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1. Introduction

The theory of curves is a fundamental structure of differential geometry. In the differential geometry
of a regular curve in the Euclidean 3-space E3, it is well-known that one of the important problem is the
characterization of a regular curve. Some important types of space curves are helices (characterized by
τ/κ is constant), spherical curves (characterized by

(
σρ

′
)2

+ ρ2 = constant, with κρ = 1, στ = 1), and
rectifying curves (characterized by τ/κ is a non–constant linear function of the arc length parameter),
where τ and κ stands for the torsion and curvature of the curve, respectively. One interesting question
on space curves is to find different characterizations of spherical curves, helices as well as of rectifying
curves. Several interesting characterizations of spherical, and of rectifying curves in Euclidean space
are obtained in [1–5].

Recently, mathematicians studied theory of curves in 3-dimensional dual space motivated by E.
Study mapping. E. Study mapping is the corresponding between a dual spherical curve and a ruled
surface in Euclidean 3-space (for instance, see [6–8]). Moreover, the 3-dimensional dual space D3 can
be considered as the 6-dimensional space containing the Euclidean 3-space E3. Thus, the space curve
in D3 is the natural extension of the space curve in E3. However, several interesting characterizations
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of spherical and rectifying curves are obtained in the dual space D3 by means of the E. Study map, but
more light needs to be shed (see e.g. [9–14]).

In this work, we prove that the ratio of torsion and curvature of any dual rectifying curve is a non–
constant linear function of the dual arc length parameter. Also, we prove that the tangential height dual
function of every dual curve satisfies a third-order dual differential equation. Then several well-known
characterizations of dual spherical, normal and rectifying curves are consequences of this differential
equation. Finally, we prove a simple new characterization of dual spherical curves in term of the dual
Darboux vector.

2. Preliminaries

In this section, we list some notions, formulas of dual numbers and dual vectors (see e.g. [6–8]). An
oriented line L in Euclidean 3-space E3 can be determined by a point p ∈ L and a normalized direction
vector x of L, i.e., ‖x‖ = 1. To obtain components for L, one forms the moment vector

x∗ = p × x, (2.1)

with respect to the origin point in E3. If p is substituted by any point

y = p + vx, v ∈ R, (2.2)

on L, then (2.1) implies that x∗ is independent of p on L. The two vectors x and x∗ are not independent
of one another; they satisfy the following relationships:

< x, x >=1, < x∗, x >=0. (2.3)

The six components xi, x∗i (i = 1, 2, 3) of x and x∗ are called the normalized Plücker coordinates of
the line L. Hence the two vectors x and x∗ determine the oriented line L.

The set of dual numbers is

D = {X = x + εx∗ | x, x∗ ∈ R, ε , 0, ε2 = 0}. (2.4)

This set is a commutative ring under addition and multiplication. This set cannot be a field under
these operations, because 0 + εx∗ has no multiplication inverse in D. But this ring has a unit element
according to multiplication. A dual number X = x + εx∗, is called proper if x , 0.

For all pairs (x, x∗) ∈ E3 × E3 the set

D3 = {X = x + εx∗, ε , 0, ε2 = 0}, (2.5)

together with the scalar product

< X,Y >=< x, y > + ε(< y, x∗ > + < y∗, x >), (2.6)

forms the dual 3-space D3. Thereby, a point X = (X1, X2, X3)t has dual coordinates Xi = (xi + εx∗i ) ∈ D.
The norm is defined by

< X,X >
1
2 := ‖X‖ = ‖x‖ (1+ε

< x, x∗ >
‖x‖2

). (2.7)
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In the dual 3-space D3, the set of arbitrary dual vectors

K(̃r) = {X ∈D3 | ‖X‖2 = X2
1 + X2

2 + X2
3 = r̃}, (2.8)

is a dual sphere with radius r̃ = r + εr∗ and centered at the origin. Similarly, the dual unit sphere is
defined by

K = {X ∈D3 | ‖X‖2 = X2
1 + X2

2 + X2
3 = 1}. (2.9)

Via this, the E. Study map can be stated as follows: The set of all oriented lines in the Euclidean 3-space
E3 is one-to-one correspondence with the set of points of dual unit sphere in the dual 3-space D3. As a
direct consequence of the E. Study’s map, a differentiable curve

t ∈ R→ X(t) ∈ K (2.10)

on the dual unit sphere K, depending on a real parameter t, represents a differentiable family of straight
lines of E3 which is a ruled surface. The lines X = x + εx∗ are the generators of the surface [6–8].

