ))

where G is the high order nonlinear terms of ξ(τ). Ignoring the nonlinear terms, we will simply have
ξ̇(τ) = ∇u(x(τ), τ)ξ(τ).

AIMS Mathematics Volume 6, Issue 4, 3378–3392.



3381

Define the separation rate between x(t) and x∗(t) at time τ as V(τ) , 1
2

d
dt |ξ(t)|

2|t=τ, then we have
V(τ) = 〈ξ(t), ˙ξ(t)〉|t=τ = 〈ξ(τ),∇u(x(τ), τ)ξ(τ)〉 = 〈ξ(τ), S (x(τ), τ)ξ(τ)〉 where S (x, t) is the rate-of-strain
tensor given by S = (∇u + ∇uT )/2. If V < 0, the two trajectories get closer over time while V > 0
indicates their separation. As a result, the separation rate between x(t) and x∗(t) at t = τ is bounded
by V(τ) ≤ λmax(S (x(τ), τ))|e(τ)|2, where e(τ) aligns with the eigenvector associated with the largest
eigenvalue of the rate-of-strain tensor λmax(S (x(τ), τ)). In other words, the maximum repelling rate
of the trajectory x(t) at time t = τ against any nearby trajectory is actually measured by the quantity
λmax(S (x(τ), τ)). The LARR of the trajectory x(t) within the time interval [t0, t0 + T ] is then defined as
the integral

LARRt0+T
t0 (x0) =

1
T

∫ t0+T

t0
λmax(S (x(t), t))dt (2.1)

where x0 = x(t0) is the initial location of x(t) at time t = t0. We can see that the proposed LARR
concerns the repelling behavior of the trajectory at any intermediate time.

Now we get back to the two examples given in Section 2.1 and consider the corresponding LARR
values. For the first example, the rate-of-strain tensor S (x, t) is constantly equal to zero and therefore
LARRt0+T

t0 (x) = 0 for any x in the spatial domain, which indicates that no particle trajectory repels the
nearby trajectories. This satisfies our expectation since all particle trajectories have kept their distance
from each other during the whole time interval [t0, t0 + T ]. In the second example, the trajectory of the
particle initially located at x0 = (x0, y0) can be analytically given by x(t) = (x0+t, πy0/(π−y0 sin2(πt)))T .
The LARR of the trajectories within the time interval [0, 1] starting from the line segment (0, 1) →
(0, 2) is given by LARR1

0(x0, y0) = 2 ln π
π−y0

with 1 ≤ y0 ≤ 2, which indicates that the upper the
trajectory, the larger the LARR. This result is very reasonable as shown in Figure 1(b), since the upper
trajectories repel the nearby trajectories more during the evolution process. This example suggests that
the LARR is more valid and reasonable in measuring the averaged repelling behaviors of the whole
particle trajectory.

2.3. The objectivity of the LARR

Since LARR is used to measure the intrinsic repelling behaviors of particle trajectories, a basic
requirement is that it is objective, i.e. remains invariant under coordinate changes of the form

x = Q(t)x̃ + b(t), (2.2)

where Q(t) is a time-varying orthogonal matrix and b(t) is a time-varying translation vector. The
following theorem guarantees this objectivity of the LARR.

Theorem 2.1. The LARR defined as in (2.1) is invariant under any coordinate change given by (2.2).

Proof. According to the definition of the flow map, we have x(t) = Φt
t0(x0). Plugging (2.2) into this

formula gives Q(t)x̃(t) + b(t) = Φt
t0(Q(t0)x̃0 + b(t0)), or equivalently,

Φ̃t
t0(x̃0) = QT (t)[Φt

t0(Q(t0)x̃0 + b(t0)) − b(t)],

where we use ·̃ to denote the operations in the transformed framework. Differentiating this equation
with respect to x̃0 gives ∇̃Φ̃t

t0(x̃0) = QT (t)∇Φt
t0(x0)Q(t0). Differentiating this formula with respect to

time t and recalling that d
dt∇Φt

t0(x) = ∇u(Φt
t0(x), t)∇Φt

t0(x), we have

∇̃ũ(x̃(t), t) = Q̇T (t)Q(t) + QT (t)∇u(x(t), t)Q(t).
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Adding the transpose of both sides yields

2S̃ (x̃(t), t) = Q̇T (t)Q(t) + QT (t)Q̇(t) + 2QT (t)S (x(t), t)Q(t)
= d(QT (t)Q(t))/dt + 2QT (t)S (x(t), t)Q(t)
= 2QT (t)S (x(t), t)Q(t).

