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1. Introduction

Inertial neural networks (INNs) was firstly introduced by Wheeler and Schieve [1] in 1997.
After that, lots of results for INNs have been gained. Jian and Duan [2] considered the finite-time
synchronization for fuzzy neutral-type inertial neural networks with time-varying coefficients and
proportional delays. Some novel delay-independent criteria about finite-time synchronization were
obtained by using finite-time stability theory and combining with inequality techniques and some
analysis methods. Long etc. [3] investigated finite-time stabilization of state-based switched chaotic
inertial neural networks with distributed delays by the theory of finite-time control and non-smooth
analysis. In [4], the global exponential stabilization (GES) of inertial memristive neural networks with
discrete and distributed time-varying delays was studied. Using the generalized Halanay inequality,
matrix measure and matrix-norm inequality, the authors [5] investigated the global dissipativity for
INNs with delays and parameter uncertainties. For more research contents about INNs, see e.g.
[6, 7, 8, 9, 10] and related references.

Recent years, periodic solution problems of INNs have been studied by some authors. Aouiti etc.
[11] studied the exponential stability of piecewise pseudo almost periodic solutions for neutral-type
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inertial neural networks with mixed delays and impulses by using inequality techniques and Lyapunov
method. Huang and Zhang [12] considered a class of non-autonomous inertial neural networks
with proportional delays and time-varying coefficients by combining Lyapunov function method with
differential inequality approach. For more results of periodic solutions of neural network systems, see
e. g. [13, 14, 15, 16, 17, 18, 19, 20].

Classic INNs with multiple time-varying delays which can be described by

dx2
i (t)

dt2 = −ai(t)
dxi(t)

dt
− bi(t)xi(t) +

n∑
j=1

ci j(t) f j(x j(t)) +

n∑
j=1

di j(t) f j(x j(t − τ j(t))) + Ii(t), (1.1)

where t ≥ 0, i = 1, · · · , n, xi(t) denotes the state of ith neuron at time t, ai(t) > 0 is the damping
coefficient, bi(t) > 0 denotes the strength of different neuron at time t, ci j(t) and di j(t) are the neuron
connection weights at time t, f j(·) is the activation function which is a continuous function, τ j(t) is a
delay function, Ii(t) is an external input of ith neuron at time t. For system (1.1) and its generalization,
there exist lots of results, see e.g. [21, 22]

To our best knowledge, there are few results reported on the research of discrete-time INNs with
multiple time-varying delays. Motivated by the above work, in this paper, we study the periodic
solutions problem for a discrete-time inertial neural networks with multiple time-varying delays as
follows:

∆2xi(n) = −ai(n)∆xi(n) − bi(n)xi(n)

+

m∑
j=1

ci j(n) f j(x j(n)) +

m∑
j=1

di j(n) f j(x j(n − τ j(n))) + Ii(n)
(1.2)

which initial conditions are given by{
xi(s) = φi(s), s ∈ (−τ, 0]Z,
∆xi(s) = ψi(s), s ∈ (−τ, 0]Z,

(1.3)

where τ is defined by (1.4), n ∈ Z+
0 = {n ∈ Z : n ≥ 0}, i = 1, 2, · · · ,m, ai(n) > 0 is

a N−periodic function, τ j(n) is non-negative N−periodic function, bi(n), ci j(n), di j(n) and Ii(n) are
N−periodic functions. Let

τ = max
n∈IN
{τ j(n), j = 1, 2, · · · ,m}, IN = {0, 1, 2, · · · ,N − 1}, (1.4)

N is a positive integer. For a periodic function f (n) on Z+
0 , let

f − = min
n∈IN
{| f (n)|}, f + = max

n∈IN
{| f (n)|}.

Denote
[a, b]Z = {a, a + 1, · · · , b − 1, b} for a, b ∈ Z and a ≤ b.

The highlights of this paper are threefold:
(1) The discrete-time delayed INNs as shown in system (1.2) is established, which is different from the
existing continuous INNs, see e.g. [1, 2, 7, 8].
(2) For discrete-time INNs, Lyapunov-Krasovskii functional is no longer applicable for studying
stability problems. In this paper, we develop innovative mathematical analysis for the stability of
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discrete-time INNs.
(3) Discretization is needed in the implementation of continuous-time neural networks. Hence, the
research of discrete-time INNs has important theoretical and practical values.