Let α(t) = (α1(t), α2(t), α3(t)), and α∗(t) =
(
α∗1(t), α∗2(t), α∗3(t)

)
be real valued curves in the Euclidean

3-space E3. Then, a differentiable curve

α̃ : t ∈ R→ D3

α̃ = (α1(t), α2(t), α3(t)) + ε
(
α∗1(t), α∗2(t), α∗3(t)

)
,

represents a curve in the dual space D3 and is called a dual space curve. The dual arc length of α̃(t)
from t0 to t is defined by

s̃ = s + εs∗ =

t∫
t0

∥∥∥∥∥dα̃
dt

∥∥∥∥∥ dt =

t∫
t0

∥∥∥∥∥dα
dt

∥∥∥∥∥ dt + ε

t∫
t0

< t,
dα∗

dt
> dt,

where t(t) is a unit tangent vector of α(t). From now on, we will take the arc length s̃ as the parameter
instead of t. Then α̃(s̃) is called a dual arc-length parameter curve. From now on, we shall often not
write the dual parameter s̃ explicitly in our formulae.

Denote by {T, N, B} the moving dual Serret-Frenet frame along α̃(s̃) in the dual space D3. Then,
t + εt∗= T(̂s), n + εn∗ = N(̂s), and b + εb∗ = B(̂s) are the dual unit tangent, dual unit principal normal,
and dual unit binormal vectors of the curve at the point α̃(s̃). The dual arc-length derivative of the dual
Serret-Frenet frame is governed by the relations:

T′

(s̃)
N′

(s̃)
B′

(s̃)

 =


0 κ̃(s̃) 0
−̃κ(s̃) 0 τ̃(s̃)
0 −τ̃(s̃) 0




T(s̃)
N(s̃)
B(s̃)

 , (2.11)

where κ̂ = κ + εκ∗ is nowhere pure dual curvature, and τ̂ = τ + ετ∗ is nowhere pure dual torsion. The
above formulae are called the Serret-Frenet formulae of dual curve in D3. Here “prime” denotes the
derivative with respect to the pseudo dual parameter ŝ.

Introducing the dual vector Ω(s̃)= ω+εω∗ given by Ω =τ̃T + κ̃B, we may write
T′

(s̃)
N′

(s̃)
B′

(s̃)

 = Ω×


T(s̃)
N(s̃)
B(s̃)

 . (2.12)

The vector Ω is called the dual Darboux vector of the Serret-Frenet formulae of dual curve in D3.
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3. Dual curves satisfying τ̃/̃κ = ãs̃ + b̃

In the next theorem, we prove that the ratio of torsion and curvature of any rectifying dual curve is
a non–constant linear function of the dual arc length parameter s̃ (see [15], for some related results on
the same topic).

Theorem 3.1. Let α̃=α̃(s̃) be a unit speed dual curve with κ̃(s̃) , 0. Then, the following are
equivalent:
(i) There is a point m̃∈D3 such that every rectifying dual plane of α̃(s̃) goes through m̃.
(ii) τ̃/̃κ is a non-constant linear dual function ãs̃ + b̃.
(iii) There is a point m̃0∈D

3 such that
∥∥∥α̃(s̃) − m̃0

∥∥∥2
= (s̃ − c̃)2 + d̃2. The constants are related by

ã = ±
1

d̃
; c̃ = −

b̃
ã

; d̃ , 0.

And by the uniqueness of m̃, m̃ is equal to m̃0.
Proof. (i) Suppose that every rectifying dual plane of α̃(s̃) goes through a fixed point m̃ ∈ D3. Then,
we have

< α̃(s̃) − m̃, N(s̃) >= 0.

