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1. Introduction

Mathematical models of physics, chemistry, ecology, physiology, psychology, engineering and
social sciences have been governed by differential equation and difference equation. With the
development of computers, compared with continuous-time model, discrete-time models described by
difference equations are better formulated and analyzed in the past decades. Recently laser model has
vast application in medical sciences, industries, highly security areas in army [1–7]. Laser, whose
basic principal lies on the Einstein theory of light proposed in 1916, is a device that produces intense
beam of monochromatic and coherent light. Since then it is developed by Gordon Gould in 1957. In
1960, the first working ruby laser was invented by Theodore Maiman. Laser light is coherent, highly
directional and monochromatic which makes it different from ordinary light. The working principle
of laser is based on the spontaneous absorption, spontaneous emission, stimulated emission, and
population inversion are essential for the laser formation. The readers can refer to [8–10]. For
instance, Hakin [11] proposed a simple continuous-time laser model in 1983. Khan and Sharif [12]
proposed a discrete-time laser model and studied extensively dynamical properties about fixed points,
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the existence of prime period and periodic points, and transcritical bifurcation of a one-dimensional
discrete-time laser model in R+.

In fact, the identification of the parameters of the model is usually based on statistical method,
starting from data experimentally obtained and on the choice of some method adapted to the
identification. These models, even the classic deterministic approach, are subjected to inaccuracies
(fuzzy uncertainty) that can be caused by the nature of the state variables, by parameters as
coefficients of the model and by initial conditions. In fact, fuzzy difference equation is generation of
difference equation whose parameters or the initial values are fuzzy numbers, and its solutions are
sequences of fuzzy numbers. It has been used to model a dynamical systems under possibility
uncertainty. Due to the applicability of fuzzy difference equation for the analysis of phenomena where
imprecision is inherent, this class of difference equation is a very important topic from theoretical
point of view and also its applications. Recently there has been an increasing interest in the study of
fuzzy difference equations (see [13–25]).

In this paper, by virtue of the theory of fuzzy sets, we consider the following discrete-time laser
model with fuzzy uncertainty parameters and initial conditions.

xn+1 = Axn +
Bxn

Cxn + H
, n = 0, 1, · · · , (1.1)

where xn is the number of laser photon at the nth time, A, B,C,H and the initial value x0 are positive
fuzzy numbers.

The main aim of this work is to study the existence of positive solutions of discrete-time laser
model (1.1). Furthermore, according to a generation of division (g-division) of fuzzy numbers, we
derive some conditions so that every positive solution of discrete-time laser model (1.1) is bounded.
Finally, under some conditions we prove that discrete-time laser model (1.1) has a fixed point 0 which
is asymptotically stable, and a unique positive fixed point x.

2. Preliminaries and definitions

Firstly, we give the following definitions and lemma needed in the sequel.
Definition 2.1. [26] u : R→ [0, 1] is said to be a fuzzy number if it satisfies conditions (i)–(iv) written
below:
(i) u is normal, i. e., there exists an x ∈ R such that u(x) = 1;
(ii) u is fuzzy convex, i. e., for all t ∈ [0, 1] and x1, x2 ∈ R such that

u(tx1 + (1 − t)x2) ≥ min{u(x1), u(x2)};

(iii) u is upper semicontinuous;
(iv) The support of u,suppu =

⋃
α∈(0,1][u]α = {x : u(x) > 0} is compact.

For α ∈ (0, 1], the α−cuts of fuzzy number u is [u]α = {x ∈ R : u(x) ≥ α} and for α = 0, the support
of u is defined as suppu = [u]0 = {x ∈ R|u(x) > 0}.

A fuzzy number can also be described by a parametric form.

Definition 2.2. [26] A fuzzy number u in a parametric form is a pair (ul, ur) of functions ul, ur, 0 ≤ α ≤
1, which satisfies the following requirements:
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(i) ul(α) is a bounded monotonic increasing left continuous function,
(ii) ur(α) is a bounded monotonic decreasing left continuous function,
(iii) ul(α) ≤ ur(α), 0 ≤ α ≤ 1.

A crisp (real) number x is simply represented by (ul(α), ur(α)) = (x, x), 0 ≤ α ≤ 1. The fuzzy
number space {(ul(α), ur(α))} becomes a convex cone E1 which could be embedded isomorphically
and isometrically into a Banach space (see [26]).

