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1. Introduction

Multivariable calculus [1] is a rich and fascinating subject. Multivariate integrals are widely used
in various disciplines. For example, in optimization and (multidimensional) optimal control theory,
authors [2, 3] studied the optimization of some multiple or curvilinear integral functionals subject to
ODEs, PDEs or isoperimetric constraints. In 2018, Mititelu and Treanţă [4] proposed optimality
conditions in multiobjective control problems which involve multiple integrals. In the computation
method of multivariate integrals, we often convert the double integral into iterated integrals in a
Cartesian coordinate system by Fubini’s Theorem or a polar coordinate system [5]. The triple integral
is converted into iterated integrals in a Cartesian coordinate system, or a cylindrical coordinate
system, or a spherical coordinate system. In general, a line integral is converted into a definite

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2021183


3010

integral, and a surface integral is converted into a double integral. In addition, Green’s formula,
Gauss’s formula and Stokes’s formula could be applied to perform the calculation [6].

In the last twenty years, more researchers worked on the conversion relationships for several types
of multivariate integrals. For example, the surface integral with respect to area is converted into the
line integral with respect to the arc length in [7]. In [8], Li and Shi proposed a method of computing
the surface integral by curvilinear integral in the special case when the projection of the surface on
the coordinate plane was a curve. In the current paper, we propose new transformation algorithms for
multivariate integrals, which further enhances the computation methods of multivariate integrals.

2. New methods for calculating double integrals

The main idea is to use the change of variables formula to transform double and triple integrals to
iterated integrals which can be done more easily.

Theorem 1. (1) If the bounded closed region D is generated by a family of planar smooth curves

Lt : y = y(x, t), a ≤ t ≤ b, x1(t) ≤ x ≤ x2(t), y′t , 0

with no double point (i.e., a point traced out twice as a closed curve is traversed), and the function
f (x, y) is continuous on the closed region D, then"

D

f (x, y)dx dy =

∫ b

a
dt

∫ x2(t)

x1(t)
f (x, y(x, t))

∣∣∣y′t ∣∣∣ dx (2.1)

"
D

f (x, y)dx dy =

∫ b

a
dt

∫
Lt

f (x, y)

∣∣∣y′t ∣∣∣√
1 + y′2x

ds (2.2)

where the symbol ‘ds’ represents the arclength differential.
(2) If the bounded closed region D is generated by a family of planar smooth curves

Lt : x = x(y, t), a ≤ t ≤ b, y1(t) ≤ y ≤ y2(t), x′t , 0

with no double points, and the function f (x, y) is continuous on the closed region D , then"
D

f (x, y)dx dy =

∫ b

a
dt

∫ y2(t)

y1(t)
f (x(y, t), y)

∣∣∣x′t ∣∣∣ dy (2.3)

"
D

f (x, y)dx dy =

∫ b

a
dt

∫
Lt

f (x, y)

∣∣∣x′t ∣∣∣√
1 + x′2y

ds (2.4)

Proof: Let transformation y = y(x, t), which transforms the D on the xOy plane to

D : a ≤ t ≤ b, x1(t) ≤ x ≤ x2(t)

on the tOx plane. Notice
∂(x, y)
∂(x, t)

=

∣∣∣∣∣∣ 1 0
y′x y′t

∣∣∣∣∣∣ = y′t , 0.
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According to the integration by substitution, the formula (2.1) holds. On the other hand, since ds =√
1 + y′2x dx on the curve Lt,

∫
Lt

f (x, y)

∣∣∣y′t ∣∣∣√
1 + y′2x

ds =

∫ x2(t)

x1(t)
f (x, y(x, t))

∣∣∣y′t ∣∣∣ dx.

The formula (2.2) can be obtained from (2.1). In the same way we can get (2.3) and (2.4).
Example 1. Calculate the double integral I =

!
D

√
x2 + y2 dx dy, where the closed region D is

bounded by three curves y =
√

1 − x2, x =
√

y and y =
√
−x.