By differentiating this equation and using the Serret-Frenet formulae, thus obtaining

< α̃(s̃) − m̃, κ̃T + τ̃B >= 0. (3.1)

From the last two equations, it follows that the rectifying plane is orthogonal to both N and −̃κT + τ̃B.
Hence, we can write

α̃(s̃) − m̃ = η̃(s̃)(̃τT + κ̃B), (3.2)

for a differentiable dual function η̃ = η̃(s̃). By differentiation of (3.1), we have that:

− κ̃+ < α̃(s̃) − m̃, −̃κ
′

T + τ̃
′

B >= 0. (3.3)

Combing (3.2) and (3.3), implies that

η =
κ̃

τ̃′ κ̃ − κ̃′ τ̃
. (3.4)

Substituting (3.4) into (3.2), we obtain

α(s̃) − m̃ =
κ̃̃τ

τ̃′ κ̃ − κ̃′ τ̃
T+

κ̃2

τ̃′ κ̃ − κ̃′ τ̃
B. (3.5)

Furthermore, one calculates

dm̃
ds̃

= (1 + (
κ̃̃τ

τ̃′ κ̃ − κ̃′ τ̃
)
′

)T + (
κ̃2

τ̃′ κ̃ − κ̃′ τ̃
)
′

B.

Therefore, the coefficients vanishing identically if

1 + (
κ̃̃τ

τ̃′ κ̃ − κ̃′ τ̃
)
′

= 0, (
κ̃2ε0

τ̃′ κ̃ − κ̃′ τ̃
)
′

= 0,
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whereby
κ̃̃τ

κ̃′ τ̃ − τ̃′ κ̃
= s̃ − c̃,

κ̃2

κ̃′ τ̃ − τ̃′ κ̃
= d̃, c̃ ∈ D. (3.6)

Since κ̃(s̃) , 0, then d̃ , 0. From (3.5) and (3.6), we have

α(s̃) − m̃= (s̃ − c̃)T−d̃B,
τ̃
κ̃

= as̃ + b̃; ã = − 1
d̃
b̃ = c̃

d̃
, d̃ , 0.

 (3.7)

Therefore, we can calculate that ∥∥∥α(s̃) − m̃0

∥∥∥2
= (s̃ − c̃)2 + d̃2.

If every rectifying dual plane goes through another dual point m̃0, then let γ̃(̃t) be the unit speed dual
geodesic line through m̃0, and m̃. Then for each t̃ ∈ D, there are dual constants c̃(̃t), and d̃(̃t) , 0 such
that

α̃(s̃)−γ̃(̃t) = (s̃ − c̃(̃t))T(s̃)−d̃(̃t)B(s̃). (3.8)

If dot denotes to derivation with respect to t̃, then from (3.8) we have

.

γ̃(̃t) =
.

c̃(̃t)T(s̃)+
.

d̃(̃t)B(s̃).

Note that:
τ̃

κ̃
= ã(̃t)s̃ + b̃(̃t); ã(̃t) = −

1
d(̃t)

, b̃(̃t) = −
c̃(̃t)

d̃(̃t)
.

By differentiation with respect to t̃, we have
.

ã(̃t)s̃ +

.

b̃(̃t) = 0. Thus, we have
.

ã(̃t) =

.

b̃(̃t) = 0. This
shows that

.

γ̃(̃t) = 0, hence m̃ = m̃0. Therefore m̃0 is unique. This shows (i) implies (ii) and (iii).

(ii) Suppose that τ̃
κ̃

= ãs̃ + b̃; ã , 0. If we let m̃=α̃(s̃) − (s̃ + b̃
ã )T−1

ãB, then by the assumption, we
have m̃′

= 0. Hence m̃ is a fixed point in D3 and

α̃(s̃) − m̃ = (s̃ − c̃)T−d̃B, c̃ = −
b̃
ã
, ã = −

1

d̃
, d̃ , 0.

This shows (ii) implies (i) and (iii).
Now suppose that statement (iii) holds, then

< α(s̃) − m̃,T >= (s̃ − c). (3.9)

By differentiation of (3.9), and using Serret-Frenet formulae, we have

κ̃(s̃) < α(s̃) − m̃,N > = 0; κ̃(s̃) , 0⇒< α(s̃) − m̃,N > = 0,

which means that every rectifying dual plane of α̃(s̃) goes through a fixed dual point m̃∈D3. This
shows (iii) implies (i).
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We end this section by giving a characterization of a rectifying dual curve in terms of its radial
projection. Let us first assume that α̃=α̃(s̃) is a unit speed curve in D3. Then, for a fixed point m̃∈D3,
and by the proof of Theorem 3.1, we have

β̃(s̃) =
1

r̃(s̃)
(α̃(s̃) − m̃); r̃(s̃) =

∥∥∥∥α(s̃) − ˜̃m∥∥∥∥ =

√
(s̃ − c̃)2 + d̃2, (3.10)

is the radial projection of α̃(s̃) into the dual unit sphere K.

