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1. Introduction

In Riemannian geometry, Myers’s theorem proves that if (M, g) is a complete connected Riemannian
n-manifold such that Ric ≥ (n − 1)k for some positive number k, then it is compact and Diam(M) ≤
π
√

k
. Further, Cheng’s maximum diam theorem states that if its diameter attains its maximal value,

then the manifold is isometric to the Euclidean sphere Sn( 1
√

k
). Under the same curvature condition,

Lichnerowicz estimate indicates that the first closed eigenvalue of the Laplacian is not less than nk,
while Obata rigidity theorem shows if the first closed eigenvalue attains its lower bound, then it is
isometric to Sn( 1

√
k
). By the same token, Bishop-Gromov comparison theorem also demonstrates that if

Vol(M) = Vol(Sn( 1
√

k
)), then it is isometric to Sn( 1

√
k
). Therefore, on a complete connected Riemannian

n-manifold with Ric ≥ (n − 1)k for some positive k, the following conditions are equivalent:

• (M, g) is the Euclidean sphere Sn( 1
√

k
);

• Diam(M) = π
√

k
;

• the first eigenvalue of Laplacian is λ1(M) = nk;
• Vol(M) = Vol(Sn( 1

√
k
)).

It is natural to ask:
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In the Finsler setting, can we also characterize and determine Finsler spheres by the diam, the first
eigenvalue and the volume?

In Finsler geometry, Cheng’s maximum diam theorem is studied in [2] for reversible Finsler
manifolds and in [10] for the general case. Lichnerowicz estimate and Obata rigidity theorem in
Finsler situation are also considered in [8–10]. Along this line, the authors give a positive answer to
the problem above. As to Bishop-Gromov comparison theorem, there are several generalized results
established in [4, 6, 7, 11], respectively. However, they (see [4, 6, 7]) do not study the rigidity
phenomenon when the volume reaches its maximum value. In [11], Zhao-Shen study the rigidity
problem and give some characterizations by using constant radial flag curvature and constant radial S
curvature. Yet, there is still much to be desired.

Let Sn( 1
√

k
) denote a Finsler sphere which has Busemann Hausdorff volume form, constant flag

curvature k and vanishing S curvature. When the Finsler metric is a Randers metric, the sphere is
called a Randers sphere denoted by Sn( 1

√
k
). There are infinitely many Randers spheres, and if the

metric is reversible, the sphere is just the Euclidean sphere (see [10]). For more details, we refer to
Section 2 below.

In this paper, we characterize Finsler spheres and obtain some rigidity results in the following.

Theorem 1.1. Let (M, F, dµ) be a complete connected Finsler n-manifold with Busemann-Hausdorff
volume form. If the weighted Ricci curvature Ricn ≥ (n − 1)k > 0, then the following conditions are
equivalent:

(1) (M, F, dµ) is a Finsler sphere Sn( 1
√

k
);

(2) Diam(M) = π
√

k
;

(3) the first eigenvalue of Finsler-Laplacian is λ1 = nk;
(4) voldµ

F (M) = vol(Sn( 1
√

k
)).

Since the classification for Finsler metrics with constant flag curvature is not solved, we can not
determine all Finsler sphere metrics. However, for a Randers sphere Sn( 1

√
k
), the metric F can be

expressed by navigation data (g,W), where g is the standard sphere metric and W is a Killing vector.
Therefore, Randers spheres are of most importance among Finsler spheres. By narrowing the scope in
Theorem 1.1, we have

Theorem 1.2. Let (M, F, dµ) be a complete connected Randers n-manifold with Busemann-Hausdorff
volume form. If the weighted Ricci curvature Ricn ≥ (n − 1)k > 0, then the following conditions are
equivalent:

(1) (M, F, dµ) is a Randers sphere Sn( 1
√

k
);

(2) Diam(M) = π
√

k
;

(3) the first eigenvalue of Finsler-Laplacian is λ1 = nk;
(4) voldµ

F (M) = vol(Sn( 1
√

k
)).

Remark 1.3. Theorems 1.1 and 1.2 show that, apart from the Euclid sphere, the maximum diameter,
the maximum volume and the lower bound of the first eigenvalue can be attained on countless Finsler
(especially Randers) spheres.