Method 1. Take a family of concentric circles arcs

Lt : y =
√

t2 − x2,
1
2
−

√
t2 +

1
4
≤ x ≤

√√
t2 +

1
4
−

1
2
,

where 0 ≤ t ≤ 1 as shown in Figure 1. Obviously, the central angle of each arc segment is π
2 , which

results in the length of arc Lt is πt
2 . It follows from (2.2) that

I =

∫ 1

0
dt

∫
Lt

√
x2 + y2 ds =

∫ 1

0
dt

∫
Lt

t ds =

∫ 1

0
t ·

1
2
πt dt =

π

6
.

Method 2. Label regions D1,D2 and D3 as shown in Figure 2. Rotate D1 clockwise by π
2 to get D3.

It is not difficult to find that D = D1 ∪ D2 and D2 ∪ D3 : x2 + y2 ≤ 1, x ≥ 0 y ≥ 0. Make a

rotation transformation
{

x = −v,
y = u,

, then

"
D1

√
x2 + y2 dx dy =

"
D3

√
u2 + v2 du dv =

"
D3

√
x2 + y2 dx dy.

So,

I =

"
D1

√
x2 + y2 dx dy +

"
D2

√
x2 + y2 dx dy =

"
D3

√
x2 + y2 dx dy +

"
D2

√
x2 + y2 dx dy

=

"
D2∪D3

√
x2 + y2 dx dy =

∫ π
2

0
dθ

∫ 1

0
r · r dr =

π

6
.
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Figure 1. A family of concentric circles
arcs.

Figure 2. The division of regions.

Example 2. Calculate the double integral I =
!
D

1
x dx dy, where the closed region D is in the first

quadrant and is bounded by two curves xy = 2, xy = 12, and two lines y = x + 1, y = 1
4 (x + 2), as shown

in Figure 3.

Since the shape of the integral region D is very complicated (at least it needs to be represented as
two sub-regions), as shown in Figure 4, the method of directly converting to the iterated integral in
the Cartesian coordinate system or the polar coordinate system is quite cumbersome. Moreover, it is
difficult to calculate with the integration by substitution.

Figure 3. The closed region D. Figure 4. The division of regions.

The methods developed in Theorem 1 work well for this kind of regions.

Solution: Let’s take a family of hyperbolics

Lt : y =
t
x
,

√
4t + 1 − 1

2
≤ x ≤

√
4t + 1 − 1(2 ≤ t ≤ 12)

as shown in Figure 5.
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Figure 5. A family of hyperbolics.

It follows from (2.1) that

I =

∫ 12

2
dt

∫ √
4t+1−1

√
4t+1−1

2

1
x
·

1
x

dx =

∫ 12

2

1
√

4t + 1 − 1
dt = 2 +

1
2

ln 3.

Example 3. Calculate the double integral I =
!
D

√
x2+y2

x dσ, where the closed region D is bounded

by four lines x = 1, x = 2, y = 0 and y = x, as shown in Figure 6.
If we adopt the method of converting to the iterated integral in the polar coordinate system, the

integral will eventually be transformed into the definite integral
∫ π/4

0
sec3 x dx. And the calculation

process is complicated.
Solution: Let’s take a family of lines

Lt : y = tx, 1 ≤ x ≤ 2(0 ≤ t ≤ 1)

as shown in Figure 7. It follows from (2.1) that

I =

∫ 1

0
dt

∫ 2

1

√
x2 + t2x2

x
· |x|dx =

∫ 1

0

√
1 + t2 dt ·

∫ 2

1
x dx =

3
4

(
√

2 + ln(1 +
√

2).

Figure 6. The closed region D. Figure 7. A family of lines.

It can be seen from the above three examples that the calculation method of double integral varies.
The calculation method proposed by Theorem 1 is an important component. This method can
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simplify the calculation process, which has certain theoretical significance for studying the
multivariate integrals.

According to the differential method of the implicit function, the following inference is easily
obtained by Theorem 1.

Corollary 1. The bounded closed region D is generated by a family of planar smooth curves

Lt : F(x, y, t) = 0, a ≤ t ≤ b
(
F′t , 0, F′2x + F′2y , 0

)
with no double points. If function f (x, y) is continuous on D , then"

D
f (x, y)dx dy =

∫ b

a
dt

∫
Lt

f (x, y)

∣∣∣F′t ∣∣∣√
F2

x + F2
y

ds.