Theorem 3.2. Let α = α(s̃) be a unit speed dual curve with κ̃(s̃) is nowhere pure dual, and τ̃ , 0. If
m̃∈D3 is a fixed dual point, then α̃(s̃β) − m̃ is a position vector lying fully in a rectifying dual plane if
and only if, up to a parametrization, α̃(s̃β) − m̃ is given by

α(s̃β) − m̃ =
d

cos s̃β
β̃(s̃β), (3.11)

where β̃(s̃β) is a unit speed dual curve lying fully in K.
Proof. Let us first assume that β̃(s̃) is a unit speed dual spherical curve. A straightforward calculations
show that

∥∥∥β̃′(s̃)
∥∥∥ = d̃

r̃2 . Then the dual arc length of β̃(s̃) is

s̃β :=
∫ ∥∥∥β̃′(s̃)

∥∥∥ ds̃ = tan−1
(

s̃ − c̃

d̃

)
. (3.12)

From (3.12), since we have s̃ − c̃ = d̃ tan s̃β, we obtain r̃ = d̃ sec s̃β. Substituting this into the first Eq
(3.10), we obtain the parametrization (3.11).

Conversely, assume that α̃(sβ) − m̃ is given by (3.12), where β̃(s̃β) is unit speed dual curve lying on
K. If we calculate the derivative of (3.11), we have

(
α − m̃

)′
=

d̃
cos2 s̃β

β̃(s̃β) sin s̃β +
dβ̃(sβ)

dsβ
cos(sβ)

 . (3.13)

By the assumption, we have < β̃, β̃ >=< β̃
′

, β̃
′

>= 1, and < β̃, β̃
′

>= 0. Therefore, it follows that

<
(
α − m̃

)′
, α − m̃ >=

d̃2 sin s̃β
cos3 sβ

,
∥∥∥(α − m̃)′

∥∥∥ =
d̃

cos2 sβ
. (3.14)

Let us write
α̃ − m̃ = µ̃(s̃β)(α̃ − m̃)′ + (α̃ − m̃)⊥,

for dual function µ̃(s̃β), where (α̃ − m̃)⊥ is the normal component of the position vector α̃(sβ) − m̃.
Then, in view of the last equations, we easily find that

µ̃(s̃β) =
< (α̃ − m̃)′, α − m̃ >∥∥∥(α̃ − m̃)′

∥∥∥2 =
d̃

cos s̃β
.

Therefore, we have ∥∥∥(α̃ − m̃)⊥
∥∥∥2

=
∥∥∥(α − m̃)

∥∥∥2
− µ2(s)

∥∥∥(α − m̃)′
∥∥∥2

= d2 = const,
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which means that α(sβ) − m̃ is lying fully in a rectifying dual plane in D3.
As a result, the following Corollary can be given.

Corollary 3.1. For the dual curve β̃(s̃β) on K, the dual curvature κ̃β is greater than 1. Explicitly, we
have

κ̃2
β =

r6

d4 κ̃
2 + 1, (3.15)

Proof. By a direct calculation, we have the following:

α
′

(s̃) = r̃′(s̃)β̃(s̃) + r̃(s̃)̃β′(s̃),
α
′′

= r̃′′(s̃)̃β(s̃) + 2̃r′(s̃)β̃′(s̃) + r̃(s̃)̃β′′(s̃).

}
(3.16)

Therefore, we have:

< β̃(s̃), β̃
′′

(s̃) >= −
d̃2

r̃4
, < β̃

′

(s̃), β̃
′′

(s̃) >= −
2d̃2

r̃5
r̃
′

,
∥∥∥β̃′′(s̃)

∥∥∥2
=

4d2r′2

r6 −
d4

r8 κ̃
2
β,

Therefore, by using the above equations, we get

κ̃2 := ‖α′′(s̃)‖2 =
d4

r6 (1 + κ̃2
β).

which implies the condition (3.1).