The paper is organized as follows. In Section 2, some fundamental concepts and formulas which
are necessary for the present paper are given, and some lemmas are contained. The volume comparison
theorem and Theorem 1.1 are then proved in Sections 3 and 4, repectively.
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2. Preliminaries

Let M be an n-dimensional smooth manifold and π : T M → M be the natural projection from
the tangent bundle T M. Let (x, y) be a point of T M with x ∈ M, y ∈ TxM, and let (xi, yi) be the
local coordinates on T M with y = yi∂/∂xi. A Finsler metric on M is a function F : T M → [0,+∞)
satisfying the following properties:

(i) Regularity: F(x, y) is smooth in T M \ 0;
(ii) Positive homogeneity: F(x, λy) = λF(x, y) for λ > 0;
(iii) Strong convexity: The fundamental quadratic form

g := gi j(x, y)dxi ⊗ dx j, gi j :=
1
2

[F2]yiy j

is positively definite.
Let X = Xi ∂

∂xi be a differentiable vector field. Then the covariant derivative of X by v ∈ TxM with
reference vector w ∈ TxM\0 is defined by

Dw
v X(x) :=

{
v j∂Xi

∂x j (x) + Γi
jk(w)v jXk(x)

}
∂

∂xi ,

where Γi
jk denote the coefficients of the Chern connection.

Given two linearly independent vectors V,W ∈ TxM\0, the flag curvature is defined by

K(V,W) :=
gV(RV(V,W)W,V)

gV(V,V)gV(W,W) − gV(V,W)2 ,

where RV is the Chern curvature:

RV(X,Y)Z = DV
XDV

Y Z − DV
Y DV

XZ − DV
[X,Y]Z.

Then the Ricci curvature for (M, F) is defined as

Ric(V) =

n−1∑
α=1

K(V, eα),

where e1, · · · , en−1,
V

F(V) form an orthonormal basis of TxM with respect to gV .
Let (M, F, dµ) be a Finsler n-manifold with dµ = σ(x)dx1 ∧ · · · ∧ dxn. The distortion is given by

τ(x,V) = log

√
det(gi j(x,V))
σ(x)

.

For the vector V ∈ TxM, let γ : (−ε, ε) → M be a geodesic with γ(0) = x, γ̇(0) = V . Then the
S -curvature measures the rate of changes of the distortion along geodesics

S (x,V) :=
d
dt

[τ(γ(t), γ̇(t))]t=0.

Define
Ṡ (x,V) := F−2(V)

d
dt

[S (γ(t), γ̇(t))]t=0.
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Then the weighted Ricci curvature of (M, F, dµ) is defined by (see [3])
Ricn(V) :=

{
Ric(V) + Ṡ (V), for S (V) = 0,
−∞, otherwise,

RicN(V) := Ric(V) + Ṡ (V) − S (V)2

(N−n)F(V)2 , ∀ N ∈ (n,∞),
Ric∞(V) := Ric(V) + Ṡ (V),

For a smooth function u, the gradient vector of u at x is defined by ∇u(x) := L−1(du), where
L : TxM → T ∗x M is the Legendre transform. Let V = V i ∂

∂xi be a smooth vector field on M. The
divergence of V with respect to an arbitrary volume form dµ is defined by

divV :=
n∑

i=1

(
∂V i

∂xi + V i∂ logσ(x)
∂xi

)
.

Then the Finsler-Laplacian of u can be defined by

∆u := div(∇u).

The equality is in the weak W1,2(M) sense. Namely, for any ϕ ∈ C∞0 (M), we have∫
M
ϕ∆udµ = −

∫
M

dϕ(∇u)dµ.

Recall that Bao-Shen [1] found a family Randers sphere metrics on S3, which shows that the
maximum diam can be achieved in non-Riemannian case.

Example 2.1. [1] View S3 as a compact Lie group. Let ζ1, ζ2, ζ3 be the standard right invariant 1-form
on S3 satisfying

dζ1 = 2ζ2 ∧ ζ3, dζ2 = 2ζ3 ∧ ζ1, dζ3 = 2ζ1 ∧ ζ2.

For k ≥ 1, define

αk(y) =
√

(kζ1(y))2 + k(ζ2(y))2 + k(ζ3(y))2, βk(y) =
√

k2 − kζ1(y).

Then Fk = αk + βk is a Randers metric on S3 satisfying

K ≡ 1, S ≡ 0, Diam(S3, Fk) = π.