In addition, in Theorem 1, if the family of curves take the family of vertical lines, the family of
horizontal lines and the family of lines passing through the origin respectively, three common
calculation methods of double integral can be obtained.

Corollary 2. (1) The function f (x, y) is continuous on the bounded closed region

Dx = {(x, y) | a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x)} ,

then "
Dx

f (x, y)dx dy =

∫ b

a
dx

∫ y2(x)

y1(x)
f (x, y)dy. (2.5)

(2) The function f (x, y) is continuous on the bounded closed region

Dy = {(x, y) | c ≤ y ≤ d, x1(y) ≤ x ≤ x2(y)} ,

then "
Dy

f (x, y)dx dy =

∫ d

c
dy

∫ x2(y)

x1(y)
f (x, y)dx. (2.6)

(3) The function f (x, y) is continuous on the bounded closed region D . If D can be expressed as

D = {(r, θ) | α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ)}

with the polar transformation x = r cos θ, y = r sin θ , then"
D

f (x, y)dx dy =

∫ β

α

dθ
∫ r2(θ)

r1(θ)
f (r cos θ, r sin θ) · r dr.

Proof: Taking the family of vertical lines

Lt : x = t, a ≤ t ≤ b, y1(t) ≤ y ≤ y2(t),

we can know from (2.3)"
D

f (x, y)dx dy =

∫ b

a
dt

∫ y2(t)

y1(t)
f (t, y) · 1 dy =

∫ b

a
dx

∫ y2(x)

y1(x)
f (x, y)dy.
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That is, the formula (2.5) is established. Similarly, taking the family of horizontal lines

Lt : y = t, c ≤ t ≤ d, x1(t) ≤ x ≤ x2(t),

we can get (2.6) from (2.1).
If we use

Lθ : x = r cos θ, y = r sin θ,

where
α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ),

we can get y = x tan θ and
y′θ = x sec2 θ =

r
cos θ

.

It follows that from (2.1)"
D

f (x, y)dx dy =

∫ β

α

dθ
∫ r2(θ)

r1(θ)
f (r cos θ, r sin θ) ·

r
| cos θ|

· | cos θ|dr

=

∫ β

α

dθ
∫ r2(θ)

r1(θ)
f (r cos θ, r sin θ) · r dr.

3. New techniques for calculating triple integrals

Theorem 2. If the bounded closed region Ω is generated by a family of smooth surfaces

Σt : z = z(x, y, t), a ≤ t ≤ b, (x, y) ∈ Dxy(t)

with no double points, where Dxy(t) is the projection area of the surface Σt on xOy coordinate plane
and z′t , 0 , and the function f (x, y, z) is continuous on the closed region Ω , then$

Ω

f (x, y, z)dx dy dz =

∫ b

a
dt
"

Dxy(t)

f (x, y, z(x, y, t))
∣∣∣z′t ∣∣∣ dx dy, (3.1)

$
Ω

f (x, y, z)dx dy dz =

∫ b

a
dt
"
Σt

f (x, y, z)

∣∣∣z′t ∣∣∣√
1 + z′2x + z′2y

dS . (3.2)

Proof: Let


x = x,
y = y,
z = z(x, y, t),

then the Jacobian determinant

∂(x, y, z)
∂(x, y, t)

=

∣∣∣∣∣∣∣∣∣
1 0 0
0 1 0
z′x z′y z′t

∣∣∣∣∣∣∣∣∣ = z′t , 0.

And it transforms Ω in O − xyz to

Ω : a ≤ t ≤ b, (x, y) ∈ Dxy(t)
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in O − xyt . By substitution method of triple integral, we can obtain formula (3.1). Since dS =√
1 + z′2x + z′2y dx dy on Σt , we know"

Σt

f (x, y, z)

∣∣∣z′t ∣∣∣√
1 + z′2x + z′2y

dS =

"
Dxy(t)

f (x, y, z(x, y, t))
∣∣∣z′t ∣∣∣ dx dy.