That is, S̃ (x̃(t), t) is similar to S (x(t), t) and thus λmax(S̃ (x̃(t), t)) = λmax(S (x(t), t)). �

2.4. An efficient Eulerian algorithm for computing the LARR

Since the LARR is a quantity defined along each particular particle trajectory, a natural way to
compute it is using the Lagrangian ray tracing approach. In particular, one numerically solves the
integral (2.1) and the ODE system (1.1) simultaneously from the initial time t = t0 to the terminal
time t = t0 + T . In this paper, we propose an efficient Eulerian-type algorithm to compute the LARR
where only one single partial differential equation (PDE) needs to be solved. For simplicity, suppose
[0,T ] is the time interval of interest and the value of LARRT

0 (x) is required at each mesh point x.
According to (2.1), we have LARRT

0 (x) = 1
T

∫ T

0
λmax(S (Φt

0(x), t))dt. Then we define a real-valued
function F(x, t) : Ω × [0,T ]→ R as

F(x, t) ,
∫ T

t
λmax(S (Φs

t (x), s))ds. (2.3)

with Ω the computational domain. Indeed, F(x, t) denotes the line integral of the maximal repelling
rate along the particle trajectory starting from the location x at time t and terminating at time T . It is
obvious that F(x,T ) = 0 and LARRT

0 (x) = F(x, 0)/T for any x ∈ Ω. Furthermore, F(x, t) decreases
along any particle trajectory since

DF(x, t)
Dt

= −λmax(S (Φt
t(x), t)) = −λmax(S (x), t))

where D(·)
Dt denotes the material derivative, or equivalently,

∂F(x, t)
∂t

+ (u · ∇)F(x, t) = −λmax(S (x), t)) . (2.4)

Compared to the Lagrangian approach, the proposed Eulerian approach is more efficient. In
particular, our Eulerian approach only needs to solve one single PDE (2.4) using any well-developed
high order numerical methods like WENO5-TVDRK2 [3, 18, 22] backward in time from t = T to
t = 0 with the terminal condition F(x,T ) = 0. The required LARR is then obtained by assigning
LARRT

0 (x) = F(x, 0)/T . In contrast, the Lagrangian approach propose to solve the integral (2.1) and
the ODE system (1.1) simultaneously from the initial time t = 0 to the terminal time t = T . That is,
d + 1 equations are solved together in the Lagrangian approach where d is the dimension of the
underlying velocty field. Our Eulerian approach is even more efficient if the velocity data is only
available at discrete mesh points. All computations are implemented only on the mesh in our Eulerian
approach. As a result, we only need discrete velocity data at mesh points and no interpolation is
required. For the Lagrangian approach, however, since x(t) is in general not a mesh point, integration
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of ODEs (1.1) will require interpolation on the discrete velocity data at each time step. Furthermore,
the computation of the integral (2.1) involves the computation of the velocity gradient along each
particle trajectory. One has to first solve the velocity gradient at mesh points by using the finite
difference scheme upon the discrete velocity data and then use the interpolation scheme to obtain the
velocity gradient data at off-grid points. All these extra interpolation routines could be quite
time-consuming. Even worse, as mentioned in [24], one needs to use high-order numerical algorithms
to implement the integration and interpolation, otherwise some small scale flow features might not be
accurately extracted.

3. Numerical examples

We give four examples to support our claims. The first three are analytical examples while the last
one is a real data example.