Inspired by Bao-Shen’s example, we give the following definition.

Definition 2.2. A Finsler manifold with Busemann-Hausdorff volume form is said to be a Finsler
sphere if it has positively constant flag curvature and vanishing S -curvature. In particular, if the metric
is a Randers metric, we call it a Randers sphere.

Generally, we are not able to identify a Finsler sphere metric. However, for a Randers sphere metric,
F can be expressed by (see [10])

F =

√
λg2 + W2

0

λ
−

W0

λ
, λ = 1 − ‖W‖2g,

where g is the standard sphere metric, and W is a Killing vector field on Sn( 1
√

k
).

To prove our results, we further introduce the following lemmas.
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Lemma 2.3. [4] Let (M, F, dµ) be a Finsler n manifold. If the weighted Ricci curvature satisfies
RicN ≥ (N−1)k,N ∈ [n,∞), then the Laplacian of the distance function r(x) = dF(p, x) from any given
point p ∈ M can be estimated as follows:

∆r ≤ (N − 1)
s′k(r)
sk(r)

,

pointwise on M\({p} ∪ Cut(p)) and in the sense of distributions on M\{p}, where

sk =


1
√

k
sin(
√

kt), k > 0;
t, k=0;

1
√
−k

sinh(
√
−kt), k < 0.

Lemma 2.4. [3] Let (M, F, dµ) be a Finsler n manifold. If the weighted Ricci curvature satisfies
RicN ≥ (N − 1)k,N ∈ [n,∞), then for any 0 < r < R (≤ π

√
k

if k > 0), it holds that

max

voldµ
F B+

x (R)

voldµ
F B+

x (r)
,

voldµ
F B−x (R)

voldµ
F B−x (r)

 ≤
∫ R

0
sN−1

k dt∫ r

0
sN−1

k dt
.

3. Volume comparison theorems

In [6, 7], the volume comparison theorems are established on Finsler manifolds satisfying Ric ≥
(n− 1)k and some S curvature condition. Later, Zhao-Shen [11] generalize them and further obtain the
rigidity result. Using the weighted Ricci curvature condition, Ohta [3] obtain another version of the
relative volume comparison (see Lemma 2.4 above). However, the problem about the rigidity result
remains open. The main obstacle is that, for any volume form, the limit

lim
r→0

voldµ
F (B+

p(r))∫ r

0
(sk(t))N−1dt

does not necessarily exists. Therefore, to obtain the rigidity result, it is suitable to give a restriction on
the volume form.

Let (M, F, dµ) be a Finsler n-manifold. Fix a point p ∈ M. Then on TpM the Finsler metric F(p, y)
induces a Riemannian metric gp(y) := gi j(p, y)dyi⊗dy j, which also induces a Riemannian metric ġp on
S pM := {y|y ∈ TpM, F(y) = 1}. Let (r, θ) be the polar coordinate around p and write the volume form
by dµ = σp(r, θ)drdθ. Then we can give the volume comparison theorem as follows:

Theorem 3.1. Let (M, F, dµ) be a forward complete Finsler n-manifold with arbitrary volume form. If
the weighted Ricci curvature Ricn ≥ (n − 1)k, then for some positive number Cp := lim

r→0

∫
S p M

σp(r,θ)
rn−1 dθ,

voldµ
F (B+

p(r)) ≤ Cp

∫ r

0
(sk(t))n−1dt, 0 ≤ r ≤ ip, (3.1)

where B+
p(r) denotes the forward geodesic ball centered at p of radius r, and ip is the cut value of p.

Moreover, the equality holds for r0 > 0 if and only if for ∀y ∈ S pM,

K(γ̇y(t); ·) = k, 0 ≤ t ≤ r0 ≤ ip,
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where γy(t) is the geodesic satisfying γy(0) = p, γ̇y(0) = y. In this case, under the polar coordinate
(r, θ) of p, we have

g(∇r|(r,θ)) = dr ⊗ dr + s2
k ġp(θ),

where ġp denotes the Riemannian metric on S pM.