The following sections are organized as follows: In Section 2, sufficient conditions are established
for existence and uniqueness of periodic solution to system (1.2). The exponential stability is given in
Sections 3. In Section 4, an numerical example is given to show the feasibility of our results. Finally,
some conclusions and discussions are given about this paper.

2. Existence and uniqueness of periodic solution

In this section , we need the following assumptions.
(H1) There exists non-negative constant p j such that

| f j(x j)| ≤ p j, j = 1, 2, · · · ,m.

(H2) There exist non-negative constants q j and e j such that

| f j(x j)| ≤ q j|x j| + e j, j = 1, 2, · · · ,m.

(H3) There exists constants L j ≥ 0 such that

| f j(x) − f j(y)| ≤ L j|x − y|, j = 1, 2, · · · ,m, ∀x, y ∈ R.

Lemma 2.1 [23] Assume that X and Y are two Banach spaces, and L : D(L) ⊂ X → Y, is a Fredholm
operator with index zero. Furthermore, Ω ⊂ X is an open bounded set and N : Ω̄ → Y is L-compact
on Ω̄. if all the following conditions hold:

(1) Lx , λNx,∀x ∈ ∂Ω ∩ D(L),∀λ ∈ (0, 1),
(2) Nx < ImL,∀x ∈ ∂Ω ∩ KerL,
(3) deg{JQN,Ω ∩ KerL, 0} , 0,

where J : ImQ→ KerL is an isomorphism. Then equation Lx = Nx has a solution on Ω̄ ∩ D(L). Let

yi(n) = ∆xi(n) + ξixi(n), i = 1, 2, · · · ,m, (2.1)

where ξi > 0 is a constant. Then system (1.2) is changed into the following system:
∆xi(n) = −ξixi(n) + yi(n),
∆yi(n) = −(ai(n) − ξi)yi(n) + [(ai(n) − ξi)ξi − bi(n)]xi(n)
+

∑m
j=1 ci j(n) f j(x j(n)) +

∑m
j=1 di j(n) f j(x j(n − τ j(n))) + Ii(n).

(2.2)

Theorem 2.1 Suppose that assumption (H1) holds. Then system (1.2) has at least one N−periodic
solution, provide that the following conditions hold:

ξi < 1,

1 − (a+
i − ξi) > 0, a−i − ξi > 0,
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(a−i − ξi)ξi − [(ai(n) − ξi)ξi − bi(n)]+ > 0,

ξim̃ , ±(M + 1) or ξi(M + 1) , ±m̃,

where i = 1, 2, · · · ,m, M and m̃ are defined by (2.15) and (2.16).
Proof Let

l2m = {w(n) = (w1(n),w2(n), · · · ,w2m(n))> ∈ R2m, n ∈ Z}.

Let
lN = {w(n) ∈ l2m : w(n + N) = w(n), n ∈ Z, N ∈ Z+}

equipped with the norm

||w|| = max
n∈IN
|wi(n)|, w ∈ lN , i = 1, 2, · · · , 2m.

Then lN is a Banach space. Let

l0
N = {y(n) ∈ lN :

N−1∑
n=0

y(n) = 0}, lc
N = {x(n) ∈ lN : x(n) = constant, n ∈ Z}.

Obviously, l0
N and lc

N are both closed linear subspaces of lN , and lN = l0
N ⊕ lc

N , dimlc
N = 2m. Define a

linear operator

L : D(L) ⊂ lN → lN , (Lw)(n) = ∆w(n) = (∆x(n),∆y(n))>, n ∈ Z+
0 ,

(Lw)i(n) = ∆xi(n), i = 1, 2, · · · ,m, n ∈ Z+
0 , (2.3)

and
(Lw)m+i(n) = ∆yi(n), i = 1, 2, · · · ,m, n ∈ Z+

0 . (2.4)

Let N : lN → lN with

(Nw)i(n) = −ξixi(n) + yi(n) i = 1, 2, · · · ,m, n ∈ Z+
0 , (2.5)

and

(Nw)m+i(n) = −(ai(n) − ξi)yi(n) + [(ai(n) − ξi)ξi − bi(n)]xi(n)

+

m∑
j=1

ci j(n) f j(x j(n)) +

m∑
j=1

di j(n) f j(x j(n − τ j(n))) + Ii(n), i = 1, 2, · · · ,m, n ∈ Z+
0 .

