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Abstract: We consider in this paper the stochastic nonlinear Schrödinger equation forced by
multiplicative noise in the Itô sense. We use two different methods as sine-cosine method and Riccati-
Bernoulli sub-ODE method to obtain new rational, trigonometric and hyperbolic stochastic solutions.
These stochastic solutions are of a qualitatively distinct nature based on the parameters. Moreover, the
effect of the multiplicative noise on the solutions of nonlinear Schrödinger equation will be discussed.
Finally, two and three-dimensional graphs for some solutions have been given to support our analysis.
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1. Introduction

Nonlinear complex phenomena arising in various fields of applied science such as fluid mechanics,
chemical physics, solid state physics, plasma physics, biology, optics and geochemistry can be
modelled into various nonlinear partial differential equations (NLPDEs) [1–9]. Recently, studying the
nature of these models has attracted the attentions of many researches [10–21]. The nonlinear
Schrödinger equation (NLS, for short) is one of the fundamental models of nonlinear waves. It has
many applications for example in the theory of solids [22] and crystals [23], in laser beams [24] and
in electromechanical systems [25].

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2021180


2971

Using stochastic processes in Schrödinger equations, thermal fluctuations or spontaneous emissions
or general random disturbances can be modelled. Many authors studied the existence and uniqueness of
the solution of stochastic Schrödinger equation with additive or multiplicative noise. The multiplicative
noise case is investigated in [26–30], while the additive noise case is discussed in [31, 32]. For both
cases are studied in [33, 34]. While, other authors are interested with numerical approximations of the
solutions via effective schemes of stochastic Schrödinger equation for example [35–37].

In this article, we consider the following stochastic nonlinear Schrödinger equation with
multiplicative noise in the Itô sense:

iut − uxx + 2 |u|2 u − 2ρ2u + σuβt = 0, for t ≥ 0 and x ∈ R, (1.1)

where u(t, x) is a complex-valued process, ρ and σ are constants, and βt =
dβ
dt is the time derivative of

Browian motion β(t). In this paper we consider the one-dimensional noise, because on one hand, this
is the case where we are able to obtain the exact solutions. On the other hand, infinite-dimensional
noise may lead to spatially unbounded solutions of Eq (1.1). At this point, it is convenient to provide
a definition of β(t). Brownian motion (also called one-dimensional Wiener process) is a stochastic
process {β(t)}t≥0 with the following properties: (i) β(0) = 0, (ii) β has continuous trajectories, (iii) The
process {β(t)}t≥0 has stationary, independent increments, (iv) For s < t the stochastic variable β(t)−β(s)
has the normal distribution N(0; t − s). The multiplicative noise in Eq (1.1) describes a process where
the phase of the excitation is disturbed . In crystals, this type of noise corresponds to scattering of
exciton by phonons due to thermal molecular vibrations.

In the current work, the Riccati-Bernoulli sub-ODE technique [38] and sine-cosine method are
employed to obtain new solutions in different form of stochastic Schrödinger Eq (1.1). Moreover, we
discuss the effect of multiplicative noise on these solutions. To the best of our knowledge, this article
is the first one for finding the exact solutions for the stochastic Schrödinger Eq (1.1).

Our aim in the current work is to derive the exact solutions of stochastic nonlinear Schrödinger
Eq (1.1) forced by a one- dimensional multiplicative white noise in the Itô sense by two various
methods such as the Riccati-Bernoulli sub-ODE technique [38] and sine-cosine method. To the best
of our knowledge, this article is the first one for finding the exact solutions for the stochastic
Schrödinger Eq (1.1). Moreover, we discuss the effect of multiplicative noise on these solutions. The
obtained solutions will be extremely helpful in future for further studies such as the improvement of
biomedical, coastal water motions, industrial studies, quasi particle theory, space plasma and fiber
applications.

This article is divided into the following sections. In the next section, we will obtain the stochastic
exact solutions of stochastic nonlinear Schrödinger Eq (1.1) by using two different methods, while in
section 3 we show the effect of multiplicative noise on the exact solution of nonlinear Schrödinger Eq
(1.1). Finally, we introduce the conclusions of this paper.

2. The exact solutions of stochastic Schrödinger equation

In this section we will get the exact solutions of stochastic nonlinear Schrödinger Eq (1.1). Let us
first use the following wave transformation

u(t, x) = κ(η)eiθ, η = k(x + 2αt), θ = αx + υt + σβ(t), (2.1)
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where α is the speed of the wave solution κ(η), σ is the noise strength, k is a positive constant. By
using (2.1) and

∂u
∂t

= (2αkκ′ + iυκ + iσβt)eiθ,

∂2u
∂x2 = (k2κ′′ + 2iαkκ′ − α2κ)eiθ,

one can convert Eq (1.1) into the following ODE:

− k2κ′′ + 2κ3 + Aκ = 0 , (2.2)

where
A = (α2 − 2ρ2 − ν).

