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Abstract: In this paper, we investigate non-traveling wave solutions of the (3+1)-dimensional variable
coefficients Date-Jimbo-Kashiwara-Miwa (VC-DJKM) equation, which describes the real physical
phenomena owing to the inhomogeneities of media. By combining the extended homoclinic test
approach with variable separation method, we obtain abundant new exact non-traveling wave solutions
of the (3+1)-dimensional VC-DJKM equation. These results with a parabolic tail or linear tail reveal
the complex structure of the solutions for (3+1)-dimensional VC-DJKM equation. Moreover, the
tail in these solutions maybe give a prediction of physical phenomenon. When arbitrary functions
contained in these non-traveling wave solutions are taken as some special functions, we can get the
kink-type solitons, singular solitary wave solutions, and periodic solitary wave solutions, and so on.
As the special cases of our work, the corresponding results of (3+1)-dimensional DJKM equation,
(2+1)-dimensional DJKM equation, (2+1)-dimensional VC-DJKM equation are also given.
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1. Introduction

As we known, a great number of significant problems such as physical, ecological science and
engineering technology can be attributed to the research of higher-dimensional nonlinear partial
differential equations (NLPDEs). It’s especially important to seek the explicit analytic solutions of
higher-dimensional NLPDEs so as to delve into the dynamic process described by the higher-
dimensional NLPDEs models. However, in practical applications, most of real nonlinear

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2021182


2997

mathematical physics equations possess variable coefficients. The exact solutions of the variable
coefficients nonlinear partial differential equations have greater application values. Some properties of
variable coefficients higher-dimensional NLPDEs have been studied [1–3].

Recently, many researchers have studied traveling wave solutions for higher-order and higher-
dimensional NLPDEs. Arshad [4] applied modified extended mapping method to get bright and dark
solitons, solitary wave and periodic solitary wave solutions of generalized higher order nonlinear
Schrödinger equation in cubic quintic non Kerr medium. Using the generalized extended tanh method
and the F-expansion method, Seadawy [5] derived exact solitary wave solutions of KP and modified
KP equations. Özkan [6] applied the improved tan(ϕ/2)-expansion method to obtain four types of
solutions for the generalised Hirota-Satsuma coupled KdV equation and (2+1)-dimensional Nizhnik-
Novikov-Veselov system. Iqbal [7] constructed some new solitary wave solutions (such as rational,
trigonometric, hyperbolic, elliptic functions including dark, bright, periodic wave, and so on) of
(2+1)-dimensional Nizhnik-Novikov-Vesselov equation by the extended modified rational expansion
method. Traveling wave solutions are very special solutions of partial differential equations, which
describe evolution of physical quantities. But partial differential equations are infinite dimensional
systems, the solution space is infinite dimensional, and more solutions are non-traveling wave
solutions. Deriving non-traveling exact wave solutions of nonlinear partial differential equations has
recently received tremendous attention in mathematics and physics. Moreover, compared with the
low-dimensional systems, higher-dimensional nonlinear partial differential equations have more
complex behaviors. Shang [8, 9] have studied the non-traveling wave solutions of (3+1)-dimensional
potential-YTSF equation and Calogero equation by combining the extended homoclinic approach
with the method of separation of variables. Refs. [10–12] studied the non-traveling wave solutions for
(2+1)-dimensional and (3+1)-dimensional nonlinear partial differential equations. Therefore, the
study of non-traveling wave solutions for higher-dimensional nonlinear partial differential equations
is valuable.