Substituting the above formula into (3.1) yields (3.2).
Corollary 3. (1) Let the bounded closed region Ω be generated by a family of smooth surfaces

Σt : x = x(y, z, t), a ≤ t ≤ b, (y, z) ∈ Dyz(t),

with no double points, where Dyz(t) is the projection area of the surface Σt on yOz coordinate plane and
x′t , 0 . If the function f (x, y, z) is continuous on the closed region Ω , then#

Ω

f (x, y, z)dx dy dz =
∫ b

a
dt
!

Dyz(t)
f (x(y, z, t), y, z)

∣∣∣x′t ∣∣∣ dy dz,#
Ω

f (x, y, z)dx dy dz =
∫ b

a
dt
!
Σt

f (x, y, z) |x′t |√
1+x′2y +x′2z

dS .
(3.3)

(2) Let the bounded closed region Ω be generated by a family of smooth surfaces

Σt : y = y(x, z, t), a ≤ t ≤ b, (x, z) ∈ Dxz(t),

with no double points, where Dxz(t) is the projection area of the surface Σt on xOz coordinate plane and
y′t , 0 . If the function f (x, y, z) is continuous on the closed region Ω , then#

Ω

f (x, y, z)dx dy dz =
∫ b

a
dt
!

Dxz(t)
f (x, y(x, z, t), z)

∣∣∣y′t ∣∣∣ dx dz,#
Ω

f (x, y, z)dx dy dz =
∫ b

a
dt
!
Σt

f (x, y, z) |y′t |√
1+y′2x +y′2z

dS .
(3.4)

Example 4. Calculate the triple integral I =
#
Ω

(x + y + z)dx dy dz , where

Ω :
1
2
≤ x + y + z ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0,

as shown in Figure 8.
Method 1. As shown in Figure 9, Taking a family of triangle planes

Σt : z = t − x − y,
1
2
≤ t ≤ 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ t − x,

then
∣∣∣z′t ∣∣∣ = 1,

√
1 + z′2x + z′2y =

√
3 hold, and the area of Σt is

√
3

2 t2 . Substituting the above formula
into (3.2) gives

I =

∫ 1

1
2

dt
"
Σt

(x + y + z)
dS
√

3
=

1
√

3

∫ 1

1
2

t dt
"
Σt

dS =
1
√

3

∫ 1

1
2

t ·

√
3

2
t2 · dt =

15
128

.
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Figure 8. The closed region Ω. Figure 9. A family of triangle planes.

According to the additivity of the integral region, this integral can also be calculated as follows.
Method 2. Let

Ω1 = {(x, y, z) | 0 ≤ z ≤ 1 − x − y, 0 ≤ y ≤ 1 − x, 0 ≤ x ≤ 1},
Ω2 =

{
(x, y, z) | 0 ≤ z ≤ 1

2 − x − y, 0 ≤ y ≤ 1
2 − x, 0 ≤ x ≤ 1

2

}
,

then Ω = Ω1 −Ω2 . According to the symmetry of the triple integral, we have

I =

$
Ω

3x dx dy dz =

$
Ω1

3x dx dy dz −
$

Ω2

3x dx dy dz

=

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
3x dz −

" 1
2

0
dx

∫ 1
2−x

0
dy

∫ 1
2−x−y

0
3x dz

=

∫ 1

0
3x dx

∫ 1−x

0
(1 − x − y)dy −

∫ 1
2

0
3x dx

∫ 1
2−x

0

(
1
2
− x − y

)
dy

=

∫ 1

0

3
2

(
x − 2x2 + x3

)
dx −

∫ 1
2

0

3
2

(
1
4

x − x2 + x3
)

dx

=
1
8
−

1
128

=
15
128

.

Example 5. Calculate the triple integral I =
#
Ω

√
x2 + y2 + z2 dx dy dz , where

Ω : x2 + y2 + z2 ≤ 1,−z ≤ x + y ≤ 2z.