In the following we apply two methods as the Riccati-Bernoulli sub-ODE method and sine-cosine
method to obtain the solitary wave solution of Eq (2.2). And we, therefore, have stochastic exact
solution of NLSE (1.1).

2.1. The Riccati-Bernoulli sub-ODE method

Consider the following Riccati-Bernoulli equation

κ′ = a1κ
2−m + a2κ + a3κ

m, (2.3)

where a1, a2, a3 and m are constants and κ = κ(η).
Differentiating the Riccati-Bernoulli Eq (2.3) one time with respect to η, we obtain

κ′′ = a1a2(3 − m)κ2−m + a2
1(2 − m)κ3−2m

+ ma2
3κ

2m−1 + a2a3(m + 1)κm + (2a1a3 + a2
2)κ. (2.4)

By substituting (2.4) into (2.2), we have

−k2a1a2(3 − m)κ2−m − k2a2
1(2 − m)κ3−2m − mk2a2

3κ
2m−1 − a2a3k2(m + 1)κm

+ 2κ3 + (−2a1a3k2 − a2
2k2 + A)κ = 0 . (2.5)

If we put m = 0, then Eq (2.5) will be become

(2 − 2a2
1k2)κ3 − 3a1a2k2κ2 + (A − 2a1a3k2 − a2

2k2)κ − a2a3k2 = 0. (2.6)

Equating each coefficient of κi(i = 0, 1, 2, 3) to zero, we obtain the following algebraic equations

a2a3k2 = 0,

A − 2a1a3k2 − a2
2k2 = 0,

3a1a2k2 = 0,

2 − 2a2
1k2 = 0.
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Solving the above equations, yields

a1 = ±
1
k
,

a2 = 0 ,

and
a3 = ±

1
2k

A.

Now, let us deduce the exact solutions of stochastic nonlinear Schrödinger Eq (1.1):
First case: If m , 1 and A = (α2 − 2ρ2 − ν) = 0, then the solution of (2.3) in this case takes the form

κ(η) = (a1(m − 1)(η + C))
1

m−1 . (2.7)

Consequently, the exact solution of (1.1) is

u(t, x) = κ(η)ei[αx+υt+σβ(t)] = [±(m − 1)(x + 2αt + C)]
1

m−1 ei[αx+υt+σβ(t)], (2.8)

where C is the integration constant.
Second case: If m , 1 and A = (α2 − 2ρ2 − ν) > 0, then the solution of (2.3) in this case takes the

form

κ(η) =
(
±

√
A
2

tan
(
(1 − m)(x + 2αt + C)

√
A
2

)) 1
1−m
, (2.9)

and

κ(η) =
(
∓

√
A
2

cot
(
(1 − m)(x + 2αt + C)

√
A
2

)) 1
1−m

. (2.10)

Therefore, then the exact solution of (1.1) is

u(t, x) = κ(η)ei[αx+υt+σβ(t)]

= ei[αx+υt+σβ(t)]
(
±

√
A
2

tan
(
(1 − m)(x + 2αt + C)

√
A
2

)) 1
1−m
, (2.11)

and

u(t, x) = κ(η)ei[αx+υt+σβ(t)]

= ei[αx+υt+σβ(t)]
(
∓

√
A
2

cot
(
(1 − m)(x + 2αt + C)

√
A
2

)) 1
1−m

. (2.12)

Third case: If m , 1 and A = (α2 − 2ρ2 − ν) < 0, then the solution of (2.3) in this case takes the
form

κ(η) =
(
∓

√
−A
2

tanh
(
(1 − m)(x + 2αt + C)

√
−A
2

)) 1
1−m

, (2.13)

and

κ(η) =
(
∓

√
−A
2

coth
(
(1 − m)(x + 2αt + C)

√
−A
2

)) 1
1−m

. (2.14)

Consequently,then the exact solution of (1.1) is

u(t, x) = κ(η)ei[αx+υt+σβ(t)]
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= ei[αx+υt+σβ(t)]
(
∓

√
−A
2

tanh
(
(1 − m)(x + 2αt + C)

√
−A
2

)) 1
1−m

, (2.15)

and

u(t, x) = κ(η)ei[αx+υt+σβ(t)]

= ei[αx+υt+σβ(t)]
(
∓

√
−A
2

coth
(
(1 − m)(x + 2αt + C)

√
−A
2

)) 1
1−m
. (2.16)

2.2. Sine-Cosine method

While in this section we use the sine-cosine method [39–41]. Let the solution u take the form

κ(η) = aYm, (2.17)

where
Y = sin(bη)or Y = cos(bη). (2.18)

Substituting Eq (2.17) into Eq (2.2) we have

−ab2k2[−m2Ym + m(m − 1)Ym−2] + 2a3Y3m + aAYm = 0.