As one of the most important higher-dimensional variable coefficients NLPDEs, the new (3+1)-
dimensional Date-Jimbo-Kashiwara-Miwa equation with time-dependent coefficients

uxxxxy + 4uxxyux + 2uxxxuy + 6uxyuxx − αuyyy − 2βg(t)uxxt + h(t)(aux + buy + cuz)xx = 0 (1.1)

describes the real physical phenomena owing to the inhomogeneities of media, where u = u(x, y, z, t)
denotes the wave amplitude, α, β, a, b, c are real constants, g(t) is a smooth function, g(t) , 0, h(t) is a
function of t. For g(t) = h(t) = 1, Eq (1.1) reduces to (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa
equation with constant coefficients

uxxxxy + 4uxxyux + 2uxxxuy + 6uxyuxx − αuyyy − 2βuxxt + (aux + buy + cuz)xx = 0. (1.2)

Wazwaz [13] showed that Eq (1.1) and Eq (1.2) were completely integrable in the Painlevé sense and
admitted multiple soliton solutions consisting of solitonic, singular, periodic solutions. When g(t) = 1,
h(t) = 0, Eq (1.1) reduces to the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa (DJKM) equation

uxxxxy + 4uxxyux + 2uxxxuy + 6uxyuxx − αuyyy − 2βuxxt = 0, (1.3)

which describes the propagation of nonlinear dispersive waves in inhomogeneous media, where α and
β are real constants. Refs. [14–17] obtained Lax pair, conservation laws, Wronskian and Grammian
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solutions, lump solutions, multi-shock wave solutions, complexiton solutions and soliton solutions of
Eq (1.3). For b = 1, a = c = 0, Eq (1.1) reduces to the (2+1)-dimensional variable coefficients
Date-Jimbo-Kashiwara-Miwa (VC-DJKM) equation

uxxxxy + 4uxxyux + 2uxxxuy + 6uxyuxx − αuyyy − 2βg(t)uxxt + h(t)uxxy = 0. (1.4)

Kang [18] obtained the breather-kink wave solution, double-solitary wave solution and rogue wave
solution of Eq (1.4) by implementing the homoclinic test method. Wazwaz [19] presented the multi-
shock wave solutions and the multiple complex kink solutions of Eq (1.4). We can say that Eq (1.2),
(1.3) and (1.4) are all particular forms of Eq (1.1). There are some researches about solutions of (2+1)-
dimensional Date-Jimbo-Kashiwara-Miwa equation. However, till date, to the best of our knowledge,
few research has been conducted on the traveling or non-traveling wave solutions of (3+1)-dimensional
Date-Jimbo-Kashiwara-Miwa equation with constant coefficients and variable coefficients.

In this paper, we will study the new exact non-traveling wave solutions of the (3+1)-dimensional
Date-Jimbo-Kashiwara-Miwa equation with time-dependent coefficients (1.1). By utilizing the
extended homoclinic test approach and variable separation method [8,9], we present sixteen kinds of
non-traveling wave solutions, such as kink-like solutions, periodic solitary-like solutions and singular
solitary-like solutions, and so on. When arbitrary functions in the non-traveling wave solutions are
taken as special functions, we will get kink solitary solutions, singular solitary wave solutions and
periodic solitary wave solutions. As the special cases of our work, the corresponding results of (3+1)-
dimensional DJKM equation (1.2), (2+1)-dimensional DJKM equation (1.3), (2+1)-dimensional
VC-DJKM equation (1.4) are also given. Meanwhile, we shed light on the structural characteristics of
solutions by some graphics and explain the importance of our results in mathematics and physics.

2. Abundant new exact non-traveling wave solutions for the (3+1)-dimensional VC-DJKM
equation

In this section, by combining the extended homoclinic test approach with the method of separation
of variables [8,9], we derive abundant exact non-traveling wave solutions of Eq (1.1).