Method 1. Taking a family of spheres

Σt : z =
√

t2 − x2 − y2, 0 ≤ t ≤ 1,−z ≤ x + y ≤ 2z,

then
∣∣∣z′t ∣∣∣ = t√

t2−x2−y2
,
√

1 + z′2x + z′2y = t√
t2−x2−y2

hold. In addition, the plane x + y + z = 0 and the plane

2z − x − y = 0 are perpendicular to each other, so the area of Σt is πt2 . Substituting the above results
into (3.2) gives

I =

∫ 1

0
dt
"
Σt

√
x2 + y2 + z2 dS =

∫ 1

0
dt
"
Σt

t dS =

∫ 1

0
t · πt2 dt = π

∫ 1

0
t3 dt =

π

4
.
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Method 2. Let a orthogonal transformation u = 1
√

2
(x − y), v = 1

√
3
(x + y + z),w = 1

√
6
(2z − x − y).

And it transforms Ω in O − xyz to

Ω : u2 + v2 + w2 ≤ 1, v ≥ 0,w ≥ 0

in O − uvw, thus

I =

$
Ω

√
u2 + v2 + w2 du dv dw.

Using spherical coordinates, we can obtain

I =

∫ π

0
dθ

∫ π
2

0
dϕ

∫ 1

0
ρ · ρ2 sinϕdρ =

∫ π

0
dθ ·

∫ π
2

0
sinϕdϕ ·

∫ 1

0
ρ3dρ =

π

4
.

Example 6. Calculate the triple integral I =
#
Ω

√
x2 + y2 dx dy dz , where

Ω : 0 ≤ z ≤
√

x2 + y2, x2 + y2 ≤ 1, x ≥ 0, y ≥ 0.

Method 1. Taking a family of cylindrical surfaces

Σt : x2 + y2 = t2, x ≥ 0, y ≥ 0, 0 ≤ z ≤ t, 0 ≤ t ≤ 1

then the area of Σt is 1
2πt2 . Because of x =

√
t2 − y2 , |x′t |√

1+x′2y +x′2z
= 1 holds. Substituting the above

results into (3.3) gives

I =

∫ 1

0
dt
"
Σt

√
x2 + y2 dS =

∫ 1

0
dt
"
Σt

t dS =

∫ 1

0
t ·

1
2
πt2 dt =

π

8
.

Method 2. Taking a family of conic surfaces

Σt : z = t
√

x2 + y2, x2 + y2 ≤ 1, x ≥ 0, y ≥ 0, 0 ≤ t ≤ 1.

then z′t =
√

x2 + y2 holds. The projection area on the xoy coordinate plane:

Dxy(t) : x2 + y2 ≤ 1, x ≥ 0, y ≥ 0.

Substituting the above results into (3.1) gives

I =

∫ 1

0
dt
"

Dxy(t)

√
x2 + y2 ·

∣∣∣∣ √x2 + y2
∣∣∣∣ dx dy =

∫ 1

0
dt

∫ π
2

0
dθ

∫ 1

0
r3 dr =

π

8
.

Similarly, in Theorem 2, if we choose three kinds of special plane families, three common
calculation methods of triple integral will be obtained.

Corollary 4. (1) If the function f (x, y, z) is continuous on the bounded closed region

Ω = {(x, y, z) | a ≤ z ≤ b, (x, y) ∈ Dz} ,
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then $
Ω

f (x, y, z)dx dy dz =

∫ d

c
dz
"
Dz

f (x, y, z)dx dy.

(2) The function f (x, y, z) is continuous on the bounded closed region Ω . If Ω can be expressed as

Ω = {(r, θ, z) | α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ), z1(r, θ) ≤ z ≤ z2(r, θ)}

with the cylindrical coordinate transformation x = r cos θ, y = r sin θ, z = z , then$
Ω

f (x, y, z)dv =

∫ β

α

dθ
∫ r2(θ)

r1(θ)
dr

∫ z2(r,θ)

z1(r,θ)
f (r cos θ, r sin θ, z)r dz.