4. A differential equation for α̃(s̃) in D3

In the next proposition, we derive a third-order differential equation satisfied for every space curves
in D3 with κ̃ is nowhere pure dual. For this purpose, we define a smooth dual function on α̃(s̃) by

h̃(s̃) := h(s̃) + εh∗(s̃) =< α̃(s̃),T(s̃) >, (4.1)

we call h̃(s̃) the height dual tangential function (or, tangent dual directed distance functions). From
now on, we shall often not write the parameter s̃.
Here, the Proposition 4.1 corresponds to Proposition 3.1 in [16], and Theorem 4.1 corresponds to
Theorem 3.1 in [16].

Proposition 4.1. Let α̃(s̃) be a unit speed dual curve in D3 with κ̃(s̃) is nowhere pure dual, and
τ̃ , 0. Then, we have

ρ̃σ̃h̃
′′′

+
(
2ρ̃

′

σ̃ + ρ̃σ̃
′
)

h̃
′′

+

[(
σ̃ρ̃

′
)′

+

(
σ̃

ρ̃
+
ρ̃

σ̃

)]
h̃
′

+

(
σ̃

ρ̃

)′
h̃ =

(
σ̃ρ̃

′
)′

+
ρ̃

σ̃
, (4.2)

where
ρ̃(s̃) := ρ(s̃) + ερ∗(s̃) =

1
κ̃
, and σ̃ := σ(s̃) + εσ∗(s̃) =

1
τ̃
.

Proof. Assume that α̃(s̃) be a unit speed dual curve in D3 with κ̃(s̃) is nowhere pure dual, and τ̃ , 0.
From (4.1), we have

ρ̃
(̃
h
′

− 1
)

=< α̃,N >, (4.3)
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which, again on differentiating gives

ρ̃σ̃h̃
′′

+ σ̃ρ̃̃h
′

− σ̃ρ̃
′

+
σ̃

ρ̃
h̃ =< α̃,B > . (4.4)

After differentiating (4.4) and applying (4.3), we obtain

ρ̃σ̃h̃
′′′

+
(
2ρ̃

′

σ̃ + ρ̃σ̃
′
)

h̃
′′

+

[(
σ̃ρ̃

′
)′

+

(
σ̃

ρ̃
+
ρ̃

σ̃

)]
h̃
′

+

(
σ̃

ρ̃

)′
h̃ =

(
σ̃ρ̃

′
)′

+
ρ̃

σ̃
,

which completes the proof.

4.1. Applications of Proposition 4.1

Now, we show that Proposition 4.1 implies easily several well-known characterizations of dual
spherical curves, helices as well as of rectifying curves in D3.

Corollary 4.1. A unit speed dual curve α̃(s̃) with κ̃(s̃) is nowhere pure dual, and τ̃ , 0 is a spherical if
and only if it satisfies (

σ̃ρ̃
′
)2

+ ρ̃2 = r̃2, (4.5)

for some dual constant r̃ = r + εr∗ ∈ D.
Proof. Let α̃(s̃) be a spherical dual curve lying on a dual sphere with radius r̃ and centered at the origin.
Then

< α̃(s̃), α̃(s̃) >= r̃, and h(s̃) =< α̃(s̃),T(s̃) >= 0. (4.6)

Hence, the differential (4.2) reduces to (
σ̃ρ̃

′
)′

+
ρ̃

σ̃
= 0.

By multiplying 2σ̃ρ̃
′

to this equation and integrating it give(
σ̃ρ̃

′
)2

+ ρ̃2 = r̃2. (4.7)

Thus, α̃(s̃) is a spherical curve in D3.
Conversely, assume α̃(s̃) is a unit speed dual curve that satisfies (4.5). Then

α̃(s̃) − ˜̃m(s̃) = ρ̃N+σ̃ρ̃
′

B, (4.8)

for a parameterized dual curve m̃ = ˜̃m(s̃). Then

r̃2(s̃) =
∥∥∥∥α̃ − ˜̃m∥∥∥∥2

=
(
σ̃ρ̃

′
)2

+ ρ̃2, (4.9)

If we differentiate (4.8) and (4.9) and make use of Serret-Frenet formulae, the result is m̃′

= 0, and
r̃
′

= 0. Hence m̃ is a fixed dual point in D3 and r̃(s̃) is a dual constant r̃. So, by Eq (4.8), α̃(s̃) lies on
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K(̃r) with center m̃ and radius r̃.