We first introduce a transformation

u(x, y, z, t) = ϕ(ξ, t) + q(y, t), (2.1)

where ξ = x + mz + θ(y, t), x, y, z ∈ R, t ∈ R+, m ∈ R is an arbitrary constant, ϕ(ξ, t), q(y, t) and θ(y, t)
are functions to be determined later. Substituting (2.1) into (1.1) leads to the equation

θyϕξξξξξ + 6θyϕξϕξξξ + (2qy − αθ
3
y − 2βg(t)θt + ah(t) + bθyh(t) + cmh(t))ϕξξξ + 6θyϕ

2
ξξ

− 3αθyθyyϕξξ − αθyyyϕξ − αqyyy − 2βg(t)ϕξξt = 0.
(2.2)

To simplify Eq (2.2), we let

2qy − αθ
3
y − 2βg(t)θt + ah(t) + bθyh(t) + cmh(t) = 0. (2.3)

From (2.3), we get

q(y, t) =

∫
(βg(t)θt +

αθ3
y − (a + bθy + cm)h(t)

2
)dy. (2.4)

In order to further reduce Eq (2.2), we will discuss that θ(y, t) has two specific forms in what follows.
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2.1. The multiplicative variable separable form of θ(y, t)

In this case, θ(y, t) has the multiplicative variable separable form

θ(y, t) = f (t)k(y), (2.5)

where f (t) and k(y) are two smooth functions to be determined later. Substituting (2.5) into (2.4) yields

q(y, t) =
α

2
f 3(t)
∫

(k′(y))3dy + βg(t) f ′(t)
∫

k(y)dy −
h(t)
2

∫
(a + b f (t)k′(y) + cm)dy. (2.6)

Therefore, Eq (2.2) reduces to

θyϕξξξξξ + 6θyϕξϕξξξ + 6θyϕ
2
ξξ − 3αθyθyyϕξξ − αθyyyϕξ − αqyyy − 2βg(t)ϕξξt = 0. (2.7)

In order to simply Eq (2.7), we let k′(y)=Constant. Without loss of generality, we take k(y) = y.
Therefore, Eq (2.7) reduces to the following equation with variable coefficients

f (t)ϕξξξξξ + 6 f (t)ϕξϕξξξ + 6 f (t)ϕ2
ξξ − 2βg(t)ϕξξt = 0. (2.8)

Furthermore, we need to transform Eq (2.8) to a partial differential equation with constant coefficients.
Here, we introduce an appropriate variable transformation

ϕ(ξ, t) = ν(ξ, η), η =

∫
f (t)
g(t)

dt. (2.9)

Substituting (2.9) into (2.8), we get the following partial differential equation with constant coefficients

νξξξξξ + 6νξνξξξ + 6ν2
ξξ − 2βνξξη = 0. (2.10)

Integrating (2.10) twice with respect to ξ and taking the integral constant to be zero, we get

νξξξ + 3ν2
ξ − 2βνη = 0. (2.11)

In order to solving (2.11), we introduce a nonlinear function transformation

ν = 2(lnφ)ξ, (2.12)

where φ(ξ, η) is an undetermined real function. Substituting (2.12) into (2.11) leads to a bilinear
equation

(D4
ξ − 2βDξDη)φ · φ = 0, (2.13)

where the bilinear operator D is defined as

Dm
ξ Dn

η f · g = (∂ξ − ∂ξ′)m(∂η − ∂η′)n f (ξ, η)g(ξ′, η′)|(ξ′,η′)=(ξ,η).

In this section, we seek for the solution in the following form

φ = k1cos(ζ1) + k2exp(ζ2) + exp(−ζ2), (2.14)
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where ζi = aiξ + biη, i = 1, 2, k1, k2 ∈ R, a1, a2, b1, b2 ∈ C are undetermined constants. Substituting
(2.14) into (2.13) and equating all coefficients of cos2(ζ1), cos(ζ1)exp(ζ2), cos(ζ1)exp(−ζ2), sin2(ζ1),
sin(ζ1)exp(ζ2), sin(ζ1)exp(−ζ2) and the constant term to zero yield a set of nonlinear algebraic
equations as follows: 

k2
1(4a4

1 + 2βa1b1) = 0,
k1k2(a4

1 + a4
2 − 6a2

1a2
2 + 2βa1b1 − 2βa2b2) = 0,

k1(a4
1 + a4

2 − 6a2
1a2

2 + 2βa1b1 − 2βa2b2) = 0,
2k2

1(2a4
1 + βa1b1) = 0,

2k1k2(2a1a3
2 − 2a3

1a2 − βa1b2 − βa2b1) = 0,
2k1(−2a1a3

2 + 2a3
1a2 + βa1b2 + βa2b1) = 0,

8k2(2a4
2 − βa2b2) = 0.