(3) The function f (x, y, z) is continuous on the bounded closed region Ω . If Ω can be expressed as

Ω = {(θ, ϕ, ρ) | α ≤ θ ≤ β, ϕ1(θ) ≤ ϕ ≤ ϕ2(θ), ρ1(ϕ, θ) ≤ ρ ≤ ρ2(ϕ, θ)}

with the spherical coordinate transformation x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ , then$
Ω

f (x, y, z)dv =

∫ β

α

dθ
∫ ϕ2(θ)

ϕ1(θ)
dϕ

∫ ρ2(ϕ,θ)

ρ1(ϕ,θ)
f (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρ.

Proof: (1) In Theorem 2, we take plane family

Σt :


x = x,
y = y, c ≤ t ≤ d, (x, y) ∈ Dxy(t)
z = z(x, y, t) = t

where Dxy(t) is the projection area of the cross section of Σz and Ω on the xOy coordinate plane. It is
easy to calculate z′t = 1 . Substituting this result into (3.1) gives$

Ω

f (x, y, z)dx dy dz =

∫ d

c
dz
"

Dz

f (x, y, z)dx dy.

(2) In Corollary 3, we take plane family

Σθ :


x = r cos θ,
y = y(r, z, θ) = r sin θ, α ≤ θ ≤ β, (r, z) ∈ Drz(θ)
z = z,

where
Drz(θ) = {(r, z) | r1(θ) ≤ r ≤ r2(θ), z1(r, θ) ≤ z ≤ z2(r, θ)}

is the projection area of the cross section of Σθ and Ω on the rOz plane. Obviously, y = x tan θ is true.
Thus y′θ = x

cos2 θ
= r

cos θ . Substituting this result into (3.4) gives$
Ω

f (x, y, z)dv =

∫ β

α

dθ
"

Dxz(θ)

f (x, y(x, z, θ), z) ·
r

| cos θ|
dx dz
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Since ∂(x,z)
∂(r,z) =

∣∣∣∣∣∣ cos θ 0
0 1

∣∣∣∣∣∣ = cos θ , dx dz = | cos θ|dr dz holds. Thus

#
Ω

f (x, y, z)dv =
∫ β

α
dθ
!

Drz(θ)
f (r cos θ, r sin θ, z) · r dr dz.

=
∫ β

α
dθ

∫ r2(θ)

r1(θ)
dr

∫ z2(r,θ)

z1(r,θ)
f (r cos θ, r sin θ, z)r dz.

(3) In Corollary 3, we take plane family

Σθ :


x = ρ sinϕ cos θ,
y = y(ρ, ϕ, θ) = ρ sinϕ sin θ, α ≤ θ ≤ β, (ϕ, ρ) ∈ Dϕρ(θ)
z = ρ cosϕ,

where
Dϕρ(θ) = {(ϕ, ρ) | ϕ1(θ) ≤ ϕ ≤ ϕ2(θ), ρ1(ϕ, θ) ≤ ρ ≤ ρ2(ϕ, θ)}

is the projection area of the cross section of Σθ and Ω on the ϕOρ plane. Obviously, y = x tan θ is true.
Thus y′θ = x

cos2 θ
= ρ sinϕ

cos θ . Substituting this result into (3.4) gives$
Ω

f (x, y, z)dv =

∫ β

α

dθ
"

Dxz(θ)

f (x, y(x, z, θ), z) ·
ρ sinϕ
| cos θ|

dx dz

Since ∂(x,z)
∂(ρ,ϕ) =

∣∣∣∣∣∣ sinϕ cos θ cosϕ
ρ cosϕ cos θ −ρ sinϕ

∣∣∣∣∣∣ = ρ cos θ , dx dz = ρ| cos θ|dρdϕ holds. Thus

#
Ω

f (x, y, z)dv =
∫ β

α
dθ
!

Dϕρ(θ)
f (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) · ρ sinϕdϕdρ.

=
∫ β

α
dθ

∫ ϕ2(θ)

ϕ1(θ)
dϕ

∫ ρ2(ϕ,θ)

ρ1(ϕ,θ)
f (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρ.