Proof. From Lemma 2.4, we have
voldµ

F (B+
p(r))∫ r

0
(sk(t))n−1dt

is monotone decreasing on r. By

lim
r→0

voldµ
F (B+

p(r))∫ r

0
(sk(t))n−1dt

= lim
r→0

∫ r

0

∫
S p M

σp(r, θ)dθdr∫ r

0
(sk(t))n−1dt

= lim
r→0

∫
S p M

σp(r, θ)
rn−1 dθ = Cp,

we obtain (3.1).
Let r(x) = dF(p, x) be the distance function from p. Since Ricn ≥ (n−1)k, by Laplacian comparison

theorem (Lemma 2.3), we have

∆r ≤ (n − 1)
s′k(r)
sk(r)

, (3.2)

which yields

∆r =
∂

∂r
logσp ≤

∂

∂r
log sk(r)n−1 :=

∂

∂r
log σ̃,

where σ̃ := sk(r)n−1. Define f (r) =
σp(r,θ)
σ̃(r) . Then

f ′(r) =
σ′pσ̃ − σpσ̃

′

σ̃2 =
σp

σ̃

∂

∂r
(logσp − log σ̃) ≤ 0.

Hence, f (r) is monotone decreasing on r. As a result,

σp(R, θ)
σ̃(R)

≤
σp(r, θ)
σ̃(r)

, r ≤ R.

Assume that the equality holds in (3.1). That is,∫ r

0

∫
S p M

σp(ρ, θ)dθdρ = Cp

∫ r

0
σ̃(ρ)dρ, r ≤ ip.

Differentiating it with respect to r on both sides gives∫
S p M

σp(r, θ)
σ̃(r)

dθ = Cp, r ≤ ip.
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By the monotonicity of f (r), we deduce that

Cp =

∫
S p M

σp(R, θ)
σ̃(R)

dθ ≤
∫

S p M

σp(r, θ)
σ̃(r)

dθ = Cp, r ≤ R ≤ ip,

which implies

σp(R, θ)
σ̃(R)

=
σp(r, θ)
σ̃(r)

, r ≤ R ≤ ip.

Thus the equality holds in (3.2), which gives

∂

∂r
(∆r) +

(∆r)2

n − 1
= −(n − 1)k. (3.3)

Let S p(r(x)) be the forward geodesic sphere of radius r(x) centered at p. Choosing the local g∇r-
orthonormal frame E1, · · · , En−1 of S p(r(x)) near x, we get local vector fields E1, · · · , En−1, En = ∇r by
parallel transport along geodesic rays. Thus, it follows from [7] that

∂

∂r
tr∇rH(r) = −Ric(∇r) −

∑
i, j

[H(r)(Ei, E j)]2, (3.4)

where H(r) is the Hessian of the distance function r. On the other hand, we also have ( see [7])

∆r = tr∇rH(r) − S (∇r) = tr∇rH(r). (3.5)

Therefore, by (3.4) and (3.5), we obtain

−(n − 1)k =
∂

∂r
(∆r) +

(∆r)2

n − 1

=
∂

∂r
(tr∇rH(r)) +

1
n − 1

(tr∇rH(r))2

≤
∂

∂r
tr∇rH(r) +

∑
i, j

[H(r)(Ei, E j)]2

= −Ric(∇r) = −Ricn(∇r)
≤ −(n − 1)k. (3.6)

It follows from (3.6) that ∑
i, j

[H(r)(Ei, E j)]2 =
1

n − 1
(tr∇rH(r))2,

which means

∇2r(Ei, E j) :=H(r)(Ei, E j)

=

{ tr∇rH(r)
n−1 = ∆r

n−1 = ctk(r), i = j < n,
0, i , j,

(3.7)

AIMS Mathematics Volume 6, Issue 3, 3025–3036.



3032

where ctk(r) := s′k(r)
sk(r) . Next we shall compute the flag curvature. From (3.7), we know that {Ei}

n−1
i=1 are

(n − 1) eigenvectors of ∇2r. That is,

D∇r
Ei
∇r = ctk(r)Ei, i = 1, · · · , n − 1.