(2.15)

With the help of symbolic software such as Maple, we have the following results of (2.15).
Case 1: 

a1 = a1, b1 = b1, k1 = 0,

a2 = a2, b2 =
2a3

2

β
, k2 = k2.

(2.16)

In this case, collecting (2.16), (2.14), (2.12), (2.9), (2.6), (2.5) with (2.1), one obtains Eq (1.1) admits
exact solution given as

u(x, y, z, t) = 2a2
k2exp(ζ2) − exp(−ζ2)
k2exp(ζ2) + exp(−ζ2)

+
βg(t) f ′(t)

2
y2 +

α f 3(t) − (a + b f (t) + cm)h(t)
2

y, (2.17)

where ζ2 = a2(x + mz + f (t)y) +
2a3

2
β

∫
f (t)
g(t) dt.

In particular, solution (2.17) can be written as follows:

u1(x, y, z, t) = 2a2tanh(ζ2 +
1
2

ln k2) +
βg(t) f ′(t)

2
y2 +

α f 3(t) − (a + b f (t) + cm)h(t)
2

y, k2 > 0, (2.18)

u2(x, y, z, t) = 2a2coth(ζ2+
1
2

ln(−k2))+
βg(t) f ′(t)

2
y2+

α f 3(t) − (a + b f (t) + cm)h(t)
2

y, k2 < 0, (2.19)

where ζ2 = a2(x + mz + f (t)y) +
2a3

2
β

∫
f (t)
g(t) dt, a2 is a real constant.

Case 2: 
a1 = a1, b1 = −

2a3
1

β
, k1 = k1,

a2 = ±ia1, b2 = ∓
2ia3

1

β
, k2 = 0.

(2.20)

In this case, collecting (2.20), (2.14), (2.12), (2.9), (2.6), (2.5) with (2.1), then Eq (1.1) has the exact
solution given below

u(x, y, z, t) = 2a1
−k1sin(ζ1) ∓ iexp(−ζ2)
k1cos(ζ1) + exp(−ζ2)

+
βg(t) f ′(t)

2
y2 +

α f 3(t) − (a + b f (t) + cm)h(t)
2

y, (2.21)

where ζ1 = a1(x + mz + f (t)y) − 2a3
1
β

∫
f (t)
g(t) dt and ζ2 = ±iζ1.
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In particular, solution (2.21) becomes

u3(x, y, z, t) = 2a1
[1 − (k1 + 1)2]sin(ζ1)cos(ζ1) ∓ i(k1 + 1)

(k1 + 1)2cos2(ζ1) + sin2(ζ1)
+
βg(t) f ′(t)

2
y2

+
α f 3(t) − (a + b f (t) + cm)h(t)

2
y, a1 ∈ R, (2.22)

u4(x, y, z, t) = 2k3
(k1 + 1)sinh(ζ∗1) ∓ cosh(ζ∗1)
(k1 + 1)cosh(ζ∗1) ∓ sinh(ζ∗1)

+
βg(t) f ′(t)

2
y2

+
α f 3(t) − (a + b f (t) + cm)h(t)

2
y, a1 = −k3i, k3 ∈ R, (2.23)

where ζ1 = a1(x + mz + f (t)y) − 2a3
1
β

∫
f (t)
g(t) dt and ζ∗1 = iζ1.

Case 3: 
a1 = a1, b1 = −

2a3
1

β
, k1 = k1,

a2 = ±ia1, b2 = ∓
2ia3

1

β
, k2 = k2.