4. Another new scheme for calculating triple integrals

Theorem 3. Let the bounded closed region Ω be generated by a family of smooth surfaces

Σt : z = z(x, y, t), a ≤ t ≤ b, x1(t) ≤ x ≤ x2(t)

with no double points and z′t , 0 . Let Γxt be the curves where the planes, which pass through the
point (x, 0, 0) and are perpendicular to the X-axis, and surface Σt intersect. If the function f (x, y, z) is
continuous on the closed region Ω , then$

Ω

f (x, y, z)dv =

"
D

dx dt
∫

Γxt

f (x, y, z)

∣∣∣z′t ∣∣∣√
1 + z′2y

ds, (4.1)

where D = {(t, x) | a ≤ t ≤ b, x1(t) ≤ x ≤ x2(t)}.
Proof: Let x = x, y = y, z = z(x, y, t), then the Jacobian determinant

∂(x, y, z)
∂(x, y, t)

=

∣∣∣∣∣∣∣∣∣
1 0 0
0 1 0
z′x z′y z′t

∣∣∣∣∣∣∣∣∣ = z′t , 0.
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And it transforms Ω to

Ω′ = {(x, y, z) | a ≤ t ≤ b, x1(t) ≤ x ≤ x2(t), y1(x, t) ≤ y ≤ y2(x, t)} .

By substitution method of triple integral we can obtain$
Ω

f (x, y, z)dx dy dz =

$
Ω′

f (x, y, z(x, y, t))
∣∣∣z′t ∣∣∣ dx dy dt

=

∫ b

a
dt

∫ x2(t)

x1(t)
dx

∫ y2(x,t)

y1(x,t)
f (x, y, z(x, y, t))

∣∣∣z′t ∣∣∣ dy.

On the other hand, ∫
Γxt

f (x, y, z)

∣∣∣z′t ∣∣∣√
1 + z′2y

ds =

∫ y2(x,t)

y1(x,t)
f (x, y, z(x, y, t))

∣∣∣z′t ∣∣∣ dy,

then "
D

dx dt
∫
Γxt

f (x, y, z)

∣∣∣z′t ∣∣∣√
1 + z′2y

ds =

∫ b

a
dt

∫ x2(t)

x1(t)
dx

∫ y2(x,t)

y1(x,t)
f (x, y, z(x, y, t))

∣∣∣z′t ∣∣∣ dy.

thus $
Ω

f (x, y, z)dv =

"
D

dx dt
∫

Γxt

f (x, y, z)

∣∣∣z′t ∣∣∣√
1 + z′2y

ds.

Example 7. Calculate the triple integral I =
#
Ω

z dv , where Ω : x2 + y2 + z2 ≤ 1, z ≥ |y| .

Method 1. Taking the surface family

Σt : z =
√

t2 − x2 − y2(0 ≤ t ≤ 1).

For any given t ∈ [0, 1] , x ∈ [−t, t] and

−
1
√

2

√
t2 − x2 ≤ y ≤

1
√

2

√
t2 − x2.

Let Γxt be the curves where the planes, which pass through the point (x, 0, 0) and are perpendicular to
the X-axis, and surface Σt intersect. That means

Γxt :
{

x = x,
z =

√
t2 − x2 − y2.

Then z′t = t√
t2−x2−y2

, thus

∫
Γxt

z ·

∣∣∣z′t ∣∣∣√
1 + z′2y

ds =

∫ − 1√
2

√
t2−x2

− 1√
2

√
t2−x2

t dy =
√

2t
√

t2 − x2.
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Substituting the above formula into (4.1) gives

I =

"
D

√
2t
√

t2 − x2 dx dt,

where D = {(t, x) | 0 ≤ t ≤ 1,−t ≤ x ≤ t} . So,

I =

∫ 1

0
dt

∫ t

−t

√
2t
√

t2 − x2 dx =
1
√

2
π

∫ 1

0
t3 dt =

√
2

8
π.

Method 2. According to the symmetry of the integral, it is easy to see that

I =

$
Ω

z dv = 2
$

Ω′

z dv,

where
Ω′ : x2 + y2 + z2 ≤ 1, z ≥ y ≥ 0.