Another easy consequence of Proposition 4.1 is the following:
Since α̃(s̃) is a linear combination of the Serret-Frenet frame {T(s̃), N(s̃), B(s̃)}, we put:

α̃(s̃) =< α̃,T > T+ < α̃,N > N+ < α̃,B>B. (4.10)

Corollary 4.2. Let α̃(s̃) be a unit speed dual space curve in D3 with κ̃(s̃) is nowhere pure dual, and
τ̃ , 0. Then

< α̃,N >2+ < α̃,B>2
= r̃2, (4.11)

holds for a dual constant r̃ if and only if α̃(s̃) is either spherical or normal curve in D3.
Proof. Assume α̃(s̃) is a unit speed dual curve that satisfies (4.11). Then, it follows from (4.1), (4.10)
and (4.11) that

‖α̃(s̃)‖2 = h̃2 + r̃2. (4.12)

After differentiating (4.12) and using (4.1), we find

< α̃(s̃),T >=h̃̃h
′

+ 0⇒ h̃ = h̃̃h
′

⇒ h̃(̃h
′

− 1) = 0. (4.13)

Thus, we have either h̃ = 0, or h̃
′

− 1 = 0. So we have either h̃ = 0, or h̃ = s̃ + c̃ for a dual constant c̃.
Hence, α̃(s̃) is either spherical or normal curve. The converse is clear.

Corollary 4.3. A unit speed dual space curve in D3 with κ̃(s̃) is nowhere pure dual, and τ̃ , 0 is a
rectifying curve if and only if it satisfies

κ̃

τ̃
+ (s̃ + c̃)

(
κ̃

τ̃

)′
= 0, (4.14)

for some dual constant c̃.
Proof. Assume that α̃(s̃) is a rectifying curve in D3 with κ̃(s̃) is nowhere pure dual. Then, we have
h̃(s̃) = s̃ + c̃. Hence, (4.2) reduces to

σ̃

ρ̃
+ (s̃ + c̃)

(
σ̃

ρ̃

)′
= 0, (4.15)

which implies condition (4.14).
Conversely, if condition (4.15) holds, then by integrating of (4.15), we find τ̃̃c = (s̃ + c̃) κ̃ for

c ∈ D, which implies that α̃(s̃) is a rectifying curve.

4.2. Characterizations of dual helices

A characterization of the dual helices by its dual curvature and dual torsion is the same as that of
the helices in E3.
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Definition 4.1. A dual unit speed curve α̃(s̃) is called a dual helix if its dual unit tangent vector T
makes a constant dual angle Θ = ϑ + εϑ∗ with a fixed direction in a dual unit vector U, that is

< U,T >= cos Θ = cons̃t., with < U,U >=1. (4.16)

Theorem 4.1. Let α̃(s̃) be a unit speed space curve in D3 with κ̃(s̃) is nowhere pure dual, and τ̃ , 0.
Then α̃(s̃) is a helix if and only if, with respect to a suitable arc-length parameter s̃, the function h̃(s̃)
satisfies (

ρ̃̃h
′
)′

+

(
σ̃

ρ̃
+
ρ̃

σ̃

)
τ̃̃h − ρ̃

′

−
s̃ρ̃
σ̃2 = 0, (4.17)

Proof. Assume that α̃(s̃) is a helix with its axis parallel to a dual unit vector U. Then, we have

U = cos ΘT + sin ΘB,
κ̃ cos Θ − τ̃ sin Θ = 0.