(2.24)

In this case, collecting (2.24), (2.14), (2.12), (2.9), (2.6), (2.5) with (2.1), then Eq (1.1) has exact
solution expressed as

u = 2a1
−k1sin(ζ1) ± ik2exp(ζ2) ∓ iexp(−ζ2)

k1cos(ζ1) + k2exp(ζ2) + exp(−ζ2)
+
βg(t) f ′(t)

2
y2 +

α f 3(t) − (a + b f (t) + cm)h(t)
2

y, (2.25)

where ζ1 = a1(x + mz + f (t)y) − 2a3
1
β

∫
f (t)
g(t) dt and ζ2 = ±iζ1.

In particular, solution (2.25) becomes

u5(x, y, z, t) = 2a1
[(k2 − 1)2 − (k1 + k2 + 1)2]sin(ζ1)cos(ζ1) ± (k1 + k2 + 1)(k2 − 1)i

(k1 + k2 + 1)2cos2(ζ1) + (k2 − 1)2sin2(ζ1)

+
βg(t) f ′(t)

2
y2 +

α f 3(t) − (a + b f (t) + cm)h(t)
2

y, a1 ∈ R, (2.26)

u6(x, y, z, t) = 2k3
k1sinh(ζ∗1) ± 2

√
k2sinh(±ζ∗1 + 1

2 ln k2)

k1cosh(ζ∗1) + 2
√

k2cosh(±ζ∗1 + 1
2 ln k2)

+
βg(t) f ′(t)

2
y2

+
α f 3(t) − (a + b f (t) + cm)h(t)

2
y, k2 > 0, a1 = −k3i, k3 ∈ R, (2.27)

u7(x, y, z, t) = 2k3
k1sinh(ζ∗1) ∓ 2

√
−k2cosh(±ζ∗1 + 1

2 ln(−k2))

k1cosh(ζ∗1) − 2
√
−k2sinh(±ζ∗1 + 1

2 ln(−k2))
+
βg(t) f ′(t)

2
y2

+
α f 3(t) − (a + b f (t) + cm)h(t)

2
y, k2 < 0, a1 = −k3i, k3 ∈ R, (2.28)

where ζ1 = a1(x + mz + f (t)y) − 2a3
1
β

∫
f (t)
g(t) dt and ζ∗1 = iζ1.

Case 4: 
a1 = 0, b1 = 0, k1 = k1,

a2 = a2, b2 =
a3

2

2β
, k2 = 0.

(2.29)
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In this case, collecting (2.29), (2.14), (2.12), (2.9), (2.6), (2.5) with (2.1), one obtains the solution of
Eq (1.1) in the following form

u8(x, y, z, t) = −2a2
exp(−ζ2)

k1 + exp(−ζ2)
+
βg(t) f ′(t)

2
y2 +

α f 3(t) − (a + b f (t) + cm)h(t)
2

y, (2.30)

where ζ2 = a2(x + mz + f (t)y) +
a3

2
2β

∫
f (t)
g(t) dt. In u1 − u8, f (t) is an arbitrary first order derivable function.

When taking the arbitrary function f (t) as specific constant or function, we can derive rich exact non-
traveling wave solutions for Eq (1.1). Moreover, when a1 = k4 + ik3, we can get many other type
solutions from (2.21) and (2.25), where k3, k4 are nonzero real numbers. Here, we omit the detail
expression of these solutions.

2.2. The additive variable separable form of θ(y, t)

In this case, θ(y, t) has an additive variable separable form

θ(y, t) = f (t) + k(y), (2.31)

where f (t) and k(y) are smooth functions to be determined later. Substituting (2.31) into (2.4) yields

q(y, t) =
α

2

∫
(k′(y))3dy + βg(t) f ′(t)

∫
dy −

h(t)
2

∫
(a + bk′(y) + cm)dy. (2.32)

Then, substituting (2.31) and (2.32) into (2.2), one obtains

k′ϕξξξξξ + 6k′ϕξϕξξξ + 6k′ϕ2
ξξ − 3αk′k′′ϕξξ − αk′′′ϕξ − αqyyy − 2βg(t)ϕξξt = 0. (2.33)