Definition 2.3. [26] The distance between two arbitrary fuzzy numbers u and v is defined as follows:

D(u, v) = sup
α∈[0,1]

max{|ul,α − vl,α|, |ur,α − vr,α|}. (2.1)

It is clear that (E1,D) is a complete metric space.

Definition 2.4. [26] Let u = (ul(α), ur(α)), v = (vl(α), vr(α)) ∈ E1, 0 ≤ α ≤ 1, and k ∈ R. Then
(i) u = v iff ul(α) = vl(α), ur(α) = vr(α),
(ii) u + v = (ul(α) + vl(α), ur(α) + vr(α)),
(iii) u − v = (ul(α) − vr(α), ur(α) − vl(α)),

(iv) ku =

{
(kul(α), kur(α)), k ≥ 0;
(kur(α), kul(α)), k < 0,

(v) uv = (min{ul(α)vl(α), ul(α)vr(α), ur(α)vl(α), ur(α)vr(α)},max{ul(α)vl(α), ul(α)vr(α), ur(α)vl(α), ur(α)vr(α)}).

Definition 2.5. [27] Suppose that u, v ∈ E1 have α-cuts [u]α = [ul,α, ur,α], [v]α = [vl,α, vr,α], with
0 < [v]α,∀α ∈ [0, 1]. The generation of division (g-division) ÷g is the operation that calculates the
fuzzy number s = u ÷g v having level cuts [s]α = [sl,α, sr,α](here [u]α−1 = [1/ur,α, 1/ul,α]) defined by

[s]α = [u]α ÷g [v]α ⇐⇒


(i) [u]α = [v]α[s]α,
or
(ii) [v]α = [u]α[s]α−1

(2.2)

provided that s is a proper fuzzy number sl,α is nondecreasing,sr,α is nonincreasing, sl,1 ≤ sr,1.

Remark 2.1. According to [27], in this paper the fuzzy number is positive, if u ÷g v = s ∈ E1 exists,
then the following two cases are possible

Case I. if ul,αvr,α ≤ ur,αvl,α,∀α ∈ [0, 1], then sl,α =
ul,α

vl,α
, sr,α =

ur,α

vr,α
,

Case II. if ul,αvr,α ≥ ur,αvl,α,∀α ∈ [0, 1], then sl,α =
ur,α

vr,α
, sr,α =

ul,α

vl,α
.

Definition 2.6. [26] A triangular fuzzy number (TFN) denoted by A is defined as (a, b, c) where the
membership function

A(x) =



0, x ≤ a;
x−a
b−a , a ≤ x ≤ b;
1, x = b;

c−x
c−b , b ≤ x ≤ c;
0, x ≥ c.

The α−cuts of A = (a, b, c) are described by [A]α = {x ∈ R : A(x) ≥ α} = [a + α(b − a), c − α(c −
b)] = [Al,α, Ar,α], α ∈ [0, 1], it is clear that [A]α are closed interval. A fuzzy number A is positive if
suppA ⊂ (0,∞).

The following proposition is fundamental since it characterizes a fuzzy set through the α-levels.
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Proposition 2.1. [26] If {Aα : α ∈ [0, 1]} is a compact, convex and not empty subset family of Rn such
that
(i)

⋃
Aα ⊂ A0.

(ii) Aα2 ⊂ Aα1 if α1 ≤ α2.

(iii) Aα =
⋂

k≥1 Aαk if αk ↑ α > 0.
Then there is u ∈ En(En denotes n dimensional fuzzy number space) such that [u]α = Aα for all
α ∈ (0, 1] and [u]0 =

⋃
0<α≤1 Aα ⊂ A0.

The fuzzy analog of the boundedness and persistence (see [15, 16]) is as follows:

Definition 2.7. A sequence of positive fuzzy numbers (xn) is persistence (resp. bounded) if there exists
a positive real number M (resp. N) such that

supp xn ⊂ [M,∞)(resp. supp xn ⊂ (0,N]), n = 1, 2, · · · ,

A sequence of positive fuzzy numbers (xn) is bounded and persistence if there exist positive real
numbers M,N > 0 such that

supp xn ⊂ [M,N], n = 1, 2, · · · .