(2.6)

Then, KerL = lc
N and ImL = l0

N . Hence, L is a Fredholm mapping of index zero. Define continuous
projectors P, Q by

P : lN → KerL, (Pw)(n) =
1
N

N−1∑
n=0

w(n)

and

Q : lN → lN/ImL, Qw =
1
N

N−1∑
n=0

w(n).
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Let
LP = L|D(L)∩KerP : D(L) ∩ KerP→ ImL,

then
L−1

P = Kp : ImL→ D(L) ∩ KerP.

Since ImL ⊂ lN and D(L) ∩KerP ⊂ lN , then Kp is an embedding operator and is a completely operator
in ImL. Let Ω ⊂ lN . In view of the definitions of Q and N, we know that QN(Ω̄) is bounded on Ω̄.
Hence nonlinear operator N is L-compact on Ω. Let

Ω1 = {w : w ∈ D(L), Lw = λNw, λ ∈ (0, 1)},

where L and N are defined by (2.3)-(2.6). ∀x ∈ Ω1, it follows that

∆xi(n) = λ[−ξixi(n) + yi(n)], (2.7)

∆yi(n) = λ
[
− (ai(n) − ξi)yi(n) + [(ai(n) − ξi)ξi − bi(n)]xi(n)

+

m∑
j=1

ci j(n) f j(x j(n)) +

m∑
j=1

di j(n) f j(x j(n − τ j(n))) + Ii(n)
]
.

(2.8)

By (2.7), we have
xi(n + 1) − xi(n) = λ[−ξixi(n) + yi(n)]

and
xi(n + 1) = xi(n) + λ[−ξixi(n) + yi(n)].

Using ξi < 1, we gain
max
n∈IN
|xi(n)| = max

n∈IN
|xi(n + 1)|

≤ (1 − λξi) max
n∈IN
|xi(n)| + λmax

n∈IN
|yi(n)|,

i.e.,

max
n∈IN
|xi(n)| ≤

1
ξi

max
n∈IN
|yi(n)|. (2.9)

By (2.8), we have

yi(n + 1) − yi(n) = λ
[
− (ai(n) − ξi)yi(n) + [(ai(n) − ξi)ξi − bi(n)]xi(n)

+

m∑
j=1

ci j(n) f j(x j(n)) +

m∑
j=1

di j(n) f j(x j(n − τ j(n))) + Ii(n)
]

and
yi(n + 1) = yi(n) + λ

[
− (ai(n) − ξi)yi(n) + [(ai(n) − ξi)ξi − bi(n)]xi(n)

+

m∑
j=1

ci j(n) f j(x j(n)) +

m∑
j=1

di j(n) f j(x j(n − τ j(n))) + Ii(n)
]
.
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Using 1 − (a+
i − ξi) > 0 and assumption (H1), we have

max
n∈IN
|yi(n)| = max

n∈IN
|yi(n + 1)|

≤
[
1 − λ(ai(n) − ξi)

]
max
n∈IN
|yi(n)| + λ[(ai(n) − ξi)ξi − bi(n)]+ max

n∈IN
|xi(n)|

+ λ

m∑
j=1

c+
i j p j + λ

m∑
j=1

d+
i j p j + λI+

i .

(2.10)

From a−i − ξi > 0 and (2.10), we have

max
n∈IN
|yi(n)| ≤

[(ai(n) − ξi)ξi − bi(n)]+

a−i − ξi
max
n∈IN
|xi(n)| +

∑m
j=1 c+

i j p j +
∑m

j=1 d+
i j p j + I+

i

a−i − ξi
. (2.11)

From (a−i − ξi)ξi − [(ai(n) − ξi)ξi − bi(n)]+ > 0, (2.9) and (2.11), we gain

max
n∈IN
|yi(n)| ≤

ξi(
∑m

j=1 c+
i j p j +

∑m
j=1 d+

i j p j + I+
i )

(a−i − ξi)ξi − [(ai(n) − ξi)ξi − bi(n)]+
:= Bi. (2.12)

By (2.9) and (2.12), we get

max
n∈IN
|xi(n)| ≤

Bi

ξi
:= Ai. (2.13)

Hence, Ω1 is a bounded set and condition (1) of Lemma 2.1 holds. In view of (2.12) and (2.13), let

||w|| = max
{

max
i=1,··· ,m

Ai, max
i=1,··· ,m

Bi

}
:= M.