To simply Eq (2.33), we set that k′(y) =Constant. Without loss of generality, we take k(y) = y.
Therefore, Eq (2.33) becomes

ϕξξξξξ + 6ϕξϕξξξ + 6ϕ2
ξξ − 2βg(t)ϕξξt = 0. (2.34)

In order to solve Eq (2.34), we introduce an appropriate variable transformation

ϕ(ξ, t) = ν(ξ, η), η =

∫
1

g(t)
dt (2.35)

to transform Eq (2.34) to a partial differential equation with constant coefficients

νξξξξξ + 6νξνξξξ + 6ν2
ξξ − 2βνξξη = 0. (2.36)

Integrating (2.36) twice with respect to ξ yields

νξξξ + 3ν2
ξ − 2βνη = 0. (2.37)

In the same way as solving Eq (2.11), we obtain the solutions of Eq (1.1) as follows

u9(x, y, z, t) = 2a2tanh(ζ2 +
1
2

ln k2) + (βg(t) f ′(t) +
α − (a + b + cm)h(t)

2
)y, k2 > 0, (2.38)
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u10(x, y, z, t) = 2a2coth(ζ2 +
1
2

ln(−k2)) + (βg(t) f ′(t) +
α − (a + b + cm)h(t)

2
)y, k2 < 0, (2.39)

where ζ2 = a2(x + y + mz + f (t)) +
2a3

2
β

∫
1

g(t)dt.

u11(x, y, z, t) = 2a1
[1 − (k1 + 1)2]sin(ζ1)cos(ζ1) ∓ i(k1 + 1)

(k1 + 1)2cos2(ζ1) + sin2(ζ1)

+ (βg(t) f ′(t) +
α − (a + b + cm)h(t)

2
)y, a1 ∈ R, (2.40)

u12(x, y, z, t) = 2k3
(k1 + 1)sinh(ζ∗1) ∓ cosh(ζ∗1)
(k1 + 1)cosh(ζ∗1) ∓ sinh(ζ∗1)

+ (βg(t) f ′(t) +
α − (a + b + cm)h(t)

2
)y, a1 = −k3i, k3 ∈ R, (2.41)

where ζ1 = a1(x + y + mz + f (t)) − 2a3
1
β

∫
1

g(t)dt and ζ∗1 = iζ1.

u13(x, y, z, t) = 2a1
[(k2 − 1)2 − (k1 + k2 + 1)2]sin(ζ1)cos(ζ1) ± (k1 + k2 + 1)(k2 − 1)i

(k1 + k2 + 1)2cos2(ζ1) + (k2 − 1)2sin2(ζ1)

+ (βg(t) f ′(t) +
α − (a + b + cm)h(t)

2
)y, a1 ∈ R, (2.42)

u14(x, y, z, t) = 2k3
k1sinh(ζ∗1) ± 2

√
k2sinh(±ζ∗1 + 1

2 ln k2)

k1cosh(ζ∗1) + 2
√

k2cosh(±ζ∗1 + 1
2 ln k2)

+ (βg(t) f ′(t) +
α − (a + b + cm)h(t)

2
)y, k2 > 0, a1 = −k3i, k3 ∈ R, (2.43)

u15(x, y, z, t) = 2k3
k1sinh(ζ∗1) ∓ 2

√
−k2cosh(±ζ∗1 + 1

2 ln(−k2))

k1cosh(ζ∗1) − 2
√
−k2sinh(±ζ∗1 + 1

2 ln(−k2))

+ (βg(t) f ′(t) +
α − (a + b + cm)h(t)

2
)y, k2 < 0, a1 = −k3i, k3 ∈ R, (2.44)

where ζ1 = a1(x + y + mz + f (t)) − 2a3
1
β

∫
1

g(t)dt and ζ∗1 = iζ1.

u16(x, y, z, t) = −2a2
exp(−ζ2)

k1 + exp(−ζ2)
+ (βg(t) f ′(t) +

α − (a + b + cm)h(t)
2

)y, (2.45)

where ζ2 = a2(x+y+mz+ f (t))+
a3

2
2β

∫
1

g(t)dt. In u9-u16, f (t) is an arbitrary first order derivable function.
When taking the arbitrary function f (t) as specific constant or function, we can derive rich exact non-
traveling wave solutions for Eq (1.1).