A sequence of positive fuzzy numbers (xn), n = 1, 2, · · · , is an unbounded if the norm ‖xn‖, n =

1, 2, · · · , is an unbounded sequence.

Definition 2.8. xn is a positive solution of (1.1) if (xn) is a sequence of positive fuzzy numbers which
satisfies (1.1). A positive fuzzy number x is called a positive equilibrium of (1.1) if

x = Ax +
Bx

Cx + H
.

Let (xn) be a sequence of positive fuzzy numbers and x is a positive fuzzy number, xn → x as n→ ∞
if limn→∞ D(xn, x) = 0.

Lemma 2.1. [26] Let f : R+ × R+ × R+ × R+ → R+ be continuous, A, B,C,D are fuzzy numbers. Then

[ f (A, B,C,D)]α = f ([A]α, [B]α, [C]α, [D]α), α ∈ (0, 1]. (2.3)

3. Main results

3.1. Existence of positive solution of discrete-time laser model

Firstly we give the existence of positive solutions of discrete-time laser model with fuzzy
environment.

Theorem 3.1. Let parameters A, B,C,H and initial value x0 of discrete-time laser model be fuzzy
numbers. Then, for any positive fuzzy number x0, there exists a unique positive solution xn of discrete-
time laser model with initial conditions x0.

Proof. The proof is similar to those of Proposition 2.1 [25]. So we omit the proof of Theorem 3.1.
Noting Remark 2.1, taking α-cuts, one of the following two cases holds

Case I

[xn+1]α = [Ln+1,α,Rn+1,α] =

[
Al,αLn,α +

Bl,αLn,α

Cl,αLn,α + Hl,α
, Ar,αRn,α +

Br,αRn,α

Cr,αRn,α + Hr,α

]
(3.1)
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Case II

[xn+1]α = [Ln+1,α,Rn+1,α] =

[
Al,αLn,α +

Br,αRn,α

Cr,αRn,α + Hr,α
, Ar,αRn,α +

Bl,αLn,α

Cl,αLn,α + Hl,α

]
(3.2)

3.2. Dynamics of discrete-time laser model (1.1)

To study the dynamical behavior of the positive solutions of discrete-time laser model (1.1),
according to Definition 2.5, we consider two cases.

First, if Case I holds true, we need the following lemma.

Lemma 3.1. Consider the following difference equation

yn+1 = ayn +
byn

cyn + h
, n = 0, 1, · · · , (3.3)

where a ∈ (0, 1), b, c, h ∈ (0,+∞), y0 ∈ (0,+∞), then the following statements are true:
(i) Every positive solution of (3.3) satisfies

0 < yn ≤
b

c(1 − a)
+ y0. (3.4)

(ii) The equation has a fixed point y∗ = 0 if b ≤ (1 − a)h.
(iii) The equation has two fixed points y∗ = 0, y∗ = b

c(1−a) −
h
c if b > (1 − a)h .

Proof. (i) Let yn be a positive solution of (3.3). It follows from (3.3) that, for n ≥ 0,

0 < yn+1 = ayn +
byn

cyn + h
≤ ayn +

b
c
.

From which we have

0 < yn ≤
b

c(1 − a)
+

(
y0 −

b
c(1 − a)

)
an+1 ≤

b
c(1 − a)

+ y0.

This completes the proof of (i).
If y∗ is fixed point of (3.3), i.e., yn = y∗. So from (3.3), we have

y∗ = ay∗ +
by∗

cy∗ + h
. (3.5)

After some manipulation, from (3.5), we can get

y∗ = 0, y∗ =
b

c(1 − a)
−

h
c
. (3.6)

From (3.3), we can summarized the existence of fixed points as follows
(ii) If b < h(1 − a), then y∗ = b

c(1−a) −
h
c is not a positive number. And hence if b ≤ h(1 − a) then (3.3)

has a fixed point y∗ = 0.
(iii) If b > h(1 − a), then y∗ = b

c(1−a) −
h
c is a positive number. And hence if b > h(1 − a) then (3.3) has

two fixed points y∗ = 0, y∗ = b
c(1−a) −

h
c .
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Proposition 3.1. The following statements hold true
(i) The fixed point y∗ = 0 of (3.3) is stable if b < (1 − a)h.
(ii) The fixed point y∗ = 0 of (3.3) is unstable if b > (1 − a)h.
(iii) The fixed point y∗ = 0 of (3.3) is non-hyperbolic if b = (1 − a)h.