Noticed that ∇r is a geodesic field of (M, F). Therefore, the flag curvature K(∇r; ·) equals to the
sectional curvature of the weighted Riemannian manifold (M, g∇r). Note that {Ei}

n−1
i=1 are (n − 1)

eigenvectors of ∇2r and parallel along the geodesic ray. By a straightforward computation, we get, for
1 ≤ i ≤ n − 1,

K(∇r; Ei) = R∇r(Ei,∇r, Ei,∇r) = g∇r(R∇r(Ei,∇r)∇r, Ei)
= g∇r(D∇r

Ei
D∇r
∇r∇r − D∇r

∇rD
∇r
Ei
∇r − D∇r

[Ei,∇r]∇r, Ei)
= −g∇r(D∇r

∇r(ctk(r)Ei) + D∇r
D∇r

Ei
∇r−D∇r

∇rEi
∇r, Ei)

= −g∇r(ct′k(r)Ei + D∇r
ctk(r)Ei

∇r, Ei)

= −ct′k(r) − ctk(r)g∇r(D∇r
Ei
∇r, Ei)

= −ct′k(r) − ctk(r)2

= k.

We are now to prove that if K(γ̇y(t); ·) = k, then the equality holds in (3.1). Under the polar
coordinate of p, we have (r, θ) = (r(q), θ1(q), · · · , θn−1(q)) for q ∈ Dp\{p}, where

r(q) = F(y), θα(q) = θ̄α(
y

F(y)
), y = exp−1

p (q).

Then
∂

∂θα
|q = (d expp)y

(
r
∂

∂θ̄α

)
.

So, for y ∈ S pM, ∂
∂θα

can be viewed as a Jacobi field on γy(t), and

lim
r→0

1
r
∂

∂θα
|q =

∂

∂θ̄α
|y.

Since K(∇r; ·) = k, Jα(t) = ∂
∂θα
|(t,y) = sk(t)Eα(t) is the Jacobi field satisfying J(0) = 0, where Eα(t) is a

parallel vector field on γy(t), and Eα(0) = ∂
∂θ̄α
|y. By Gauss lemma, g∇r(∇r, ∂

∂θα
) = 0. Therefore,

g(∇r|(r,θ)) = dr ⊗ dr + s2
k ġp(θ).

Since S (γ̇y(t)) = 0, we have

0 =
d
dt
τ(t) =

d
dt

log

√
det gi j(t)
σp(t)

=
d
dt

log
sk(t)n−1

√
det(ġp(θ)αβ)
σp(t)

=
d
dt

log
sk(t)n−1

σp(t)
=

d
dt

log
σ̃(t)
σp(t)

,
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which means that
σp(R, θ)
σ̃(R)

=
σp(r, θ)
σ̃(r)

, 0 ≤ r ≤ R ≤ ip.

Thus, we obtain ∫ R

0

∫
S p M

σp(R, θ)dθdR =

∫ R

0

∫
S p M

σ̃(R)
σp(r, θ)
σ̃(r)

dθdR

=

∫ R

0
σ̃(R)dR

∫
S p M

σp(r, θ)
σ̃(r)

dθ

=

∫ R

0
σ̃(R)dR lim

r→0

∫
S p M

σp(r, θ)
σ̃(r)

dθ

=Cp

∫ R

0
σ̃(R)dR, 0 ≤ R ≤ ip.

That is,

voldµ
F (B+(r)) = Cp

∫ r

0
(sk(t))n−1dt, 0 ≤ r ≤ ip.

�

From Theorem 3.1, it is easy to obtain the following:

Corollary 3.2. Let (M, F, dµ) be a forward complete Finsler n-manifold with arbitrary volume form.
If the weighted Ricci curvature Ricn ≥ (n − 1)k, and there exists some positive number C such that
lim
r→0

∫
S p M

σp(r,θ)
rn−1 dθ = C for ∀p ∈ M, then

voldµ
F (B+

p(r)) = C
∫ r

0
(sk(t))n−1dt, 0 ≤ r ≤ ip,∀p ∈ M

if and only if K ≡ k.

4. Rigidity results on Finsler manifolds

Recall that, for a Randers sphere (Sn( 1
√

k
)), the metric F is expressed by (see [10])

F =

√
λg2 + W2

0

λ
−

W0

λ
, λ = 1 − ‖W‖2g,

where g is the standard sphere metric, W is a Killing vector field on Sn( 1
√

k
). Moreover, we have

(see [10])

voldµ
F (Sn(

1
√

k
)) = volg(Sn(

1
√

k
)); Diam(Sn(

1
√

k
), F) =

π
√

k
.

In what follows, we show that the properties above still hold for a general Finsler sphere.

Proposition 4.1. On a Finsler sphere Sn( 1
√

k
), we have
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(1) voldµ
F (Sn( 1

√
k
)) = volg(Sn( 1

√
k
));

(2) Diam(Sn( 1
√

k
)) = π

√
k
.