}
(4.18)

Since, < U, α̃ >
′

= cos Θ holds, we have

< U, α̃ >=s̃ cos Θ + c, (4.19)

for some dual constant c. Now, from (4.18) and (4.19), we find

< T, α̃ >=s̃ + C− < α̃,B >
κ̃

τ̃
, with C =

c
cos Θ

. (4.20)

Combining this equation with (4.1) yields

h̃ = s̃ + C− < α̃,B >
κ̃

τ̃
. (4.21)

By differentiating (4.21) and using (4.1), we get

ρ̃
(̃
h
′

− 1
)
+ < α̃,N) >= 0, (4.22)

which again by differentiation leads to

ρ̃̃h
′′

+ ρ̃
′
(̃
h
′

− 1
)
− κ̃ < T, α̃ > + τ̃ < α̃,B >=0. (4.23)

When (4.2) and (4.21) are applied to (4.23), we immediately find that:(
ρ̃̃h

′
)′

+

(
σ̃

ρ̃
+
ρ̃

σ̃

)
τ̃̃h − ρ̃

′

+
ρ̃

σ̃2
(s̃ + C) = 0, (4.24)

which, with respect to a suitable arc-length parameter s̃, leads to (4.17).
Conversely, assume that α̃(s̃) is a unit speed helix that satisfies (4.17). Then, by differentiating

(4.24), we derive

ρ̃σ̃h̃
′′′

+
(
2ρ̃

′

σ̃ + ρ̃σ̃
′
)

h̃
′′

+

[(
σ̃ρ̃

′
)′

+

(
σ̃

ρ̃
+
ρ̃

σ̃

)]
h̃
′

+

(
σ̃

ρ̃
+
ρ̃

σ̃

)′
h̃
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=
(
σ̃ρ̃

′
)′

+

(
ρ̃

σ̃

)′
(s̃ + C) +

ρ̃

σ̃
. (4.25)

Comparing (4.25) with (4.2) in Proposition 4.1, gives(
ρ̃

σ̃

)′ (
s̃ + C − h̃

)
= 0. (4.26)

If s̃ + c = h̃ holds, then (4.26) reduces to(
σ̃

ρ̃
+
ρ̃

σ̃

)
(s̃ + C) −

ρ̃

σ̃
(s̃ + C) = 0, (4.27)

which implies σ̃ = 0 which is impossible since α̃(s̃) is assumed to be a regular unit-speed curve. Hence
we get

(
ρ̃

σ̃

)′
= 0 from (4.26), which implies that α̃(s̃) is a helix.

4.3. Characterizations of helix and dual spherical curve

We end this section by giving new characterizations of dual helices, dual spherical curves in terms
of dual Darboux vector of α̃(s̃) as follow: Let Ω⊥(s̃) denote the co-Darboux vector of α̃(s̃) defined by
Ω⊥ = −̃κT + τ̃B. It can be immediately seen that

< Ω
′

,Ω⊥ >= −̃κ̃τ
′

+ τ̃̃κ
′

. (4.28)

Hence α̃(s̃) is a helix if and only Ω
′

is orthogonal to Ω⊥.

Theorem 4.2. Let α̃(s̃) be a unit speed space curve in D3 with κ̃(s̃) is nowhere pure dual, and τ̃ , 0.
Then α̃(s̃) is a spherical if and only if

τ̃

κ̃
=

< α̃,Ω >

< α̃,Ω⊥ >
, (4.29)

holds identically.
Proof. Assume that α̃(s̃) is a unit speed curve in D3 with κ̃(s̃) is nowhere pure dual, and τ̃ , 0. Then,
it follows that

< α̃,Ω >= τ̃̃h + κ̃< α̃,B>
< α̃,Ω⊥ >= −̃κ̃h + τ̃< α̃,B> .

}
(4.30)

Since κ̃(s̃) is nowhere pure dual, and τ̃ , 0, we have

< α̃,Ω > τ̃ = τ̃2< α̃,B>,
< α̃,Ω⊥ > κ̃ = κ̃2< α̃,B> .

}
(4.31)

So, that we have
< α̃(s̃),Ω >

< α̃(s̃),Ω⊥ >
=
τ̃

κ̃
, (4.32)

which leads to α̃(s̃) is a spherical if and only if (4.29) holds identically.
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5. Conclusions

Mathematical techniques based on E. Study map have been shown to be suitable for study of the
characterizations of special curves. These curves are characterized by relationships between the
curvatures and torsions of curves. However, well-known examples of such curves are helices,
spherical curves, and rectifying curves have been studied in different spaces such as Euclidean space
and Minkowski space. But there are no many studies on these curves in dual space which is a more
general space than the others. In this space, a dual curve consists of two real curves. So, the
characterizations of dual special curves include the characterizations of real space curves. This work
simply provided a tool to investigate the characterizations of a curves in a new form.
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