Let Ω2 = {w ∈ lN : ||w|| < M + 1}. We claim that

QNw , 0 ∀w ∈ ∂Ω2 ∩ KerL. (2.14)

Assume that (2.14) does not hold. In fact, ∀w ∈ ∂Ω2 ∩ KerL, then w ∈ R2m is a constant vector, and
there exists at least one i ∈ {1, 2, · · · ,m} such that

|yi| = M + 1 and |xi| = m̃ < M + 1 (2.15)

or
|xi| = M + 1 and |yi| = m̃ < M + 1 (2.16)

Case 1: If (2.15) holds, let yi = M + 1, xi = ±m̃, then by (2.5),

QNwi =
1
N

(±ξim̃ + M + 1) = 0,

i.e.,
ξim̃ = ±(M + 1)

which is contract to ξim̃ , ±(M + 1). If yi = −(M + 1), xi = ±m̃, we also obtain the similar contraction.
Case 2: If (2.16) holds, let yi = m̃, xi = ±(M + 1), then by (2.5),

QNwi =
1
N

(±ξi(M + 1) + m̃) = 0,
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i.e.,
ξi(M + 1) = ±m̃

which is contract to ξi(M + 1) , ±m̃. If yi = −m̃, xi = ±(M + 1), we also obtain the similar contraction.
Hence, condition (2) of Lemma 2.1 holds. We will show that condition (3) of Lemma 2.1 holds. Take
the homotopy

H(w, µ) = −µw + (1 − µ)QNw, w ∈ Ω2 ∩ KerL, µ ∈ [0, 1].

We claim H(w, µ) , 0 for all w ∈ ∂Ω2 ∩ KerL. If this is not true, then

µxi =
1 − µ

N
ΣN−1

n=0

[
− ξixi(n) + yi(n)

]
(2.17)

and
µyi =

1 − µ
N

ΣN−1
n=0

[
− (ai(n) − ξi)yi(n) + [(ai(n) − ξi)ξi − bi(n)]xi(n)

+

m∑
j=1

ci j(n) f j(x j(n)) +

m∑
j=1

di j(n) f j(x j(n − τ j(n))) + Ii(n)
]
.

(2.18)

By (2.17), we have

xi =
1 − µ

µ + (1 − µ)ξi
yi.

Thus,

|xi| ≤
1
ξi
|yi|. (2.19)

In view of (2.18) and (2.19), we have[
µξi + (1 − µ)ξi(ai − ξi) − (1 − µ)ξi[(ai(n) − ξi)ξi − bi(n)]+

]
µ|yi| ≤ (1 − µ)

m∑
j=1

[b+
i j p j + d+

i j p j + I+
i ]

and

max
n∈IN
|yi(n)| ≤

ξi(
∑m

j=1 c+
i j p j +

∑m
j=1 d+

i j p j + I+
i )

(a−i − ξi)ξi − [(ai(n) − ξi)ξi − bi(n)]+

= Bi < M + 1

which is a contradiction. And then by the degree theory,

deg{QN,Ω2 ∩ KerL, 0} = deg{H(·, 0),Ω2 ∩ KerL, 0}
= deg{H(·, 1),Ω2 ∩ KerL, 0}
= deg{−I,Ω2 ∩ KerL, 0} , 0.

Applying Lemma 2.1, we reach the conclusion.
Theorem 2.2 Suppose that assumption (H2) holds. Then system (1.2) has at least one N−periodic
solution, provide that the following conditions hold:

ξi < 1, i = 1, 2, · · · ,m,

1 − (a+
i − ξi) > 0, i = 1, 2, · · · ,m,
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a−i − ξi −
[(ai(n) − ξi)ξi − bi(n)]+

ξi
> 0, i = 1, 2, · · · ,m,

ρ1 −
mρ2

ξ̌
> 0,

where ξ̌ = mini=1,2,··· ,m ξi,

ρ1 = min
i=1,2,··· ,m

[
a−i − ξi −

[(ai(n) − ξi)ξi − bi(n)]+

ξi

]
> 0, ρ2 = max

i, j=1,2,··· ,m
(c+

i j + d+
i j)q j,

ξim̃ , ±(M + 1) or ξi(M + 1) , ±m̃, i = 1, 2, · · · ,m,

where M is defined by (2.25), m̃ < M is a positive constant.
Proof We only prove that Ω1 is bounded, other proofs are similar to the proofs of Theorem 2.1. In
fact, ∀w ∈ Ω1, by 1 − (a+

i − ξi) > 0, by assumption (H2) we have

max
n∈IN
|yi(n)| = max

n∈IN
|yi(n + 1)|

≤
[
1 − λ(ai(n) − ξi)