Remark 2.1 Especially, if g(t) = h(t) = 1, Eq (1.1) reduces to the (3+1)-dimensional DJMK equation
with constant coefficients (1.2). In the same way of solving Eq (1.1), we can obtain sixteen kinds of
non-traveling solutions of Eq (1.2) with g(t) = h(t) = 1 in (2.18), (2.19), (2.22), (2.23), (2.26), (2.27),
(2.28), (2.30), and (2.38)–(2.45).

Remark 2.2 For g(t) = 1, h(t) = 0, Eq (1.1) reduces to the (2+1)-dimensional DJMK equation with
constant coefficients (1.3). In a similar manner to solving Eq (1.1), we can obtain sixteen kinds of
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non-traveling solutions of Eq (1.3) with g(t) = 1, h(t) = 0, m = 0 in (2.18), (2.19), (2.22), (2.23),
(2.26), (2.27), (2.28), (2.30), and (2.38)–(2.45).

Remark 2.3 For b = 1, a = c = 0, Eq (1.1) reduces to the (2+1)-dimensional VC-DJKM equation
(1.4). In a manner similar to solving Eq (1.1), we can obtain sixteen kinds of non-traveling solutions
of Eq (1.4) with b = 1, a = c = m = 0 in (2.18), (2.19), (2.22), (2.23), (2.26), (2.27), (2.28), (2.30),
and (2.38)–(2.45).

3. Graphic analysis of solutions

In section 2, we combine the extended homoclinic test approach and variable separation method
to get sixteen kinds of solutions. These solutions have a parabolic tail and a linear tail. The tails
in these solutions maybe give a prediction of physical phenomenon and the free parameters in these
solutions of Eq (1.1) have rich mathematical structures, which may be important for explaining some
physical phenomena in variety of branches. According to the expression of solutions, the non-traveling
solutions u1, u6, u9 and u14 can be seen as kink-like type. u2, u4, u7, u10, u12 and u15 can be seen as
singular solitary wave-like type. The non-traveling solutions u3, u5, u11 and u13 can be regarded as
periodic solitary wave-like solutions. u8 and u16 are single solitary wave-like type. The solutions u1-
u8 have a parabolic tail. The solutions u9-u16 possess a linear tail. These results reveal the complex
structure of the solutions for the (3+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa
equation (1.1). Some cross sections of these solutions have solitary wave form. Here, through 3D
graphic, we draw the cross sections of some solutions.

The representative sketches of the solutions in the form of u1, u2, u3 and u7 with a parabolic tail are
presented in Figures 1–4 respectively.

Figure 1. Kink-like solution u1 as a2 = 1, k2 = m = α =

β = 1, x = z = 0, f (t) = h(t) = g(t) = t, a = b = c = 1.
Figure 2. Singular solitary wave-like solution u2 as a2 = 1,
k2 = −1,m = α = β = 1, x = z = 0, f (t) = h(t) = g(t) = t,
a = b = c = 1.

Figure 3. Periodic solitary wave-like solution u3 as a1 = 1,
a2 = ia1 , k1 = m = α = β = 1, x = z = 0, f (t) = h(t) =

g(t) = t, a = b = c = 1.

Figure 4. Singular solitary wave-like solution u7 as a1 = −i,
a2 = ia1 = 1, k1 = m = α = β = 1, k2 = −1, x = z = 0,
f (t) = h(t) = t, g(t) = t2 , a = b = c = 1.
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When f (t), g(t) and h(t) are taken as suitable linear functions, u9 and u14 become exact kink
solutions, u10, u12 and u15 become singular solitary wave solutions, u11 and u13 reduce to periodic
solitary solutions, u16 becomes single wave solution. The representative sketches of the solutions in
the form of u9, u10, u11 and u13 without a tail are presented in Figures 5–8 respectively.