Proof. From (3.3), let

f (y) := ay +
by

cy + h
(3.7)

From (3.7), it follows that

f ′(y) = a +
bh

(cy + h)2 (3.8)

From (3.8), it can get ∣∣∣ f ′(y)|y∗=0

∣∣∣ =

∣∣∣∣∣a +
b
h

∣∣∣∣∣ (3.9)

Therefore from (3.9), it can conclude that y∗ = 0 is stable if b < (1 − a)h, unstable if b > (1 − a)h,
non-hyperbolic if b = (1 − a)h.

Proposition 3.2. The fixed point y∗ = b
c(1−a) −

h
c of (3.3) is globally asymptotically stable if b > (1−a)h.

Proof. From (3.8), it can get ∣∣∣∣ f ′(y)|y∗= b
c(1−a)−

h
c

∣∣∣∣ =

∣∣∣∣∣∣a +
h(1 − a)2

b

∣∣∣∣∣∣ . (3.10)

Therefore from (3.10), it can conclude that, if a +
h(1−a)2

b < 1, i.e., b > (1 − a)h then the fixed point
y∗ = b

c(1−a) −
h
c is stable.

On the other hand, it follows from (3.4) that (yn) is bounded. And from (3.8), we have f ′(y) > 0.
Namely (yn) is monotone increasing. So we have

lim
n→∞

yn = y∗ =
b

c(1 − a)
−

h
c
. (3.11)

Therefore the fixed point y∗ = b
c(1−a) −

h
c is globally asymptotically stable.

Proposition 3.3. The fixed point y∗ = 0 of (3.3) is globally asymptotically stable if b < (1 − a)h.

Proof. From (3.3), we can get that

yn+1 ≤ (a +
b
h

)yn (3.12)

From (3.12), it follows that
y1 ≤ (a + b

h )y0

y2 ≤ (a + b
h )2y0

...

yn ≤ (a + b
h )ny0

(3.13)

Since b < (1 − a)h, then limn→∞ yn = 0. Therefore the fixed point y∗ = 0 of (3.3) is globally
asymptotically stable.
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Theorem 3.2. Consider discrete-time laser model (1.1), where A, B,C,H and initial value x0 are
positive fuzzy numbers. There exists positive number NA, ∀α ∈ (0, 1], Ar,α < NA < 1. If

Bl,αLn,α

Br,αRn,α
≤

Cl,αLn,α + Hl,α

Cr,αRn,α + Hr,α
,∀α ∈ (0, 1]. (3.14)

and
Bl,α < Hl,α(1 − Al,α), Br,α < Hr,α(1 − Ar,α), ∀α ∈ (0, 1]. (3.15)

Then (1.1) has a fixed point x∗ = 0 which is globally asymptotically stable.

Proof. Since A, B,C,H are positive fuzzy numbers and (3.14) holds true, taking α-cuts of model (1.1)
on both sides, we can have the following difference equation system with parameters

Ln+1,α = Al,αLn,α +
Bl,αLn,α

Cl,αLn,α + Hl,α
, Rn+1,α = Ar,αRn,α +

Br,αRn,α

Cr,αRn,α + Hr,α
. (3.16)

Since (3.15) holds true, using Proposition 3.2, we can get

lim
n→∞

Ln,α = 0, lim
n→∞

Rn,α = 0. (3.17)

On the other hand, let xn = x∗, where [xn]α = [Ln,α,Rn,α] = [Lα,Rα] = [x∗]α, α ∈ (0, 1], be the fixed
point of (1.1). From (3.16), one can get

Lα = Al,αLα +
Bl,αLα

Cl,αLα + Hl,α
, Rα = Ar,αRα +

Br,αRα

Cr,αRα + Hr,α
. (3.18)

Since (3.15) is satisfied, from (3.16), it follows that

Lα = 0, Rα = 0, lim
n→∞

D(xn, x∗) = lim
n→∞

sup
α∈(0,1]

{max{|Ln,α − Lα|, |Rn,α − Rα|}} = 0. (3.19)

Therefore, by virtue of Proposition 3.3, the fixed point x∗ = 0 is globally asymptotically stable.