3.1. The double gyre flow

This example is taken from [21] to describe a periodically varying double-gyre. The flow is modeled
by the stream-function ψ(x, y, t) = A sin[πk(x, t)] sin(πy), where k(x, t) = a(t)x2 + b(t)x with a(t) =

ε sin(ωt) and b(t) = 1 − 2ε sin(ωt). Here we set the parameters A = 0.1 and ω = 2π/10.

3.1.1. The solution of LARR using our proposed algorithm

In this part, we compute the LARR field LARR10
0 (x) using our Eulerian algorithm by assigning

ε = 0.3 and using only the velocity data at mesh points. The solution is shown in Figure 2(a) where
∆x = ∆y = 1/256. In the implementation, we only need to solve the single PDE (2.4) backward from
t = 10 to t = 0 with the terminal condition F(x, 10) = 0. To show the convergence of our Eulerian
algorithm, we have shown the L1 errors of LARR10

0 (x) using the red solid line in Figure 2(b) with ∆x
varying from 1/32 to 1/512 while keeping ∆t/∆x fixed. As a comparison, the errors of the solutions
of LARR10

0 (x) computed using the Lagrangian approach are also shown using a blue dashed line in
the same figure where the TVD-RK4 scheme is used for the integration of corresponding ODEs and
the third order cubic spline method is used as the interpolation operator for solving the velocity and
velocity gradient at off-grid points. As can be seen, our Eulerian approach is a little more accurate
than the Lagrangian approach and our proposed Eulerian approach shows second order accuracy with
respect to ∆x. For the Lagrangian approach, since we have used high order numerical schemes to
implement the integration, interpolation and finite difference, the second order accuracy can also be
observed. However, once lower order interpolation schemes are used, the Lagrangian approach will
no longer show second order accuracy. Regarding the computational efficiency, our Eulerian approach
will behave much better than the traditional Lagrangian approach. The comparison is given in Table 1
which shows that the Lagrangian approach requires twice to three times the computational time of our
Eulerian approach.

Now we look further into Figure 2(a), from which we can observe sharp structures which correspond
to the initial locations of the trajectories with high repelling rates. In particular, we have marked on this
figure point A = (1.15625, 0.34375) which has a high LARR value and point B = (1, 0.5) which has
a low LARR value. From the definition of LARR, the particle trajectories starting from point A and
B at time t = 0 and terminating at time t = 10 must repel the nearby trajectories with a high and low
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rate, respectively. In Figure 3(a), we have shown the evolution of the distances between the trajectories
starting from point A and four neighboring mesh points during the time period [0, 10]. A counterpart
for point B is shown in Figure 3(b). To have a clearer comparison, in Figure 3(c) we have used a red
(blue) line to show the temporal evolution of the maximum distance between the trajectories starting
from point A (point B) and four neighboring mesh points. All the results support our claim that the
higher LARR value suggests the more repelling particle trajectory.
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Figure 2. (Section 3.1) (a) The LARR10
0 (x) field computed with our proposed Eulerian

approach with ε = 0.3. (b) The L1 errors of the numerical approximation to LARR10
0 (x)

computed with our proposed Eulerian approach (red solid line) and also the traditional
Lagrangian approach (blue dashed line) with respect to different ∆x’s. We also plot a solid
black line with slope 2 as a reference.
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Figure 3. (Section 3.1) The distances between the trajectories starting from (a) point A, (b)
point B and four neighboring mesh points during the time period [0, 10]. (c) The maximum
distance between the trajectories starting from point A (point B) and four neighboring mesh
points is shown using a red (blue) line.

∆x 1/32 1/64 1/128 1/256 1/512
Eulerian approach 0.9s 3.2s 20.6s 179.8s 1453.1s

Lagrangian approach 1.5s 8.5s 51.2s 502.3s 3985.2s

Table 1. The computational time of our proposed Eulerian approach and the Lagrangian
approach with different ∆x’s and fixed ∆t/∆x.
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3.1.2. Comparison between the proposed LARR and the traditional FTLE