Proof. Since dµ is the Busemann-Hausdorff volume form, the constant Cp in (3.1) is

Cp = lim
r→0

∫
S p M

σp(r, θ)
rn−1 dθ = lim

r→0

voldµ
F (B+

p(r))∫ r

0
(sk(t))n−1dt

= vol(Sn−1).

Thus, from Corollary 3.2, we have

voldµ
F (Sn(

1
√

k
)) = volg(Sn(

1
√

k
))

Now fix p ∈ Sn( 1
√

k
). Using K = k and Theorem 3.1 in [5], there exists q ∈ Sn( 1

√
k
) such that

expp(
π
√

k
ξ) = q, ∀ξ ∈ S p(Sn(

1
√

k
)),

where S p(Sn( 1
√

k
)) := {v|v ∈ Tp(Sn( 1

√
k
)), F(v) = 1}. From the proof of the volume comparison theorem

(Theorem 3.1),
voldµ

F (B+
p(r)) ≤ σn(r),

where σn(r) denotes the volume of the metric ball of radius r in Sn( 1
√

k
). The equality holds if and

only if B+
p(r) ⊂ Dp, i.e., ip ≥ r. By the Bonnet-Myers theorem, Diam(Sn( 1

√
k
)) ≤ π

√
k
, which means

B+
p( π
√

k
) = Sn( 1

√
k
). Therefore,

voldµ
F (B+

p(
π
√

k
)) = voldµ

F (Sn(
1
√

k
)) = volg(Sn(

1
√

k
)) = σn(

π
√

k
).

We deduce that ip ≥
π
√

k
, which yields dF(p, q) = π

√
k
. �

Theorem 4.2. Let (M, F, dµ) be a complete connected Finsler n-manifold with Busemann-Hausdorff
volume form. If the weighted Ricci curvature Ricn ≥ (n − 1)k > 0, and voldµ

F (M) = volg(Sn( 1
√

k
)), then

(M, F) is isometric to a Finsler sphere.

Proof. Since dµ is the Busemann-Hausdorff volume form, the constant Cp in (3.1) is Cp = vol(Sn−1).
Then it follows Theorem 3.1 that, for any p ∈ M,

voldµ
F (B+

p(r)) ≤ vol(Sn−1)
∫ r

0
(sk(t))n−1dt := σn(r),

where σn(r) denotes the volume of the metric ball of radius r in Sn( 1
√

k
). The equality holds if and only

if B+
p(r) ⊂ Dp. That is, ip ≥ r. Since

voldµ
F (M) = volg(Sn(

1
√

k
)),
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we deduce that, for ∀p ∈ M and ∀r ≤ ip,

voldµ
F (B+

p(r)) = σn(r).

Then, from Corollary 3.2, we have
K ≡ k.

This completes the proof. �

To prove Theorem 1.1, we further need the following theorems.

Theorem 4.3. [10] Let (M, F, dµ) be a complete connected Finsler n-manifold with the Busemann-
Hausdorff volume form. If the weighted Ricci curvature satisfies Ricn ≥ (n − 1)k > 0, and Diam(M) =
π
√

k
, then (M, F) is isometric to a Finsler sphere.

Theorem 4.4. [10] Let (M, F, dµ) be a complete connected Finsler n-manifold with the Busemann-
Hausdorff volume form. If the weighted Ricci curvature satisfies Ricn ≥ (n − 1)k > 0, then the first
eigenvalue of Finsler-Laplacian λ1 = nk if and only if (M, F) is isometric to a Finsler sphere.

Proof of Theorem 1.1.
It follows from Proposition 4.1, Theorems 4.2–4.4 directly.
From the proof of Theorem 3.1, we know that the key step is

∆r = (n − 1)
s′k(r)
sk(r)

.

Therefore, we get another equivalent condition.

Theorem 4.5. Let (M, F, dµ) be a complete connected Finsler n-manifold with Busemann-Hausdorff
volume form. If the weighted Ricci curvature Ricn ≥ (n − 1)k > 0, then the following conditions are
equivalent:

(1) (M, F, dµ) is a Finsler sphere Sn( 1
√

k
);

(2) ∆r = (n − 1) cot r for any distance function r(x) = dF(p, x),∀p ∈ M.
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