Theorem 3.3. Consider discrete-time laser model (1.1), where A, B,C,H and initial value x0 are
positive fuzzy numbers, there exists positive number NA, ∀α ∈ (0, 1], Ar,α < NA < 1. If (3.14) holds
true, and

Bl,α > Hl,α(1 − Al,α), Br,α > Hr,α(1 − Ar,α), ∀α ∈ (0, 1], (3.20)

then the following statements are true.
(i) Every positive solution of (1.1) is bounded.
(ii) Equation (1.1) has a unique positive fixed point x∗ which is asymptotically stable.

Proof. (i) Since A, B,C,H and x0 are positive fuzzy numbers, there exist positive constants MA,NA,MB,

NB,MC,NC,MH,NH,M0,N0 such that

[A]α = [Al,α, Ar,α] ⊂
⋃

α∈(0,1][Al,α, Ar,α] ⊂ [MA,NA]

[B]α = [Bl,α, Br,α] ⊂
⋃

α∈(0,1][Bl,α, Br,α] ⊂ [MB,NB]

[C]α = [Cl,α,Cr,α] ⊂
⋃

α∈(0,1][Cl,α,Cr,α] ⊂ [MC,NC]

[H]α = [Hl,α,Hr,α] ⊂
⋃

α∈(0,1][Hl,α,Hr,α] ⊂ [MH,NH]

[x0]α = [L0,α,R0,α] ⊂
⋃

α∈(0,1][L0,α,R0,α] ⊂ [M0,N0]

(3.21)
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Using (i) of Lemma 3.1, we can get that

0 < Ln ≤
Bl,α

Cl,α(1 − Al,α)
+ L0,α, 0 < Rn ≤

Br,α

Cr,α(1 − Ar,α)
+ R0,α. (3.22)

From (3.21) and (3.22), we have that for α ∈ (0, 1]

[Ln,α,Rn,α] ⊂ [0,N], n ≥ 1. (3.23)

where N = NB
MC(1−NA) + N0. From (3.22), we have for n ≥ 1,

⋃
α∈(0,1][Ln,α,Rn,α] ⊂ (0,N], so⋃

α∈(0,1][Ln,α,Rn,α] ⊂ (0,N]. Thus the proof of (i) is completed.
(ii) We consider system (3.18), then the positive solution of (3.18) is given by

Lα =
Bl,α

Cl,α(1 − Al,α)
−

Hl,α

Cl,α
, Rα =

Br,α

Cr,α(1 − Ar,α)
−

Hr,α

Cr,α
, α ∈ (0, 1]. (3.24)

Let xn be a positive solution of (1.1) such that [xn]α = [Ln,α,Rn,α], α ∈ (0, 1], n = 0, 1, 2, · · · . Then
applying Proposition 3.2 to system (3.16), we have

lim
n→∞

Ln,α = Lα, lim
n→∞

Rn,α = Rα (3.25)

From (3.23) and (3.25), we have, for 0 < α1 < α2 < 1,

0 < Lα1 ≤ Lα2 ≤ Rα2 ≤ Rα1 . (3.26)

Since Al,α, Ar,α, Bl,α, Br,α,Cl,α,Cr,α,Hl,α,Hr,α are left continuous. It follows from (3.24) that Lα,Rα are
also left continuous.

From (3.21) and (3.24), it follows that

c =
MB

NC(1 − MA)
−

NH

MC
≤ Lα ≤ Rα ≤

NB

MA(1 − NA)
−

MH

NC
= d. (3.27)

Therefore (3.27) implies that [Lα,Rα] ⊂ [c, d], and so
⋃

α∈(0,1][Lα,Rα] ⊂ [c, d]. It is clear that⋃
α∈(0,1]

[Lα,Rα] is compact and
⋃
α∈(0,1]

[Lα,Rα] ⊂ (0,∞). (3.28)

So from Definition 2.2, (3.24), (3.26), (3.28) and since Lα,Rα, α ∈ (0, 1] determine a fuzzy number x∗

such that
x∗ = Ax∗ +

Bx∗

Cx∗ + H
, [x∗]α = [Lα,Rα], α ∈ (0, 1]. (3.29)

Suppose that there exists another positive fixed point x̄ of (1.1), then there exist functions Lα,Rα :
(0, 1)→ (0,∞) such that

x̄ = Ax̄ +
Bx̄

Cx̄ + H
, [x]α = [Lα,Rα], α ∈ (0, 1].