]
max
n∈IN
|yi(n)| + λ[(ai(n) − ξi)ξi − bi(n)]+ max

n∈IN
|xi(n)|

+ λ

m∑
j=1

(c+
i j + d+

i j)q j|x j| + λ

m∑
j=1

(c+
i j + d+

i j)q je j + λ

m∑
j=1

d+
i jq j|φ j| + λI+

i .

(2.20)

From (2.20) and a−i − ξi −
[(ai(n)−ξi)ξi−bi(n)]+

ξi
> 0, we get

ρ1 max
n∈IN
|yi(n)| ≤ ρ2

m∑
j=1

|x j| +

m∑
j=1

(c+
i j + d+

i j)q je j +

m∑
j=1

d+
i jq j|φ j| + I+

i

and

ρ1

m∑
i=1

max
n∈IN
|yi(n)| ≤ mρ2

m∑
i=1

max
n∈IN
|xi| +

m∑
i=1

m∑
j=1

(c+
i j + d+

i j)q je j +

m∑
i=1

m∑
j=1

d+
i jq j|φ j| +

m∑
i=1

I+
i , (2.21)

Using ξi < 1, similar to the proof of Theorem 2.1, we have

max
n∈IN
|xi(n)| ≤

1
ξi

max
n∈IN
|yi(n)|. (2.22)

From ρ1 −
mρ2

ξ̌
> 0, (2.21) and (2.22), we have

[
ρ1 −

mρ2

ξ̌

] m∑
i=1

max
n∈IN
|yi(n)| ≤

m∑
i=1

m∑
j=1

(c+
i j + d+

i j)q je j +

m∑
i=1

I+
i .

Hence, there exists Ci > 0 such that

max
n∈IN
|yi(n)| ≤ Ci, i = 1, 2, · · · ,m. (2.23)

AIMS Mathematics Volume 6, Issue 4, 3242–3256.



3250

In view of (2.22) and (2.23), we get

max
n∈IN
|xi(n)| ≤

Ci

ξi
:= Di, i = 1, 2, · · · ,m. (2.24)

In view of (2.23) and (2.24), let

||w|| = max
{

max
i=1,··· ,m

Ci, max
i=1,··· ,m

Di

}
:= M. (2.25)

Due to the assumption (H3), the term f j(x j), j = 1, 2, · · · ,m in system (1.2) satisfies Lipschiz condition
on R. Thus, by basic results of functional differential equation, we have the following theorems for the
unique existence of periodic solution to system (1.2).
Theorem 2.3 Suppose all the conditions of Theorem 2.1 and assumption (H3) hold. Then system (1.2)
has unique N−periodic solution.
Theorem 2.4 Suppose all the conditions of Theorem 2.2 and assumption (H3) hold. Then system (1.2)
has unique N−periodic solution.

3. Exponential stability of periodic solution

Since system (1.2) is equivalent to system (2.2) under the transformation (2.1), then we will consider
the exponential stability problems of system (2.2).
Definition 3.1 If w∗(n) = (x∗1(n), · · · , x∗m(n), y∗1(n), · · · , y∗m(n))> is a periodic solution of system (2.2)
and w(n) = (x1(n), · · · , xm(n), y1(n), · · · , ym(n))> is any solution of system (2.2) satisfying

|wi(n) − w∗i (n)| ≤ L||φi − φ
∗
i ||e
−n, n ∈ Z+

0 , i = 1, 2 · · · , 2m,

then w∗(n) is globally asymptotic stable, where L > 0 is a constant, φ is initial condition of w(n), φ∗ is
initial condition of w∗(n).
Theorem 3.1 Under conditions of Theorem 2.3, system (2.2) has unique T−periodic solution w∗(n) =

(x∗1(n), · · · , x∗n(n), y∗1(n), · · · , y∗n(n))> which is exponential stable, provided that

a−i − [(ai(n) − ξi)ξi − bi(n)]+ −

m∑
j=1

c+
i jL j −

m∑
j=1

d+
i jL j > 0, i = 1, 2, · · · ,m. (3.1)