Rewriting the above equation

(aA + ab2k2m2)Ym − m(m − 1)ab2k2Ym−2 + 2a3Y3m = 0. (2.19)

Balancing the term of Y in Eq (2.19), we get

m − 2 = 3m =⇒ m = −1. (2.20)

Substituting Eq (2.20) into Eq (2.19)

(aA + ab2k2)Y−1 + (2a3 − 2ab2k2)Y−3 = 0. (2.21)

Equating each coefficient of Y−1 and Y−3 to zero, we obtain

aA + ab2k2 = 0, (2.22)

and
2a3 − 2ab2k2 = 0. (2.23)

We obtain by solving Eq (2.22) and Eq (2.23)

a = ±
√
−A and b = ±

1
k

√
−A

There are two cases:
First case: If A = (α2 − 2ρ2 − ν) < 0, then in this case the solitary wave solution of Eq (2.2) takes

the form
κ1,1(ξ) = ±

√
−A[sin(

1
k

√
−Aξ)]−1 = ±

√
−A csc(

1
k

√
−Aξ),
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or

κ1,2(ξ) = ±
√
−A sec(

1
k

√
−Aξ).

Therefore, the stochastic exact solutions of NLSE (1.1) is

u1,1(t, x) = ±ei[αx+υt+σβ(t)]
√
−A csc[

1
k

√
−A(x + 2αt)], (2.24)

and

u1,2(t, x) = ±ei[αx+υt+σβ(t)]
√
−A sec[

1
k

√
−A(x + 2αt)]. (2.25)

Second case: If A > 0, then in this case the solitary wave solutions of Eq (2.2) takes the form

κ2,1(ξ) = ±i
√

A[sin(
i
k

√
Aξ)]−1 = ±i

√
A[sinh(

1
k

√
Aξ)]−1 = ±i

√
A csc h(

1
k

√
Aξ),

or

κ2,2(ξ) = ±i
√

A[cosh(
1
k

√
Aξ)]−1 = ±i

√
A sec h(

1
k

√
Aξ).

Therefore, the stochastic exact solutions of NLSE (1.1) are

u2,1(t, x) = ±ei[αx+υt+σβ(t)]
√

A csc h[
1
k

√
A(x + 2αt)], (2.26)

and

u2,2(t, x) = ±ei[αx+υt+σβ(t)]
√

A sec h[
1
k

√
A(x + 2αt)]. (2.27)

Substantially, it has been reported that the exact solutions of the nonlinear Schrödinger Eq (1.1)
were gained in the explicit form, using sine-cosine and Riccati-Bernoulli sub-ODE methods. The
difference between them is that they give different types of solutions. These solutions describe different
phenomena in physics and applied science. The main advantages for these two methods over the most
other methods is that they give various vital solutions with additional free parameters. Moreover, these
methods are simple, sturdy and efficient. Indeed these two methods can be used to solve other models
arising in physics.

3. The effect of the noise on the solutions

In this section we show the effect of multiplicative noise on the solution of Schrödinger Eq (1.1).
In the following we introduce some graphical simulations for the fixed parameters α = 1.3, k = 1.3;
p = 1.4, µ = 2, ν = 2.4 and varying noise strength σ. The graphical simulations carried out with
MATLAB package.

We see that the solution of NLSE (1.1) fluctuates and has a pattern if σ = 0 in the Figure 1. In
Figures 2–4, we see that the pattern begins to destroy if the noise intensity σ increases. Finally, in
Figure 5 we give 2-D graph of the solution of NLSE (1.1) with different values of the noise intensity
σ.
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Figure 1. Graph of solution u in (2.11) with σ = 0.

Figure 2. Graph of solution u in (2.11) with σ = 1.

Figure 3. Graph of solution u in (2.11) with σ = 2.
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Figure 4. Graph of solution u in (2.11) with σ = 3.

Figure 5. Graph of solution u in (2.11).

4. Conclusions

In this article we introduced a rich variety of families of wave solutions, to stochastic nonlinear
Schrödinger equation with multiplicative noise in the Itô sense. These solutions are of significant
importance in the explaining of some interesting complex physical phenomena. The proposed method
is easy, concise, direct and effect tools that give interesting results. The obtained solutions will be
extremely helpful in future for further studies such as the improvement of biomedical, coastal water
motions, quasi particle theory, industrial studies, space plasma and fiber applications. Finally, we
illustrated the effect of multiplicative noise on the solitary wave solution of Schördinger equation.
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