From which we have

Lα = Al,αLα +
Bl,αLα

Cl,αLα + Hl,α

, Rα = Ar,αRα +
Br,αRα

Cr,αRα + Hr,α

.
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So Lα = Lα,Rα = Rα, α ∈ (0, 1]. Hence x̄ = x∗, namely x∗ is a unique positive fixed point of (1.1).
From (3.25), we have

lim
n→∞

D(xn, x∗) = lim
n→∞

sup
α∈(0,1]

max
{
|Ln,α − Lα|, |Rn,α − Rα|

}
= 0. (3.30)

Namely, every positive solution xn of (1.1) converges the unique fixed point x∗ with respect to D as n→
∞. Applying Proposition 3.2, it can obtain that the positive fixed point x∗ is globally asymptotically
stable.

Secondly, if Case II holds true, it follows that for n ∈ {0, 1, 2, · · · }, α ∈ (0, 1]

Ln+1,α = Al,αLn,α +
Br,αRn,α

Cr,αRn,α + Hr,α
, Rn+1,α == Ar,αRn,α +

Bl,αLn,α

Cl,αLn,α + Hl,α
(3.31)

We need the following lemma.

Lemma 3.2. Consider the system of difference equations

yn+1 = a1yn +
b2zn

c2zn + h2
, zn+1 = a2zn +

b1yn

c1yn + h1
, n = 0, 1, · · · , (3.32)

where ai ∈ (0, 1), bi, ci, hi ∈ (0,+∞)(i = 1, 2), y0, z0 ∈ (0,+∞). If

a1 + a2 < 1. (3.33)

and
b1b2 > h1h2(1 − a1)(1 − a2). (3.34)

Then the following statements are true.
(i) Every positive solution (yn, zn) of (3.32) satisfy

0 < yn ≤
b2

(1 − a1)c2
+ y0, 0 < zn ≤

b1

(1 − a2)c1
+ z0. (3.35)

(ii) System (3.32) has fixed point (y, z) = (0, 0) which is asymptotically stable.
(iii) System (3.32) has a unique fixed point

y =
(1 − a2)K

b1c2 + h2c1(1 − a2)
, z =

(1 − a1)K
b2c1 + h1c2(1 − a1)

, (3.36)

where K =
b1b2−h1h2(1−a1)(1−a2)

(1−a1)(1−a2) .

Proof. (i) Let (yn, zn) be a positive solution of (3.32). It follows from (3.32) that, for n ≥ 0,

0 < yn+1 = a1yn +
b2zn

c2zn + h2
≤ a1yn +

b2

c2
, 0 < zn+1 = a2zn +

b1yn

c1yn + h1
≤ a2zn +

b1

c1
.

From which, we have 
0 < yn ≤

b2
c2(1−a1) +

(
y0 −

b2
c2(1−a1)

)
an

1 ≤
b2

c2(1−a1) + y0

0 < zn ≤
b1

c1(1−a2) +
(
z0 −

b1
c1(1−a2)

)
an

2 ≤
b1

c1(1−a2) + z0.
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This completes the proof of (i).
(ii) It is clear that (0, 0) is a fixed point of (3.32). We can obtain that the linearized system of (3.32)

about the fixed point (0, 0) is
Xn+1 = D1Xn, (3.37)

where Xn = (xn, yn)T and

D1 =

(
a1

b2
c2

b1
h1

a2

)
.

Thus the characteristic equation of (3.37) is

λ2 − (a1 + a2)λ + a1a2 −
b1b2

h1h2
= 0. (3.38)

Since (3.33) and (3.34) hold true, we have

a1 + a2 + a1a2 −
b1b2

h1h2
< a1 + q2 + a1a2 − (1 − a1)(1 − a2) < 1 (3.39)

By virtue of Theorem 1.3.7 [28], we obtain that the fixed point (0, 0) is asymptotically stable.
(iii) Let (yn, zn) = (y, z) be fixed point of (3.32). We consider the following system

y = a1y +
b1z

c1z + h1
, z = a2z +

b2y
c2y + h2

. (3.40)

It is clear that the positive fixed point (y, z) can be written by (3.36).