Proof By (2.2), we have

xi(n + 1) − x∗i (n + 1) = (1 − ξi)(xi(n) − x∗i (n)) + (yi(n) − y∗i (n)) (3.2)

and

yi(n + 1) − y∗i (n + 1) = [1 − (ai(n) − ξi)](yi(n) − y∗i (n)) + [(ai(n) − ξi)ξi − bi(n)](xi(n) − x∗i (n))

+

m∑
j=1

ci j(n)[ f j(x j(n)) − f j(x∗j(n))]

+

m∑
j=1

di j(n)[ f j(x j(n − τ j(n))) − f j(x∗j(n − τ j(n)))].

(3.3)
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For i = 1, 2, · · · ,m, define function:

Fi(α) = 1 + ξi − (1 + ξi)α + α
[
a−i − [(ai(n) − ξi)ξi − bi(n)]+ −

m∑
j=1

c+
i jL j −

m∑
j=1

d+
i jL jα

τ
]
.

In view of condition (3.1), we get Fi(1) > 0. Hence, there exists a constant α0 > 1 such that

Fi(α0) > 0, i = 1, 2, · · · ,m. (3.4)

By (3.2), we have

|xi(n + 1) − x∗i (n + 1)| = (1 − ξi)|(xi(n) − x∗i (n))| + |(yi(n) − y∗i (n))|. (3.5)

By (3.3), we have

|yi(n + 1) − y∗i (n + 1)| ≤ (1 + ξi − a−i )|yi(n) − y∗i (n)| + [(ai(n) − ξi)ξi − bi(n)]+|(xi(n) − x∗i (n))|

+

m∑
j=1

c+
i jL j|x j(n) − x∗j(n)|

+

m∑
j=1

d+
i jL j|x j(n − τ j(n)) − x∗j(n − τ j(n))|.

(3.6)

Define
ui(n) = αn

0|xi(n) − x∗i (n)|, n ∈ [−τ,+∞)Z,

vi(n) = αn
0|yi(n) − y∗i (n)|, n ∈ [−τ,+∞)Z,

where α0 is defined by (3.4). By (3.5), we have

ui(n + 1) = α0(1 − ξi)ui(n) + α0vi(n)
≤ α0(ui(n) + vi(n)).

(3.7)

By (3.6), we have

vi(n + 1) ≤ (1 + ξi − a−i )α0vi(n)

+ [(ai(n) − ξi)ξi − bi(n)]+α0ui(n) +

m∑
j=1

c+
i jL jα0u j(n)

+

m∑
j=1

d+
i jL jα

τ j(n)+1
0 u j(n − τ j(n)).

(3.8)

Assume that K = maxs∈[−τ,0]Z |φi(s) − φ∗i (s)|, i = 1, 2, · · · , 2m. Then we claim that

ui(n) ≤ K and vi(n) ≤ K, n ∈ Z+
0 , i = 1, 2, · · · ,m. (3.9)

Otherwise, there exist integer i0 ∈ {1, 2, · · · ,m} and n0 ∈ Z
+
0 such that

ui(n) ≤ K, n ∈ [−τ, n0]Z, i , i0, ui0(n) ≤ K, n ∈ [−τ, n0 − 1]Z, ui0(n0) > K (3.10)
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and
vi(n) ≤ K, n ∈ [−τ, n0]Z, i , i0, vi0(n) ≤ K, n ∈ [−τ, n0 − 1]Z, vi0(n0) > K. (3.11)

If (3.10) and (3.11) hold, by (3.7) we have

K < ui0(n0) ≤ α0(ui0(n0 − 1) + vi0(n0 − 1))
≤ 2Kα0,

thus, α0 >
1
2 which is contradict to α0 > 1. On the other hand, if (3.10) and (3.11) hold, by (3.8) and

(3.4) we have

K < vi0(n0) ≤ (1 + ξi − a−i )α0vi0(n0 − 1) + [(ai(n) − ξi)ξi − bi(n)]+α0ui0(n0 − 1)

+

n∑
j=1

c+
i jL jα0u j(n0 − 1)

+

n∑
j=1

d+
i jL jα

τ j(n0−1)+1
0 u j(n0 − 1 − τ j(n0 − 1))