Figure 5. Kink solution u9 as a2 = 1, k2 = m = α = β = 1,
y = z = 0, f (t) = h(t) = t, g(t) = t, a = b = c = 1.

Figure 6. Singular solitary wave solution u10 as a2 = 1, k2 = −1,
m = α = β = 1, y = z = 0, f (t) = h(t) = t, g(t) = t,
a = b = c = 1.

Figure 7. Periodic solitary wave solution u11 as a1 = 1, a2 = ia1 ,
k1 = m = α = β = 1, y = z = 0, f (t) = h(t) = t, g(t) = t,
a = b = c = 1.

Figure 8. Periodic solitary wave solution u13 as a1 = 1,
a2 = ia1 , k1 = k2 = m = α = β = 1, y = z = 0,
f (t) = h(t) = t, g(t) = t, a = b = c = 1.

In the above figures, Figure 2, Figure 4 and Figure 6 all express singular solitary wave type. u2 is
singular in a large interval. u7 and u10 are singular in a small interval.

4. Conclusions

In conclusion, the extended homoclinic test approach (EHTA), which is based on the bilinear form
of nonlinear partial differential equations, is a fairly effective method to seek solutions. Applying
extended homoclinic test approach, four kinds of solutions, including some new types of special
solutions such as breather type of soliton and two soliton, periodic type of soliton solutions and so on,
can be obtained. Shang [8, 9] proposed the idea of combining variable separation method with the
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extended homoclinic test technique for solving higher-dimensional nonlinear partial differential
equations. They got sixteen solutions for (3+1)-dimensional potential-YTSF equations. The method
used in [8, 9] is more effective.

In this paper, by using extended homoclinic test approach and variable separation method, we
obtain abundant exact non-traveling wave solutions of the (3+1)-dimensional variable coefficients
Date-Jimbo-Kashiwara-Miwa (VC-DJKM) equation. Firstly, we apply the multi-linear variable
separation approach to reduce (3+1)-dimensional VC-DJKM equation (1.1) to some (1+1)-
dimensional nonlinear equation with variable coefficients. Then, by discussion on the type of function
θ(y, t) and introducing an appropriate transformation, we simplify the variable coefficients nonlinear
equation obtained above to a constant coefficients equation. Furthermore, with the help of Maple, we
solve the simplified equation by the extended homoclinic test approach and obtain sixteen kinds of
non-traveling exact solutions for the (3+1)-dimensional VC-DJKM equation (1.1). At last, we analyse
the properties of solutions obtained in our paper by graphic and explain the importance of these
solutions in mathematics and physics.

Especially, if g(t), h(t), a, b, c are taken some special value, Eq (1.1) reduces to the
(3+1)-dimensional DJKM equation (1.2), (2+1)-dimensional DJKM equation (1.3) and (2+1)-
dimensional VC-DJKM equation (1.4). In the same way to solving Eq (1.1), we can get abundant
non-traveling solutions to these equations respectively. Moreover, f (t) is an arbitrary first order
derivable function in u1-u16. When taking the arbitrary function f (t) as specific constant or function,
we can derive rich exact non-traveling wave solutions for Eq (1.1). Also, if taking f (t) = Constant, we
can obtain abundant exact traveling wave solutions of Eq (1.1) with g(t) = Constant. The results
obtained in our work are the supplement and extension of results of the existing literatures. From our
abundant results obtained in this paper, the methods applied here have been proved to be fairly
effective method for seeking non-traveling wave solutions of higher-dimensional nonlinear partial
differential equations. It is expected that our results are helpful for theoretical study of the associated
higher-dimensional nonlinear partial differential equations in mathematical physics.
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