Theorem 3.4. Consider the difference Eq (1.1), where A, B,C,H are positive fuzzy numbers. There
exists positive number NA,∀α ∈ (0, 1], Ar,α < NA < 1. If

Bl,αLn,α

Br,αRn,α
≥

Cl,αLn,α + Hl,α

Cr,αRn,α + Hr,α
,∀α ∈ (0, 1], (3.41)

Al,α + Ar,α < 1,∀α ∈ (0, 1], (3.42)

and
Bl,αBr,α > Hl,αHr,α(1 − Al,α)(1 − Ar,α),∀α ∈ (0, 1]. (3.43)

Then the following statements are true
(i) Every positive solution of (1.1) is bounded.
(ii) The Eq (1.1) has a fixed point 0 which is globally asymptotically stable.
(iii) The Eq (1.1) has a unique positive fixed point x such that

[x]α = [Lα,Rα], Lα =
(1 − Ar,α)Kα

Bl,αCr,α + Hr,αCl,α(1 − Ar,α)
,Rα =

(1 − Al,α)Kα

Br,αCl,α + Hl,αCr,α(1 − Al,α)
,

where

Kα =
Bl,αBr,α − Hl,αHr,α(1 − Al,α)(1 − Ar,α)

(1 − Al,α)(1 − Ar,α)
. (3.44)
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Proof. (i) Let xn be a positive solution of (1.1). Applying (i) of Lemma 3.2, we have

0 < Ln ≤
Br,α

(1 − Al,α)Cr,α
+ L0,α, 0 < Rn ≤

Bl,α

(1 − Ar,α)Cl,α
+ R0,α. (3.45)

Next, the proof is similar to (i) of Theorem 3.3. So we omit it.
(ii) The proof is similar to those of Theorem 3.2. We omit it.
(iii) Let xn = x be a fixed point of (1.1), then

x = Ax +
Bx

Cx + H
. (3.46)

Taking α-cuts on both sides of (3.46), since (3.41) holds true, one gets the following system

Lα = Al,αLα +
Br,αRα

Cr,αRα + Hr,α
, Rα = Ar,αRα +

Bl,αLα
Cl,αLα + Hl,α

, α ∈ (0, 1]. (3.47)

From which we obtain that

Lα =
(1 − Ar,α)Kα

Bl,αCr,α + Hr,αCl,α(1 − Ar,α)
,Rα =

(1 − Al,α)Kα

Br,αCl,α + Hl,αCr,α(1 − Al,α)
, (3.48)

Next, we can show that Lα,Rα constitute a positive fuzzy number x such that [x]α = [Lα,Rα], α ∈ (0, 1].
The proof is similar to (ii) of Theorem 3.3. We omit it.

Remark 3.1. In dynamical system model, the parameters of model derived from statistic data with
vagueness or uncertainty. It corresponds to reality to use fuzzy parameters in dynamical system
model. Compared with classic discrete time laser model, the solution of discrete time fuzzy laser
model is within a range of value (approximate value), which are taken into account fuzzy
uncertainties. Furthermore the global asymptotic behaviour of discrete time laser model are obtained
in fuzzy context. The results obtained is generation of discrete time Beverton-Holt population model
with fuzzy environment [25].

4. Numerical simulations

In this section, we give two numerical examples to verify the effectiveness of theoretic results
obtained.

Example 4.1. Consider the following fuzzy discrete time laser model

xn+1 = Axn +
Bxn

Cxn + H
, n = 0, 1, · · · , (4.1)

we take A, B,C,H and the initial values x0 such that

A(x) =


10x − 4, 0.4 ≤ x ≤ 0.5

−10x + 6, 0.5 ≤ x ≤ 0.6
, B(x) =


5x − 4, 0.8 ≤ x ≤ 1

−5x + 6, 1 ≤ x ≤ 1.2
(4.2)
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C(x) =