And the projection area of Ω′ on xOy plane is

Dxy =
{
(x, y) | x2 + 2y2 ≤ 1, y ≥ 0

}
,

thus

I = 2
"
Dxy

dxdy
∫ √1−x2−y2

y
zdz =

"
Dxy

(
1 − x2 − 2y2

)
dxdy.

Using the generalized polar transformation, the above integral can be calculated as follows:

I =

∫ π

0
dθ

∫ 1

0

(
1 − r2

) 1
√

2
rdr =

√
2

8
π.

Corollary 5. (1) The bounded closed region Ω is generated by a family of smooth surfaces

Σt : z = z(x, y, t), a ≤ t ≤ b, y1(t) ≤ y ≤ y2(t)

with no double points and z′t , 0 . Let Γyt be the curves where the planes, which pass through the
point (0, y, 0) and are perpendicular to the Y-axis, and surface Σt intersect. If the function f (x, y, z) is
continuous on the closed region Ω , then$

Ω

f (x, y, z)dv =

"
D

dy dt
∫
Γyt

f (x, y, z)

∣∣∣z′t ∣∣∣√
1 + z′2x

ds,

where D = {(t, y) | a ≤ t ≤ b, y1(t) ≤ y ≤ y2(t)} .
(2) The bounded closed region Ω is generated by a family of smooth surfaces

Σt : y = y(x, z, t), a ≤ t ≤ b, x1(t) ≤ x ≤ x2(t)
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with no double points and y′t , 0 . Let Γxt be the curves where the planes, which pass through the
point (x, 0, 0) and are perpendicular to the X-axis, and surface Σt intersect. If the function f (x, y, z) is
continuous on the closed region Ω , then$

Ω

f (x, y, z)dv =

"
D

dx dt
∫
Γxt

f (x, y, z)

∣∣∣y′t ∣∣∣√
1 + y′2z

ds, (4.2)

where D = {(t, x) | a ≤ t ≤ b, x1(t) ≤ x ≤ x2(t)} .
In fact, there are several other cases of Theorem 3, which are not repeated here.
Method 3 of Example 6. Taking a family of cylindrical surfaces

Σt : y =
√

t2 − x2, D = {(t, x) | 0 ≤ t ≤ 1, 0 ≤ x ≤ t}.

then |y′t |√
1+y′2z

= t
√

t2−x2
holds. Let Γxt be


x = x,
y =
√

t2 − x2, 0 ≤ x ≤ t
z = t,

. And the length of the straight-line

segment Γxt is t . Substituting the above results into (4.2) gives

I =

"
D

dx dt
∫
Γxt

√
x2 + y2 ·

t
√

t2 − x2
ds =

"
D

dx dt
∫
Γxt

t2

√
t2 − x2

ds =

"
D

t2

√
t2 − x2

· t dx dt =
π

8
.

Corollary 6. Let the function f (x, y, z) be continuous on the bounded closed region

Ω = {(x, y, z) | z1(x, y) ≤ z ≤ z2(x, y), (x, y) ∈ D} ,

then $
Ω

f (x, y, z)dx dy dz =

"
D

dx dy
∫ z2(x,y)

z1(x,y)
f (x, y, z)dz,

where D is the projection area of Ω on the xOy coordinate plane.
Proof: In the Corollary 5(2), if we take

Σt : y = y(x, z, t) = t,

Γxt is straight lines Γxy parallel to the Z-axis. Notice

y′t = 1, y′z = 0, ds = dz,

It follows from (4.2) that$
Ω

f (x, y, z)dv =

"
D

dx dy
∫
Γxy

f (x, y, z)
1

√
1 + 02

ds =

"
D

dx dy
∫ z2(x,y)

z1(x,y)
f (x, y, z)dz.

5. Conclusions

In this paper we establish several formulas for converting the double integral to a line integral with
respect to arc length, and the triple integral to a surface integral with respect to area or a line integral
with respect to arc length. Some commonly used calculation methods are special cases of our methods.
Examples show that the methods presented here are simple and effective in computing certain complex
double integrals and triple integrals.
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