Then we turn ε to 0.1 and compare our LARR field with the traditional FTLE field in detail. Figure
4(a) and (b) show the LARR field and the FTLE field, respectively. We can observe that the
macroscopic topological structures of these two fields are similar. However, there do exist some
differences between them, especially at the ridge locations. The FTLE field seems to have a sharper
ridge and the FTLE values on the ridge have little difference. In contrast, the LARR values on its
ridge have obvious differences, which implies that trajectories starting from the points on the LARR
ridge have different levels of repelling properties. To have a better explanation, we first choose two
points A1 = (1.0430, 0.1680) and A2 = (1.0820, 0.9219) on the FTLE ridge which have been marked
using small black circles as shown in Figure 5. The LARR values at A1 and A2 are 0.8248 and 0.7127,
respectively, i.e. LARR10

0 (A1) = 0.8248 and LARR10
0 (A2) = 0.7127. And the FTLE values are given

by σ10
0 (A1) = 0.4988 and σ10

0 (A2) = 0.5604, respectively. Interestingly we have σ10
0 (A1) < σ10

0 (A2) but
LARR10

0 (A1) > LARR10
0 (A2). As introduced in Section 1, the proposed LARR and the traditional

FTLE measure the repelling properties of trajectories from different perspectives. The FTLE only
concerns the particle positions at the initial time t = 0 and the final time t = 10 and does not care
about where these particle trajectories have traveled at the intermediate times t ∈ (0, 10). The
proposed LARR, however, measures the averaged repelling rate of each particular particle trajectory
against nearby trajectories in the whole time interval t ∈ [0, 10]. It means that, the LARR traces the
repelling behavior of the trajectory at any time t ∈ [0, 10]. More intuitively, in Figure 6(a) we have
shown the temporal evolution of the maximum distance between the trajectories starting from point Ai

(i = 1, 2) and four neighboring mesh points during the time period [0, 10]. We can see that the red line
is beyond the blue line until about t = 9.2 and then the blue line goes beyond the red line. This means
that, in most of the time during t ∈ [0, 10] or averagely, the trajectory starting from A1 is more
repelling than that from A2. As a result, we have LARR10

0 (A1) > LARR10
0 (A2). In contrast, the FTLE

does not care about the intermediate process and only focuses on the initial and final states. At the
final time t = 10, the blue line is beyond the red line. Therefore, it gives σ10

0 (A1) < σ10
0 (A2), although

the blue line is under the red line in most of the time.

We have also chosen another two points B1 = (0.6563, 0.9492) and B2 = (1.0586, 0.4766) on the
ridge as marked using small black stars in Figure 5. The corresponding LARR values are
LARR10

0 (B1) = 0.6617, LARR10
0 (B2) = 0.7664 and the FTLE values at the two points are almost the

same given by σ10
0 (B1) = 0.5430, σ10

0 (B2) = 0.5441. Figure 6(b) gives the temporal evolution of the
maximum distance between the trajectories starting from point Bi (i = 1, 2) and four neighboring
mesh points within t ∈ [0, 10]. We can see that the blue line is always beyond the red line but finally
they are very close at t = 10. This means that, the trajectory from B2 is more repelling than that from
B1 during the whole time interval t ∈ [0, 10] and surely LARR10

0 (B2) > LARR10
0 (B1). However, since

they are very close at the final time t = 10, we have σ10
0 (B1) ≈ σ10

0 (B2), although the blue line is
always beyond the red line.
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Figure 4. (Section 3.1) (a) The LARR10
0 (x) field and (b) the FTLE field σ10

0 (x) of the double
gyre flow with ε = 0.1.
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Figure 5. (Section 3.1) A1, A2 are marked using small black circles and B1, B2 are marked
using small black stars on Figure 4.
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Figure 6. (Section 3.1) The maximum distance between the trajectories starting from (a) Ai

(i = 1, 2), (b) Bi (i = 1, 2) and four neighboring mesh points as a function of time t ∈ [0, 10].