2x − 2, 1 ≤ x ≤ 1.5

−2x + 4, 1.5 ≤ x ≤ 2
, H(x) =


2x − 6, 3 ≤ x ≤ 3.5

−2x + 8, 3.5 ≤ x ≤ 4
(4.3)

x0(x) =


x − 6, 6 ≤ x ≤ 7

−x + 8, 7 ≤ x ≤ 8
(4.4)

From (4.2), we get

[A]α =

[
0.4 +

1
10
α, 0.6 −

1
10
α

]
, [B]α =

[
0.8 +

1
5
α, 1.2 −

1
5
α

]
, α ∈ (0, 1]. (4.5)

From (4.3) and (4.4), we get

[C]α =

[
1 +

1
2
α, 2 −

1
2
α

]
, [H]α =

[
3 +

1
2
α, 4 −

1
2
α

]
, [x0]α = [6 + α, 8 − α] , α ∈ (0, 1]. (4.6)

Therefore, it follows that⋃
α∈(0,1]

[A]α = [0.4, 0.6],
⋃
α∈(0,1]

[B]α = [0.8, 1.2],
⋃
α∈(0,1]

[C]α = [1, 2],
⋃
α∈(0,1]

[H]α = [3, 4].
⋃
α∈(0,1]

[x0]α = [6, 8].

(4.7)
From (4.1), it results in a coupled system of difference equations with parameter α,

Ln+1,α = Al,αLn,α +
Bl,αLn,α

Cl,αLn,α + Hl,α
, Rn+1,α = Ar,αRn,α +

Br,αRn,α

Cr,αRn,α + Hr,α
, α ∈ (0, 1]. (4.8)

Therefore, it is clear that Ar,α < 1,∀α ∈ (0, 1], (3.14) and (3.15) hold true. so from Theorem 3.2, we
have that every positive solution xn of Eq (4.1) is bounded In addition, from Theorem 3.2, Eq (4.1) has
a fixed point 0. Moreover every positive solution xn of Eq (4.1) converges the fixed point 0 with respect
to D as n→ ∞. (see Figures 1–3).

Figure 1. The Dynamics of system (4.8).
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Figure 2. The solution of system (4.8) at α = 0 and α = 0.25.

Figure 3. The solution of system (4.8) at α = 0.75 and α = 1.

Example 4.2. Consider the following fuzzy discrete time laser model (4.1). where A,C,H and the
initial values x0 are same as Example 4.1.

B(x) =


x − 2, 2 ≤ x ≤ 3

−x + 4, 3 ≤ x ≤ 4
(4.9)

From (4.9), we get
[B]α = [2 + α, 4 − α] , (4.10)

Therefore, it follows that ⋃
α∈(0,1]

[B]α = [2, 4], α ∈ (0, 1]. (4.11)

It is clear that (3.20) is satisfied, so from Theorem 3.3, Eq (4.1) has a unique positive equilibrium
x = (0.341, 1.667, 3). Moreover every positive solution xn of Eq (4.1) converges the unique equilibrium
x with respect to D as n→ ∞. (see Figures 4–6)
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Figure 4. The Dynamics of system (4.8).

Figure 5. The solution of system (4.8) at α = 0 and α = 0.25.

Figure 6. The solution of system (4.8) at α = 0.75 and α = 1.
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5. Conclusions

In this work, according to a generalization of division (g-division) of fuzzy number, we study the
fuzzy discrete time laser model xn+1 = Axn + Bxn

Cxn+H . The existence of positive solution and qualitative
behavior to (1.1) are investigated. The main results are as follows

(i) Under Case I, the positive solution is bounded if Bl,α < Hl,α(1 − Al,α), Br,α < Hr,α(1 − Ar,α), α ∈
(0, 1]. Moreover system (1.1) has a fixed point 0 which is globally asymptotically stable. Otherwise,
if Bl,α ≥ Hl,α(1 − Al,α), Br,α ≥ Hr,α(1 − Ar,α), α ∈ (0, 1]. Then system (1.1) has a unique positive fixed
point x∗ which is asymptotically stable.

(ii) Under Case II, if Al,α + Ar,α < 1 and Bl,αBr,α > Hl,αHr,α(1 − Al,α)(1 − Ar,α), α ∈ (0, 1], then the
positive solution is bounded. Moreover system (1.1) has a unique positive fixed point x and fixed point
0 which is global asymptotically stable.
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