≤ (1 + ξi)α0K − K
[
a−i α0 − [(ai(n) − ξi)ξi − bi(n)]+α0 −

m∑
j=1

c+
i jL jα0 −

m∑
j=1

d+
i jL jα

τ+1
0

]
< K

which is a contradiction. Hence, (3.9) holds, i.e.,

|xi(n) − x∗i (n)| ≤ α−n
0 ||φi − φ

∗
i ||e
−n, n ∈ Z+

0 , i = 1, 2 · · · ,m

and
|yi(n) − y∗i (n)| ≤ α−n

0 ||φm+i − φ
∗
m+i||e

−n, n ∈ Z+
0 , i = 1, 2 · · · ,m.

Hence, periodic solution of system (2.2) is exponentially stable, i.e., periodic solution of system (1.2)
is exponentially stable.

4. Numerical example

This section presents an example that demonstrates the validity of our theoretical results as follows:
∆x1(n) = −ξ1x1(n) + y1(n),
∆y1(n) = −(a1(n) − ξ1)y1(n) + [(a1(n) − ξ1)ξ1 − b1(n)]x1(n)
+c11(n) f1(x1(n)) + d11(n) f1(x1(n − τ1(n))) + I1(n),

(4.1)

where
ξ1 = 0.2, a1(n) = 0.9, b1(n) = 0.12, c11(n) = d11(n) = sin

nπ
2
,

τ1(n) = 1 + cos
nπ
2
, f1(u) = 0.2 sin u, I1(n) = sin

nπ
2
.

Obviously, p1 = 0.2 and assumption (H2) holds. Furthermore, L1 = 0.2 and assumption (H3) holds. By
simple calculating, we have

1 − (a+
1 − ξ1) = 0.3 > 0, a−1 − ξ1 = 0.7 > 0,
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(a−1 − ξ1)ξ1 − [(a1(n) − ξ1)ξ1 − b1(n)]+ = 0.12 > 0,

a−1 − [(a1(n) − ξ1)ξ1 − b1(n)]+ − c+
11L1 − d+

11L1 = 0.68 > 0.

Thus, all assumptions of Theorem 3.1 hold and system (4.1) exists unique periodic solution which is
globally exponentially stable. The corresponding numerical simulations are presented in Figures 1 and
2 with random initial conditions. Figure 1 shows that system (4.1) exists at least one periodic solution.
Figure 2 shows that system (4.1) exist stable periodic solutions.

Remark 4.1 For all we know, the periodic solution problems of discrete-time INNs with delays
are studied in the present paper for the first time. Using Mawhin’s continuation theorem and
some innovative mathematical analysis techniques, we get some brand new results on the existence,
uniqueness and exponential stability of periodic solution of discrete-time INNs. We can confirm the
truth of the proposed methods, for example, in [8, 9, 10, 11] cannot be generalized to the problems
studied in this article. There are a large number of periodic phenomena in nature and society. One of
the important trends in the investigations of inertial neural networks is related to the periodic solutions
of these systems. Hence, studying periodic solution problems of system (1.2) has important theoretical
and practical values.

Remark 4.2 In this paper, we obtain stability results of INNs which can be extended to INNs with
distributed delays, see [24]. In the future work, we will study global stability problem of INNs with
distributed delays.
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Figure 1. Periodic solution ((x1(n), y1(n)) of system (4.1).
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Figure 2. Stable periodic solution ((x1(n), y1(n)) of system (4.1).

5. Conclusions and discussions

In this paper we study the problems of periodic solutions for discrete-time inertial neural networks
with multiple delays. First, by applying Mawhin’s continuous theorem to the system, we get a set
of sufficient conditions for guaranteeing the existence and uniqueness of periodic solutions to the
considered system. Then, on the basis of existence and uniqueness, we obtain globally exponential
stability of periodic solutions. The efficacy of the obtained results has been demonstrated by an
numerical example. It is important to note that the practical implementation of INNs is typically
encountered with certain type of uncertainties such as interval parameters. Extending the results of this
paper to discrete-time INNs with interval uncertainties proves to be an interesting problem. In addition,
it is also interesting and challenging to extend the approach presented in this paper to discrete-time
neural network-based problems with mixed delays such as state estimation and approximation, fault
isolation and diagnosis, or filter/observer design. These issues require further investigations in the
future works.
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