3.1.3. Extension of the LARR to identify attracting trajectories

At the end of this example, we extend the use of the proposed LARR to identify the most attracting
trajectories. Recalling that backward FTLE measures the level of compression [8, 14], we here take a
similar idea and propose to compute the backward LARR from the current time t = t0 back to an earlier
time t = t0 − T . Figure 7(a) shows the backward LARR field LARR0

20(x) from the current time t = 20
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back to t = 0. The higher the LARR value, the more attracting the underlying particle trajectory. To
show this, we have particularly marked two points C1 = (0.9492, 0.7109) and C2 = (1.4727, 0.4297)
as shown in Figure 7(b) where the backward LARR values at C1 and C2 are high and low, respectively.
In particular, we have LARR0

20(C1) = 0.7899 and LARR0
20(C2) = 0.0652. As a result, the particle

trajectory reaching C1 at t = 20 should be very attracting while the trajectory getting to C2 at t = 20 can
hardly exhibit attraction. This claim is verified in Figure 8 which shows some neighbouring trajectories
near C1 and C2, respectively. In Figure 8(a) all the nearby trajectories get closer and closer to the
trajectory reaching C1. In contrast, the trajectory arriving at C2 has not obviously attracted the nearby
trajectories.
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Figure 7. (Section 3.1) (a) The backward LARR0
20(x) field. (b) Two points C1 and C2 are

marked.
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Figure 8. (Section 3.1) Some neighbouring trajectories near (a) C1 and (b) C2.

3.2. Rayleigh-Bénard convection cells

As the second example, we consider a model of Rayleigh-Bénard convection cells as introduced
in [12]. The stream-function of this model is given by

ψ(x, y, t) = sin[π(x − g(t))] sin(πy) .

Following [12], we here use a quasi-periodic roll motion g(t) = 0.3 sin(4πt) + 0.1 sin(2t). The
LARR1

0(x) field computed using our proposed algorithm is shown in Figure 9(a), with the mesh size
∆x = ∆y = 1/256. As a comparison, we have also plotted the FTLE field σ1

0(x) in Figure 9(b). The
two fields do exhibit some similarity to certain extent. However, like the double gyre flow in Section
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3.1.2, we can observe some differences between them. For example, the FTLE values are very close
at the two points A = (1.5117, 0.1523) and B = (1.1836, 0.5469) located on the FTLE ridge, which
have been marked using small black circles in Figure 9(a), (b). In particular, we have σ1

0(A) = 5.2240
and σ1

0(B) = 5.2536. In contrast, the LARR values at the two points are LARR1
0(A) = 5.8381 <

LARR1
0(B) = 7.3802. In Figure 9(c) we have shown the temporal evolution of the maximum distance

between the trajectories starting from point A and four neighboring mesh points within t ∈ [0, 1], using
the red line. A counterpart for point B is plotted using the blue line. We can see that the red line is
always under the blue line and even far from the blue line during a subinterval of [0, 1]. This indicates
that averagely the particle trajectory starting from B is more repelling than that from A in the whole
time period t ∈ [0, 1]. There is no doubt that LARR1

0(B) should be greater than LARR1
0(A) since the

LARR measures the averaged repelling rate of the particle trajectory against nearby trajectories in the
whole time interval. However, as we can see from Figure 9(c), the red line almost catches the blue line
at the final time t = 1. As a result, the FTLE values at the two points are very close since the the FTLE
only focuses on the final states of particle trajectories.
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Figure 9. (Section 3.2) (a) The LARR1
0(x) field and (b) the FTLE field σ1

0(x) marked by two
points A and B. (c) The maximum distance between the trajectories starting from point A
(point B) and four neighboring mesh points as a function of time t ∈ [0, 1] is plotted using
the red (blue) line.
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3.3. Spiral focus ridge

Then we take the spiral focus ridge for example to test our proposed Eulerian algorithm for
computing the LARR and also the effectiveness of the LARR in revealing the repelling properties of
particle trajectories. The example starts with a trivial field v(x, t) = (0, x)T and its flow map is given
by (Φv)τ0(x) = (x, y + τx)T . Let

α(x, t) =

(
x cos γ − y sin γ
x sin γ + y cos γ

)
and β(x, t) =

(
x cos(−γ) − y sin(−γ)
x sin(−γ) + y cos(−γ)

)
with γ = p0/(1 +

∣∣∣x2 + y2
∣∣∣). Then the velocity field w of the spiral focus ridge flow is constructed as

w(x, t) = (∇β)−1(x, t) ·
(
v(β(x, t), t) −

∂β

∂t
(x, t)

)
.

We set the parameter p0 = 12 and the computational domain as [−1, 1] × [−1, 1]. The LARR field
LARR3

0(x) computed using the proposed algorithm is shown in Figure 10(a) with the mesh size
∆x = ∆y = 1/128. We can see that the fine structures can be captured. Then we mark two points
A = (0.5,−0.6953) and B = (0.3594,−0.6719) on Figure 10(a) with a high and low LARR value,
respectively. The maximum distance between the trajectories starting from A and four neighboring
mesh points is plotted using the red line in Figure 10(b). A counterpart for B is also shown using a
blue line. As can be seen, the blue line is beyond the red line at the beginning. However, as time goes
the red line rises and goes far beyond the blue line. As a result, the trajectory starting from point A is
averagely more repelling than that from point B, which again verifies the effectiveness of the LARR.
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Figure 10. (Example 3.3) (a) The LARR field LARR3
0(x) computed using the proposed

Eulerian algorithm. (b) The maximum distance between the trajectories starting from point
A (point B) and four neighboring mesh points as a function of time t ∈ [0, 3] is plotted using
the red (blue) line.
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3.4. Ocean Surface Current Analyses Real-time (OSCAR)

To test the effectiveness of the LARR in measuring the repelling behaviors of particle trajectories
and also the robustness of our proposed Eulerian algorithm, finally we consider a more challenging
case, which is the Ocean Surface Current Analyses Real-time (OSCAR) data. In [25], we have used
this dataset to compute the FTLE field and the ISLE field. Here we compute the LARR field of
this dataset. As in [25], we also choose an ocean region near the Line Islands as our computational
region, which is enclosed by S 17◦ (17 degrees South) to N8◦ (8 degrees North) latitude and E180◦

(180 degrees East) to E230◦ longitude. We have re-processed the dataset to have a finer resolution of
0.25 days in the temporal direction and 1/12◦ in each spatial direction. The velocity data of the ocean
surface current within the first 50 days in year 2015 is used and then the corresponding LARR field
LARR50

0 (x) is computed using our Eulerian algorithm. Figure 11(a) shows the solution of LARR50
0 (x)

from which we can observe fine structures with high LARR values. Again we have marked two points
A = (E215.25◦, S 1.25◦) and B = (E217.5◦,N2.25◦) on this figure which have a high LARR value
and a low LARR value, respectively. From the definition of LARR, the particle trajectories starting
from point A and B at time t = 0 and terminating at time t = 50 must repel the nearby trajectories
with a high and low rate, respectively. In Figure 11(b) we have used a red (blue) line to show the
temporal evolution of the maximum distance between the trajectories starting from point A (point B)
and four neighboring mesh points, which also indicates that the higher LARR value does suggest the
more repelling particle trajectory.
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Figure 11. (Section 3.4) (a) The LARR50
0 (x) field computed with our proposed Eulerian

approach. (b) The maximum distance between the trajectories starting from point A (point
B) and four neighboring mesh points is shown using a red (blue) line.

4. Conclusions

In this study, we have proposed a novel quantity called LARR to measure the averaged repelling
rate along each particle trajectory against nearby trajectories. The LARR equally treats the repelling
behavior of the trajectory during the whole time period, unlike the traditional FTLE which only
concerns the initial and the terminal states of particle trajectories. The LARR is shown to be
framework-independent and we have also proposed a simple yet efficient Eulerian algorithm to
compute it. All the analytical and real data examples have shown the effectiveness of the proposed
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LARR in measuring the repelling behaviors of particle trajectories and the accuracy and efficiency of
our proposed Eulerian algorithm. We believe that the LARR should be closely related to the LCS or
even an alternative to LCS might be developed based on the LARR, which will be further subjects of
future research.
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